CSE548, AMS542: Analysis of Algorithms, Fall 2012 Date: Sep 23

Homework #1

( Due: Oct 4)

Task 1. [ 20 Points | Recurrence( Recurrence( Recurrence( Recurrence( Recurrence( ... ) ) ) ) )

Use the Master Theorem to solve the following recurrences.

(a) [ 5 Points | For a > 1 and b > 0,

[ e if n <0,
Tn) = { aT(n —b)+n otherwise.

(b) [ 5 Points | For @ > 1, b > 1 and n = 2* for some integer k > 0,

©(1) if n <2,
T(n)= 1 .
aT(nb)+1 otherwise.

(¢) [ 5 Points | The following recurrences arise during the analysis of the span (i.e., critical

pathlength) of a multithreaded implementation of Floyd-Warshall’s APSP (All-Pairs Shortest
Paths) algorithm. Solve for T'4(n).

(e (1) ifn <1,
Ta(n) = { 2 (Ta(%) + max{Tp(%),Tc(2)} + Tp(y)) + © (1) otherwise.

(e ifn <1,
Tp(n) = { 2(Tp(%)+Tp(%)) +© (1) otherwise.

(e ifn <1,
To(n) = { 92 (TC(%) + TD(%)) + 0O (1) otherwise.

(e iftn <1,
Tp(n) = { 2Tp(2) +© (1) otherwise.

(d) [ 5 Points | For a > 1, b > 1, n = b¥ for some integer k¥ > 0, and a nonnegative function
f(n) defined on exact powers of b,

T(n) = ©(1) ' ifn <1,
n= )ZT(%) otherwise.
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Figure 1: Concentric magnetic rings.

Task 2. [ 25 Points | Futile Attraction

Consider two magnetic rings M and M of the same size, each divided into n > 1 segments with
each segment subtending exactly 2% radians at the center of the ring (see Figure 1). In each ring
the segments are numbered from 0 to n— 1 in such a way that segment k € [0, n) is always adjacent
to segments ((k + 1) mod n) and ((n + k — 1) mod n). For each i € [0,n), the center of the top
surface of the i-th segment of M contains a point magnetic charge of magnitude ¢; amp-meter.
Similarly, the center of the bottom surface of segment j € [0,n) of M contains a point magnetic

charge of magnitude ¢; amp-meter.

We know that if two point magnetic charges of magnitude ¢; and §; are placed at a distance r (in
meters) in a medium of permeability 4 (in newton/amp?), then the magnetic force (in newtons)
between them is given by:

qiq;
4dr?’

A positive value of f; ; indicates repulsion, and a negative value means attraction.

fijg=n

When M is placed directly above M at a very small distance r > 0 with each segment i € [0,n)
of M perfectly aligned with segment ((i + k) mod n) of M, the total force acting between the two

rings is approximated as:
n—1

F. = Z fi,(i—i—k) mod n*

=0

Give an efficient algorithm to determine a value of k£ that results in the maximum attraction between
the two rings, i.e., Fj, = min?z_o1 {F}.



Task 3. [ 25 Points | More than this - there is nothing... (Bryan Ferry / Norah Jones)

& where for & = (ag, a1, ..., an-1), 8= (8o, B1,-- -, PBn-1)
and 7,j € [0,n), the entry in the i-th row and the j-th column of the matrix is given by

Consider an n X n (n > 1) matrix M

Mn,a,ﬂ['ivj] = ®(j44) mod n + B(nflJrifj) mod n-

For example, for n = 4, we have:

ap+ B3 a1+ B2 ax+B1 az+ Bo
. ar+ By az+f3 az+ P2 ao+
8 az+B1 a3+ By ap+ B3 a1+ B2

a3+ B2 ag+ B ar+Bo s+ fF3

Show that though an n x n matrix has n? entries, the product of two matrices as described above
can be computed in o (n2) time. More specifically, prove that the number of distinct numbers you
need in order to completely represent the n? entries of M, ab X Mn,c?, 7 1s not more than 4n (each
entry of the product must be computable in constant time from those numbers), and the complexity
of computing those numbers is not more than O (nlogn).

Task 4. [ 10 Points | The Fat Fourier Transform (FFT)

Recall that the discrete Fourier transform (DFT) of a vector X of n complex numbers is given by
another complex vector Y of the same length, where Y[i] = >, _,, X[j] - wn " for 0 <4 < n, and
Wy, = 6271'\/?1/71'

Figure 2 shows one implementation of the DFT computation above. If n = O (1), we compute
DFT using direct formula. Otherwise, for any factorization n = nins, we observe that

na—1 ni—1
. . . . —i1j —i1J —12]
Y[Zl—l-lznl] = E g X[]an +]2}wmljl Wn 12 wn22j2'
J2=0 J1=0

Observe that both the inner and outer summations in the equation above are DFT’s. The FFT
routine in Figure 2 implements this equation by first computing no transforms of size n; each
(the inner sum), multiplying the results by twiddle factors (i.e., wy,*’?), and finally computing n4
transforms of size ny each (the outer sum).

Analyze the running time of the FFT implementation given in Figure 2 on an input of size n = 2F
for some integer k£ > 0.



FFT( X, n)
(Input is a vector of length n = 2% for some integer k > 0. Output is the in-place FFT of X.)
1. Base Case: If n is a small constant then compute FFT using the direct formula and return.

2. Divide-and-Conquer:

Divide: Let n1 = 2[%] and no = 2L§J Observe that ns € