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Robust Optimization-based Coronary Artery
Labeling from X-Ray Angiograms

Xinglong Liu', Fei Hou+**, Hong Qir¥, Aimin Hao'

Abstract—In this paper, we present an efficient robust labeling training and medical practitioners towards high-precisiag-
method for coronary arteries from X-ray angiograms based on nosis, surgery planning, and treatment. This paper’s ralgy
energy optimization. The fundamental goal of this researchs to hinges upon our efficient solution to extract coronary éter

facilitate the analysis and diagnosis of interventional stgery in d . h art ith K labels. Besid
the most efficient way, and such effort could also improve the ana recognize each artery wi nown labels. besides, we

performance during doctor training, and surgery simulation and  aPply our method in practical cases, gleaning all the ingyurt
planning. Compared to prior state-of-the-art, our method is much  information from X-ray angiograms which will in turn proved
more robust to resist noises and is tolerant to even incomple more quantitative guidance for later treatments.

data because of the'built-in" nature of global optimization. We  Although various researches have been done, there are still

start with a fully parallelized algorithm based on Hessian natrix some unsolved challenges currently. First, the angiog S
to extract the tubular structure from the X-ray angiograms e

as vessel candidates. Then, instead of using the candidatesVith low image quality, sometimes incomplete, making it
directly, we use the Grow Cut [1] method which is similar difficult to extract accurate structures. Second, curregthiods

with Graph Cut [2] but with better performance to extract the  are time-consuming facing tremendous amount of angiograms
precise vessel structure from the images. Next, we use thesta produced daily. Third, the skeleton organization of curren

marching method with second derivatives and cross neighber : : :
to extract accurate skeleton segments. After that, we propse an methods is usually based on either prior knowledge or ge

efficient method based on Iterative Closest Point [3] to orgaize OMetrical structures and may not ensure a globally-opghiz
skeleton segments by treating continuity and similarity asextra ~ solution. Finally, current methods calculate parametefrs o
constraints. Finally, we formulate the vessel labeling prblem coronary arteries such as flow velocity simply at the pixetle
as an energy optimization problem and solve it using belief from acquired images without considering the global vessel

propagation. We also demonstrate several typical applicadns : : : .
including flow velocity estimation, heart beat estimation,and structures and the structure relationship among imagessjwh

vessel diameter estimation to show its practical uses in dical S NOt only wasting high-level, more valuable information
diagnosis and treatment. Our experiments exhibit the corretness  available in acquired images but also far from being aceurat
and robustness, as well as high performance of our algorithm To overcome the aforementioned shortcomings, we present

Wedetrk]]vision tpattourtSyStefT; th)ut|ddbg_0f high utility f(la_r diag$5is an efficient and robust vessel extraction and labeling nakitho
and thera, - ; ot ;
e neaﬁyfu?urfa vessel-related diseases In a clinicakting g paper, and explore several applications using thegsep
) method, including flow velocity estimation, heart beat rate
o 'Qr?]?ﬁ(atrfﬁm% X-ray Angiograms, Coronary Artery, Energy  estimation, etc. Compared to previous methods, our method
P ' is more robust to resist noise and to handle even incomplete
data. The pipeline is shown in Fig. 1 consisting four stages:
|. INTRODUCTION vessel and skeleton extraction (Section Ill), vessel degdion

HE morbidity of Cardiovascular Disease (CVD) is rapidgseCtion IV), tree structure labeling (Section V), and égpl
T i we design a parallel algoritirased

ly increasing over the past few decades. Cardiovascufgd" (Sec_tion VII)._FirstIy, .
ngHessmn matrix [8] to extract candidate vessels and make

Lge of the Grow Cut [1] method based on cellular automata
overall deaths in the USA [4, 5]. In Singapore, one out de further process the candidates for more accurate fouegro

three deaths are due to heart disease or stroke [6]. Becaf@@nary arteries. Then, we propose an iterative distande a

of the gradually-aging population in the world, the pereeyet similarity evaluation method based on lIterative CloseshtPo
of cardiovascular disease patients is expected to draaﬂytic(lcp) with the pr_operty of optimization to organize exteett
increase [7] in the near future. The golden standard fgpssel skeleton into segments. After that, all vessel satgne

diagnosis of CVD is X-ray coronary angiography. Readin ill be organized as well-structured trees. Then, we foateul

and analyzing angiograms accurately is a compulsory cou g_la_bell_ng problem of the organl_zed _skeleto_ns Into angner
for fresh physicians involved in intervention surgery or fo2Plimization problem and solve it using belief propagation

diagnosis of heart diseases. Accurate coronary arteryaegnt Nally. we apply our method to several practical estinatio
tation and recognition are imperative for both cardioltgis- problems to facilitate better diagnosis and treatment.fb&s
contributions of our work include:

1 State Key Laboratory of Virtual Reality Technology and 8yss, Beihang o We develop an efficient parallelized vessel extraction and

disease is the leading cause of death in both developed
developing countries. For example, it accounts for 17%

University. - . _ thinning method using Hessian matrix as well as the
2 School of Computer Engineering, Nanyang Technologicalvéhsity G C hod. O d is th he i
3 Department of Computer Science, Stony Brook University. row Cut method. One advantage Is that, at the image
*Corresponding author level, we take into consideration the probability and the
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continuity of each pixel/voxel belonging to vessels.  to label coronary from computed tomographic angiography.

o We develop an efficient, iterative distance and similaritfhroughout all labeling techniques, most are based onrfesitu
evaluation method based on ICP. We propose a framghich may not only cause mistakes due to blurry images, but
work based on this new descriptor to organize the eaiso be unable to achieve globally optimized results.
tracted vessel skeletons into well structured trees, lgreat Optimization Techniques. Optimization techniques are
simplifying the labeling problem at little performancewidely used in various areas such as image restoration, 3D
loss. reconstruction, etc. Geman et al. [21] first proposed thgscla

« We develop a novel labeling method based on globe#l theories of Markov Random Field (MRF), Gibbs Sampling
energy optimization being solved using belief propagaticand Maximum a Posteriori estimate. Lafferty et al. [22]
with distanceand topology constraints, which is robust proposed the Conditional Random Field (CRF) providing a
to noisy and incomplete data from images. tool for structural classification and prediction. Meankhi

« We explore several typical practical applications usirgy trBelief Propagation (BP) was proposed by Pearl [23] to solve
newly-proposed method to extract physiological paramthe optimization problems in MRF. Ever since the inceptibn o

ters from the X-ray angiograms automatically. BP, various methods for improving its performance [24], as
well as speeding up the method [25] have been proposed,
1. RELATED WORK which indicates its important role in energy optimization

Our work relates to vessel extraction, skeleton tracking}eory. Besides BP, Graph Cut is widely used in computer
energy optimization, etc. We now briefly review them in th¥ision including image segmentation [26], stereo disparit
following categories. and motion [2]. In [2], Boykov et al. presented an efficien-

Vessel and Skeleton Extraction.The vessel extractiont a-expansion andx-3 swap algorithm for metric energy
methods can be classified into different categories (Se¢. [gninimization based on Graph Cut. Kolmogorov et al. [27]
In addition, researchers took more focus on energy badgifoduced the characteristics of the energy function tvhic
segmentation methods with combination of many classicg®uld be minimized by Graph Cut and conducted the genetic
methods. Salazar et al. [10] proposed a vessel Segmentaﬂ@ﬁstruction of the minimization function. Many extenson
method for retinal images based on energy optimization B9 Graph Cut have been proposed such as Grab Cut [28]
combining the well known Graph Cut method with the classptc. Despite the typical methods, Vezhnevets [1] proposed a
cal optic disc method. Hoover et al. [11] used a mathematidggthod called Grow Cut which is similar with Graph Cut but
filter to offer a broad range of vessel enhancement, and Liigtbased on cellular automata with better performance.
al. [12] conducted this task using a non-linear filter. Fiang Practical Applications. As with applications in medical
et al. [8] used the eigenvalues of Hessian matrix to extrdftage analysis, Liu et al. [29] have proposed a method based
the tube-like structures from X-ray images. Condurache ®@ €nergy optimization to extract shape, motion from X-
al. [13] used this method while adding a hysteresis threshof@y angiograms at different views. As relevant technolsgie
ing method to purify the extracted data, which is not robuddvance, more sensors and instruments have been applied to
to handle blurry images. Zhang et al. [14] proposed a nov®easure physiological parameters in coronary arteriestwhi
extension of the matched filter approach which is compostafilitates the computational fluid dynamics (CFD). Tremen
of a zero-mean Gaussian function and the first-order dérevatdous progresses have been made in applying image-based CFD
of Gaussian. Typically, vessels extracted from angiograras Simulation techniques to elucidate the effects of hemoudyna
quite complicated. Centerline extraction for vessels septial ICS in vascular pathophysiology toward the initializatiand
for both data simplification and further processing. Zhang Brogression of CAD [30].
al. [15] proposed a two-step thinning method based on the
structure analysis of the candidate vessel structures.etan I1l. VESSEL ANDSKELETON EXTRACTION

al. [16] and Hassouna et al. [17] proposed methods basegsjven X-ray angiograms, we design an efficient algorithm

on Eikonal equation and fast marching method to find vessgin the help of GPU for extracting enhanced images as vessel

skeletons. Yet, they could not process isolated vessel®egm candidates. After that, we use Grow Cut method which is
Vessel Labelmg.LabeImg coronary arteries, focusmg_ bo”based on cellular automata to selémeground (vesseldjom

on 2D such as X-ray angiograms and 3D such as CT imaggssse| candidates with the knowledge from kndareground

aims to offer semantic information corresponding to gemmgt backgroundand vessel continuity. At last, we apply the Multi-

structures. Ezquerra et al. [18] proposed a model-guidgflcils Fast Marching method with second derivative and

method automatically labeling vascular structures in 0arg  ¢5qq neighbors to track skeletons from segmented veéeis.
angiographic images. They compared a feature graph withay) \essels as well as their skeletons are shown in Fig. 2.
symbolic graph based on feature correspondence whichas loc

and ignores the global nature. Haris et al. [19] proposed a )

segmentation and labeling method for coronary arteriestbad- Vessel Extraction

on artery tracking, morphological tools of homotopy modific ~ Original angiograms captured by X-ray machines are usu-
tion and watersheds. However, their method is not automadilty with low contrast, high dynamic range, and low lumen.
and needs user interactions. Yang et al. [20] proposed a tW@ extract vessels from such images, we devise a global
step matching algorithm including main branch identificati optimization method consisting of three steps, vessel mrdia
and all segments labeling based on 3D ground truth modetent, Hessian based vessel candidate extraction and lgtobal
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Fig. 1. Pipeline of our method consisting of four steps. tspare X-ray angiograms and one 3D coronary artery modelevehitputs are labeled skeletons
with traced diameters, flow speed, and heart rate. Legergieen to indicate different meanings of colors and shapes.

correspondingr for further process.

In our application, for every angiogram among the imaging
sequence and for every specifiedour parallelized extraction
method consists of the following steps. First, we build the
Gaussian kernel mask depending enon CPU side and
transfer them into GPU. Second, we convolve the entire
image using this Gaussian kernel and each pixel point on the
image corresponds to one CUDA kernel. Third, we extract the
eigenvalues and eigenvectors and compute the coefficients f
each point’s Hessian matrix. This is also done per kernel on
GPU. Fourth, we use a double swap buffer on GPU to compute
the possibility of being part of vessel structures for eaicielp
(refer to Eq. 15 of [8] for details). In all the procedurescept
initialization, data are processed on the GPU side and dtore
for further process.

Catheter

Fig. 2. Results of vessel and skeleton extraction. Cathefed, and LCX
branch are identified. Different colors correspond to défe segments. Round
filled circles identify bifurcations and distal points.

optimized precise extraction based on Grow Cut. The pipelin 3) precise Results using Grow CutFiltered values from
is described in Fig. 3. Hessian matrix are discrete in isolation without any knaigke

1) Angiogram Enhancement We first apply the enhance-of adjacency information. Simply using threshold can not
ment of radiography based on Musicale Retinex with Coleixtract satisfactory results from Hessian matrix. Thewesfo
Restoration (MSRCR) [31] method since it can can combglessian Matrix together with Grow Cut are used to guarantee
these artifacts while keeping edges sharp with low comput@ore purified extraction results from images. Hessian Matri
tional cost. This step is very important since it is a base f@§ a good start for extracting tubular structures and easy to
further processing. Without this step, images processeden pe parallelized. However, Hessian is more focused on local
next step will be full of small artifacts, and some of whichpixel’ level on images while Grow Cut could use the output
might be easy to be smoothed but many others are hardofoHessian as an input and take neighboring information of
distinguish. Then, we use the gain/offset method to fix theirrent local pixel into consideration. These two methads a
negative values. After the pre-processing procedurejnaiig pair-wisely used to ensure the continuity as well as tubular
images are enhanced in contrast and lumen, providing befigsture of current pixel on images. Grow Cut [1] is an alter-
basis for vessel extraction. native to Graph Cut, yet with much better performance. This

2) Candidates from Hessian Matrix The filter [8] based method can be regarded as having a biological metaphor that
on Hessian matrix affords a good start of extracting tubulatich image pixel is formulated as a cell of certain type. &hes
structures for segmentation, and improving efficiency ViRiG cells can beforeground backgroung undefinedor others. As
acceleration. Besides, the filtered values denote the conige algorithm proceeds, these cells compete to dominate the
sponding probability for each pixel belonging to vesselakm image domain. The ability of the cells to spread is related to
ing it convenient to add further process to ensure conginuithe image pixel intensity.
constrains. We convolve original images by Gaussian filtersBased on the probability image acquired from GPU-
with differento which are related to maximum vessel size adiccelerated Hessian, we divide the candidates on the image
the image and then we normalize the convolved image usimjo three categoriesbackground foreground (vessel)and
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Original Image Enhanced Image Possibility Image A|gOI‘Ithm 1 Multi-stencils Fast MaI’Ching Skeleton Extraction
: Input:
1: bI MG, binary image representing vessels.
2: nilter, maximum iteration count.
Output:
3: retLines, traced vessel skeletons.
4: function skeLETON((bIMG))
5: boundDist < GETBOUNDARYDIST(bI M G)

Final Results

6: (source, maxD) < MAX DISTPOINT(boundDist)
7: speedImage < boundDist/maxD
8: while (itt < niter) do
9: (T,Y) + MSFM(speedimage,source)
10: start < MAXDISTPOINT(Y)
Fig. 3. Pipeline of vessel extraction. We use Hessian matibextract 11 Line < SHORTESTPATH(T, start, source)
vascular candidates from MSRCR enhanced images and glaksifn into 12 retLines(itt) < TRIMLINES(Line)
three categories which are the inputs for Grow Cut to prodiiee final 13: itt «— itt + 1

segmentations. .
g 14: end while

15: return retLines
16: end function

Extracted Vessels

IV. VESSELORGANIZATION

In principle, extracted vessel skeletons are messy, less-
accurate segments consisting of many pixels which may not
| ; exhibit well-behaved structures, not suitable for imméeslia

Multi-stencils | labeling. Since importance of coronary branches is differe

Tast Marcing (e.g., LAD and LCX are more important since they are root
Fig. 4. Pipeline of skeleton extraction. Multi-stencilssEarching is used branches, mis-labeling them would cause all the following
with cross neighbours and second derivatives to improveracyg. subsequent labeling wrong), here we adopted a two-step
undefinecpixels. For all pixelg on the image, the processingprocedure based on prior knowledge to first extract the most
stage mainly comprises the following steps. First, curséae important two branches in coronary arteries, called Vessel
and weighted strength from last iteration are saved. Seco@tganization (Section IV) problem and Tree Structure Label
for all neighbours; of pixel p under forcel” and strengthS, ing (Section V) problem. In the first step, we organize the
we will compute the new strength throughx S and replace messy skeletons, transforming them into well-organizeeé tr
the old one if it is smaller. Third, all pixels on the image il structures with an ICP based similarity term. We select ICP
be assigned with a label by and 1, indicating background as core of the similarity term for its high efficiency. Thus,
andforeground respectively. Fourth, we collect tiiereground  this step only consumes a little in terms of temporal cost, ye
pixels as vessel segments and calculate the length (i.ebe&unhighly simplifies the labeling problem and increases aagura
of points) of each segment. Finally, segments whose numipgrthe second step, we compute optimized labeling results,
of points are smaller than a given value are omitted and # thhainly focusing on LAD (Left Anterior Descending), LCX
way we can obtain clear vessel images as the Final Resultgliaft Circumflex), OM (Obtuse Marginal) and D (Diagonal)

Fig. 3. branch. We put different emphasis on different branchesesin
they may have different levels of significance during latgli
B. Skeleton Extraction The pipeline of organizing extracted skeletons is desdribe

Vessel skeletonization is essential for data simplificratioIn F|g: 5t' const|st|n%hof three_ s}eps. Based ton our Ves;eld
The Fast Marching method [32] [17] with second derivativegrganlza lon step, theé meaningless segments aré organize

and cross neighbors provides a precise way to extract ek\eIetInto tree strugtures V.V'th k_nown propgrtles (e._g., Ieg i dept
s. As illustrated in Fig. 4, we extract the accurate skeletbn leaf parent-child relationship, etc.). This step highhphioves

. . : : e robustness of our method and reduces labeling erroedaus
objects represented by binary images using the Fast Megchg; the mis-labeling of the tree’s root node.

distance transform. First, we compute the distance map
the whole binary image (Ln. 5, Alg. 1). Second, we trace the
shortest path from start point to source point using Rung@- 2D Ground Truth Building

Kutta method in the distance map (Ln. 11, Alg. 1). Finally, Our prior knowledge comes from a 3D skeleton model
we organize and split traced points into line segments (Rn. with known labels. Since we are labeling 2D angiograms,
Alg. 1). With the help of both second derivatives and crosge project the 3D skeletons onto 2D images to derive the
neighbors, we obtain segmented skeletons more accuratggometric structure and their relationship according te th
Meanwhile, we extracted diameters for each skeleton powiewing angles of current data set. With the known labels of
during the distance transform. Tracked skeleton segments hthe 3D skeleton model, we can easily label key vessel branche
been shown in Fig. 2. (which we calllandmark e.g., LAD, LCX, etc.) on the 2D
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LAD Candidates

Skeleton Segments

projected images. Landmarks at a given angle are shown in LAD Template

Fig. 1 where LAD and LCX are labeled both on 3D and 2D
projected ground truth images. On the projected images, we
call the geometrical and structural information of LAD and
LCX as Templateand use them for evaluation in the landmark & Error
building step. One LAD template at a given angle is shown @) ) ©

n Flg 5 (b) J Neighbors, Correlations, Length
Oofimzed Trs
v
B. Landmark Building

3
Obviously, coronary arteries are tree-structured witht,roo lﬁp‘;ij

branches, and leaves. It is necessary to identify the rodt an F#
primary branches to build the entire tree structure. Bezaidis

ICP

[Method
Rotation |
& Transform

.

the special characteristics of vascular angiography, wialyna (d)
concentrate our attention on extraction and analysis cea‘ethrFig 5. Pipeline of skeleton organization. (a) Skeleton . (b) LAD
landmarks, theCatheter LAD branch and-CX branch by our terr;pléte. (c) Candidates using LAD. (d) bifferent orgadizmndidates. (e)

ICP-based method. The ground truth landmarks at a givemi (f) Processed skeletons and their relationship.

angle are shown in Fig. 2. . until it is a distal node. As there are multiple distal nodes
1) Similarity Term Definition: For landmark building, we q,rjing search, there are several options that LAD might have
focus on extraction of three branches includ®afheter LAD,  afier LAD has been determined, the same procedure advances
andLCX. We define ground truth for each branch@&.ar,  tor Lcx branch. Suppose there arechoices for LAD andh
Grap, andGrex, respectivelyGeoar is derived from the qpgices for LCX, there are totally, x 1 options for the whole
extraction of beginning images of the sequence wBllesn  compinations. We transform the messy data into vessel trees

andGrcox are from 2D projected ground truth. We call thesg ..o rding to selected LAD and LCX (See Section V-A), and
three ground truth aemplateand use a similarity term to find jiorate all them x n combinations, calculating the globally

similar branches from to-be-labeled vessel trees. By mo"optimized energy (See Section V-B) for each combination
Templateas [ Whergl € {Gcar,Grap, G_ch} an.d ?a9h to ensure the robustness of our algorithm. At last, we select
extracted skeleton line segment.gsve define the similarity .,mpination with minimal energy as the final structure. The

term D(l, s) based on the results of ICP registration in thgnre computational procedure is described in Algorithm 2
extracted image. Th&(l, s) is devised to consider structural

and geometrical features and evaluated via:

Algorithm 2 ICP-based Skeleton Segments Organization

D(l,s) = N(1,8)T(1, s)R(l,s)/C(s), 1a) Input:
(4.5) ()T )R(L )/ Cls) (12) 1: Cath, extracted catheter segments.
N(l,s) = [L(s)/L(l) = 1] + 1, (Ib) 2. LADGr
_ 3: LCXGr, ground truth for LAD
T(L,5) = Ti(s) + 7 Erns), (o) ¥ 9
R(l,s) =1+ Ry(s)/180, (1d) 50 LNodes, to be labeled segments.
6: Coef f, coefficients between line segments.

in which L(s) stands for the length of segmest T;(s),
E?;Qlt(s) a?dté?z(S_) are partamteteg calctulaéedf f@{fr:om ICE 7: segment combination with minimal energy.
with templatel, + is a constant and'(s) stands for the number & function PROCESONEIMAGE

of points of segment. Eq. 1b is used to ensure the similar _ cathCandi « 1cPLOOKUR(Cath, LN odes)

Output:

length of labeling and the ground truth segment. Eq. 1cid us?oj
to evaluate transformations in image pairs. Eq. 1d indgctite
rotation from labeling to ground truth segments. 1

2) Catheter Building In our experiments, the angiograms ™
are taken at the very beginning of the intervention, when thléJ’:
catheter is inside the coronary artery and no contrast aigentl4:
injected. Therefore, we can use our vessel extraction rdetho”’
to process the beginning images of the sequence to extré%t
catheter, which is used as ground truth for labeling cathetd”
branches in the following frames of the sequence. 18:

3) LAD and LCX Building: LAD and LCX branches are %
even more important than catheter. Once we calculate th%
D(l, s) for each segment, we obtain corresponding segmer?tE
for the template colored in red as shown in Fig. 5 (c). Mearf?
while, since catheter is directly intervened into LAD branc 23
due to our prior knowledge, we start from the intersectiof’*
segment and search for the neighbors for each working na

11:

1Cath < cathCandi
LADCandi < 1cPLOOKUP(LADGT,LN odes)
vProcessed + insertiCath
LADs < COLLECTPATHS(LADCandi,Coef f)
for m =0 — Count(LADs) do
LCXCandi < 1CPLOOKUP(LC X Gr, LN odes)
vProcessed < insert LADs(m)
LCX s < COLLECTPATHS(LC X Candi,Coef f)
for n =0 — Count(LCXs) do
vMerged + MERGELADs(m), LCX s(n))
Energy < vesselTreeBP(vMerged)
end for
end for
minE, mMin,nMin < min(Energy)
sFinal + MERGELADs(mMin), LCX s(nMin))

2R end function
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C. Segments Organization 2D Projected Ground Truth Labeled Skeletons
As soon as LAD and LCX segments are identified, we W ﬂ
can organize rest of segments clearly based on the coorelati T beled el ine
Corr(p,q) between neighboring segmentsand ¢, which is &0 v
deﬁned as: Distance Term Relationship Term
1S(p) — S(9)| v 2
Corrpa) = axctan ((1 - S(p)S(q»)’ @ o R

whereS(p) denotes the average slope value for skelgtand Fig. 6. Pipeline of vessel tree labeling. We define two eneigyns to
it is defined as: formulate the labeling problem as an energy optimizatioobjam.

N 3 (X,00%(0) — (5 X,(0)(32 Y ()
S(p) = — : = e
N 3 (5,000 ~ (2 60)(% X,0)

where for each skeleton segmentV denotes the number
of points, X, and Y, represent the X-coordinate and Y-
coordinate, respectively. In our experiments, onte smaller
than a predefined valu&orr(p, q) is slightly raised to give
smaller segments better chances of merging into longer. ones
We start from a random skeleton segment and group neigh-
bors of the current working segment with high correlation
recursively. After each group is processed, we continuekea
ing from the other uncovered segments until all segments hav ] o
been covered. At last, segments belonging to the same grffy” Isralie sketches for xray e pararte oy andour
will be merged into a new segment, the points belonging patient, respectivelydy, anddy are angles the C-arm rotates in space. LAO
each old segment will be queued and sorted by its locatiérd CRA are defined as positive angles while RAO and CAUD afiaate
and the starting point and ending point for this new segmef"e9aive angles along their corresponding axes.
will be refreshed. After the organization, we obtain a tgtal B- Labeling using Belief Propagation
new structure with more reasonable, continuous segmedts anWe present an energy-based method to analyze the tree-
skeleton fragments with a reasonable length. structured vessels robustly with the property of globali-opt
mization. The energy term at timeis defined as:

=1

V. VESSELTREE LABELING

After the messy segments have been transformed into well- ~ £t(f) = YD) +A DY Voalfofa), ()
organized unique tree structures, it is ready to derive #ssef peP P.aeN,
tree (Section. V-A) and label the vessels (Section. V-Bedaswhere P is the node set of the vessel tred], is the
on Belief Propagation as described in Fig. 6. neighboring node set of node We defineD,(f,) as the
minimal normalized value that is the same as Eq. la, which
A. Vessel Tree Building is called byDistanceterm:
We build the vessel tree from each organized vessel struc- Dy (f,) = norm(min(D(, £,))). )

tures. Each tree node corresponds to a vessel segment in
which LAD and LCX correspond to the root node and one dfleanwhile, we define th¥, ,(f,, f,) as theRelationshigerm
the primary branch respectively. During the constructive, to ensure the continuity between adjacent segmeraad .
compute the depth, neighborhood and parent-child relshipn This term is related to the path length between the noged
for each tree node based on depth-first iteration. its ground truth nodg,,. We defineV,, ,(f,, f;) as:

First, we collect the merged skeletons and analyze key
points including bifurcations and distal nodes as inputoBe, Voa(fp: fo) = (14 Bpg(fp, f))(Dp(fp) + Da(fa)), (6)
we build parent-child relationships between segmentsrdecowhere R, ,(f,, f,) denotes the path length from the corre-
ing to two-tuple ¢, p) which indicates that it is a bifurcation sponding ground truth nodg¢, to node f,. Since message
point p on segmenti. Third, we assign each node with gpropagation is processed between neighboring nodes, they
unique code consisting of the inherent code from its paremdve relationships including both parent-child and sisin
and the unique code of itself. This code enables us to compUigerefore, larget?, ,(f,, f,) can easily penalize labels not
the minimal path between nodes efficiently. Finally, we khalell fitted with the ground truth.
analyze if the node is a distal node with one bifurcation or Once we have thédistance and the Relationshipterms,
an inner node with two bifurcations through looking up theve find the minimumgE;(f) using Belief Propagation (BP)
bifurcation table. After all of these analysis, we traveadle algorithm, which is comprised of two main steps, message
nodes in a depth-first manner and record both the depth gdpagation and energy minimization. In the message prop-
the root nodes. agation step, we formulate the message propagated between
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TABLE | According to the statistics, All catheter branches areaetéd
LABELING STATISTICS correctly from the original angiograms. Incorrectly-lédue
Image Labeling Accuracy ( correct/extracted count)

LAD and LCX branches are mainly caused by the blurry or

Count | CAT CAD LCX OM D )
1770 177071770 1405/1429 134471368 953/1006] 110171126 Overlapping problems. Incorrectly-labeled OM branches ar
100.0% | 98.3% | 98.2% [ 94.7% | 97.8% mainly distributed in some typical sets where OM and other
nodes at the-th iteration as: branches are overlapped because of the viewing angles. It is
. also the same reason for D branches.
Mypq(fa) = min(aDy(fp) + BVp,q(fp: fo)+ Data Acquisition. Among all the procedures, we use clin-
v Z mi=L (), (7) ical data captured by a Philip single-plane X-ray machine.
SEN,\q The system setup and view angles in X-ray angiography are

illustrated in Fig. 7. We use four parametei3;ty, Dosq,

where «, B and v are constants controlling the WelghtSHH, 0y, also described in Fig. 7) to represent the intrinsic and
of different componentsN,\¢ represents all neighbors Ofeciaernal state during imaging

segmentp exceptq. We compute the message propagated popystness Validation. The robustness of our method
to neighborg from each source node With a giveng, we  mainly lies in two aspects: its ability to extract well-sttured
compute the minimum energy for eagtio make the messageyegse| trees when handling blurry images, and its robustnes
minimal. After I iterations we compute the belief vector as:q, obtaining correct labeling results on incomplete data.
. I First, cases for blurry angiograms are given in Fig. 8 (ay(lo
ba(fa) = Dlfa) + Z Mysq(fa)- ®) contrast, blurry), Fig. 8 (b) (low contrast, vessel narresas),
PeN Fig. 9 (a) (blurry, organs), Fig. 9 (d) (blurry, vessel narness)

After obtaining the energy term at we use temporal and Fig. 10 (a) (blurry). Blurry images are usually caused
information to ensure the continuity between frames withiecause of the vessels’ narrowness or the shortage of sbntra
the same sequence. We define the energy term as: agent. Also, images in Fig. 8 (c) (spines captured), Fig. 8

_ (d) (spines, pulmonary, severe artifacts), Fig. 9 (b) (spin

B(f) = A =nE(f) +nEi-s(f), © pulmonary), Fig. 9 (b) (spines, pulmonary), Fig. 9 (c) (g3n
wheren is a parameter controlling the strength of continuitpulmonary, ribs), Fig. 10 (b) (spines, vessel narrowness),
between frame and framet — 1. Eventually, we compute the Fig. 10 (c) (spines, pulmonary) and Fig. 10 (d) (ribs) denote
minimum sum of all grouped vessel skeleton segments aadother problem that artifacts as well as other organs are
obtain the optimal solution foF'(f). E;_1(f) is the labeling captured in angiograms. The experiments above have shown
state of last frame and the method proceeds for the next frathat our method can handle images of low quality and still
until we arrive at the end of the sequence. extract correct vessel structures and labels.

Our algorithm is robust for incomplete data due to its global Second, in Fig. 8, Fig. 9 and Fig. 10, we have shown
optimization nature. Most classical methods proposedrbefaesults during contrast injection. At the beginning of each
are based on feature extraction and matching while some aglbfigure, although the entire cardiovascular structusenod
ers improve the matching method by using iterating techesqubeen contrasted since the contrast agent is being injeated,
or coarse-to-fine technigues to enhance robustness. Howexreethod can figure out exact labels from current incomplete
the intrinsic nature of these methods has undoubtedly givetnuctures. The temporal information from the previousniea
rise to the low efficiency for handling blurry and incomplet@lso helps derive correct labels from incomplete data.
imaging data since they can not guarantee globally-opéichiz  Therefore, even though with images of low quality (blurry,
results. Our method could automatically overcome thede diforgans, etc.) or incomplete data (incomplete vasculacttres
culties because it is not based on classical geometricalrfea during contrast injection), our method can still have the
matching but is rooted in the energy optimization theoryalihi capability of deriving correct, coherent results, hencendie-
can achieve global-optimized result. It may be noted that, wtrating its overall robustness due to its global optiniaat
do not apply feature matching directly, but formulate feesu nature and the utility of temporal information.
as energy terms and spread the message of the term using BBreprocessing and Labeling.Preprocessing and labeling

which enables to achieve correct labeling results even whé@sults are documented in Fig. 8, Fig. 9 and Fig. 10. The first
features are not precise in the first place. row indicate the original angiograms with extracted corgna

artery trees organized in different colors. SkeletonsRied
indicate they are root skeletons and they are more likely
the LAD branches. Skeletons iblue indicate more likely
LCX branches. Skeletons @reenindicate they are side

VI. EXPERIMENTS AND VALIDATION

) . expanded and drawn in a visible way (i.e., becoming
for handling blurry and incomplete data. Each data set attrﬁcker) to make them clear. The second row indicates the

single view consists of at least forty images. __labeled vessels. We evaluate major branches inclutixi,
We have shown some typical cases for robustness vahdauE % OMandD to validate the correctness

Meanwhile, labeling statistics are described in Table | for Performance. The performance of our proposed method is

whole data set. Due to page _I|m|t, detailed information fo(focumented in Fig. 14. We use different legends to represent
each data set are described in the supplementary material.
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{ () LAO31CRA27

Fig. 8. Extraction and labeling results. Note that, origiskeeletons are of only one pixel width and are expanded fttebisualization. For every image,
top row: tree structures; bottom row: labeling results.

If oM

i () LAO35CRA22 (d) RAO26CATU21

Fig. 9. Extraction and labeling results. On the top row ofhesib-figure, red segments: primary branches; blue segnseaisndary branches; green segments:
side branches. Bottom row: labeling results.

different procedures of our method. Besides, performaigee fiive method to look for similarities between geometric free
ure is attached to each data set in the supplementary matebased on features whose efficiency greatly relies on feature
Totally, the processing time reaches maximum at 4 secortdsction. Chalopin et al. [34] proposed a coarse-to-finectea
and is around 2 seconds in most cases. Therefore, althonggthod and the matching quality in the following steps highl
our method is composed of several steps, the performanceekes on prior results. Similar methods may have consilere
reasonable according to our statistics. geometrical or feature similarities which are not robusiteggh
Comparison. Mukherjee and Gopi [33] proposed an iterato handle blurry, low-quality, or even incomplete images. |
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Fig. 10. Extraction and labeling results. All images havevah severe artifacts, demonstrating the robustness of etinad through strong visual effects.

sharp contrast, our method is based on the rigorous theory VII. APPLICATIONS

of energy optimization and its powerful numerical solvers, oy efficient method can be easily applied for analysis and
hence capable of obtaining optimized results that guaeanigagnosis tasks relevant to heart disease. We have conducte
the robustness to the greatest extend. The experiments ﬂﬂge more applications to validate the correctness anld-sca
results have shown that, our method can extract and label H?I‘ﬁy of our method.
vessel tree structure well for both clear and blurry images. \jessel Diameter Estimation and AnalysisThe diameter
Discussions.This paper has detailed a robust method cong yessels is an important indicator for disease, espgciall
prising several steps for vessel labeling. The necessi6aoh o heart-related diseases, such as vessel stenosisciigle
step lies in the strong requirements for both dqta simptiica 5 analyzing diameters from the X-ray images affords stron
and assuring the robustness of our method. Since the cgrongis;s for doctors’ diagnosis. In our application, we cdltbe
artery labeling for X-Ray is a very specific subject for medlic jiameters for all the extracted vessels and provide reason-
image analysis, we haven't found reasonable and comprehgpre aqvice and assistance for diagnosis by calculating the
sive performance statistics in other .pullcatlons. Newvdess, yistance map on binary images. We analyze the diameters
to our best knowledge, we have validated our method on thay seek nodes whose diameters are abnormal compared with
largest experiment data set (with 39 data sets from 19 pe/SQfjejr neighbors. We provide numerical analysis as well as
totally 1770 X-Ray angiograms) in this area and the achievgg o) analysis for better diagnosis. We have shown some
results have shown the robustness and correctness of @ihosis prediction results in Fig. 13. We use hollow circle
method. Besides, the maximum processing time is 4169.7q$,ngicate vessels whose diameters change severely. lLarge
minimum is 1411.1ms and average is 2733.9ms, which 3gcjes indicate more severe changes and should attrag mor
reasonable and adequate for both research and clinical usggention from doctors. Nine images from different datas set

Limitations. AIthQUQh our method _has achieved .mbuset\re shown while six of them are enlarged to give a better view
results, there are still certain shortcomings due to lowliua on diameter visualization

of images. Due to dynamic movements of heart, the imagingr|qy, Velocity Estimation and Analysis. Flow velocity

quality is very poor, unavoidably causing severe artifatts ot coronary arteries is also an significant indicator for gnan

the contrast agent is not injected steadily, and unforeipat heart-related disease. State of the art methods collefitng

this scenario is extremely challenging for all cardiovascu \g|ocity statistics are mainly based on measurements from

processing methods. To improve the overall performance ifegical instrumentations, making it complicated and hard t

this situation, we intend to integrate our method with US@fy gperated, sometimes not accurate either. The starting po

interaction to compgt severe artifacts, and it is also PSS ot this application is to select those patients who probabiye

to enhance the efficiency of our method. stenosis with irregular blood flow speed. In our applicative
label framet and framet + 1 in the same sequence based on
our proposed method so that we can obtain the corresponding
structure Sy (p) and Sy41(f,) in adjacent frames. Based on

2168-2194 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation infor|
10.1109/JBHI.2015.2485227, IEEE Journal of Biomedical and Health Informatics

10

Speed Image 21 22 23
Max.

124.178906 mm/s

Min.

12.040900 mm/s Dia-
Image Count stole
17

Duration

66.67Tms

16 17 18 19 20
Rate Speed .....

€8 bpm (mm/s)  124.178906 67.400578 40.495054 40.414404 17.169180 18.942593 19.336996 13.141069

25 26 27 28 29 30 31 32
Speed . .. ..

(mmis) 12.040900 22.259024 23.482432 19.083587 26.152147 21.644670 39.541774 30.950742 31.616133

Image 24

Systole

Fig. 11. One traced cardiac cycle consisting of seventeemés The rate is close to the standard value.

frm— - - -

i Speed Image 26 27 28 29 30 31
E Max. - ﬁ b -

79.798914 mm/s |

Min. "

10.909003 mm/s

Image Count Dias-

13 tole

Duration

66.67ms

Rate Speed

A2 (mm/s) 35.494451 23.060473 34.046512 33.197063 34.800998 45.662021

Image 32 33 34 35 36 37 38

Systole

Speed
(mm/s) 79.798914 59.309713 24.155344 28.993972 10.909003 17.623416 36.530760

Fig. 12. One traced cardiac cycle consisting of thirteengiesa The rate is only 42 bpm. This patient may be sufferinghfiwegular heart rhythm or even
bradycardia based on diagnosis from our extracted rate.

Fig. 13. Stenosis prediction based on diameter analysigetaircles indicate more severe diameter changes. Siwofotine images have been enlarged to
give a better visualization on diameter.

these corresponding structures, we can compute the changbikh unavoidably increases the requirements and limis th

of movements between frames enabling us to compute batbplicability. In our application, we calculate the weigthtav-

the instantaneous movement speed for each segment andetiage distance from each skeleton segménther segments.

average speed for the whole structures. We have shown sdmeger segments will have larger weights. With frames aétim

results for flow speed estimation in Fig. 11 and Fig. 12. Sta-and timet+ 1, we shall seek corresponding vessel structures

tistical parameters related to flow speed are shown separateetween adjacent frames using our method. By comparing

in each figure including the minimum and maximum speethe distancelM,(s) and M;1(fs), we obtain the movement

Instant speed for each image is labeled in the bottom rowtiend of each vessel tree node between the adjacent frames

mm/s. in the same sequence and determine if the coronary arteries
Heart Beat Rate Estimation and Analysis.The state of are at relaxation or contraction stage.Mf; 1 (fs) > M;(s)

art methods for X-ray angiograms will always require theepeatedly, it is justified as diastole, otherwise it is slgstWe

cardiogram synchronized with the image sequences to explian automatically extract the systole period and diasteteg

itly identify corresponding images among different sequésn in the sequence. We have also tested heart beat estimation as
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shown in Fig. 11 and Fig. 12, where we derive the number of a policy statement from the american heart association,”
images of one cardiac cycle, duration of each image, and the Circulation, vol. 123, no. 8, pp. 933-944, 2011.

heart rate as tracking parameters. The heart rate is coimted[5] V. Roger, A. Go, D. Lloyd-Jones, R. Adams, J. Berry,
bpmmeaningbeat per minuteand the flow speed is imm/s T. Brown, M. Carnethon, S. Dai, G. de Simone, E. Ford
The heart rate in Fig. 11 is close to the standard value 75 bpm et al, “Aha statistical update: heart disease and stroke
while Fig. 12 has a heart rate much lower than standard value, statistics-2011 updateCirculation, vol. 123, pp. 18—
indicating that the patient may suffer noisy heart rhythrd an e209, 2011.

even bradycardia if this situation continues to repeat. [6] “Registry of births and deaths 2011: Singapore demo-
graphic bulletin, 2012.” Immigration & Checkpoints Au-
VIIl. CONCLUSION thority, Singapore, Tech. Rep.
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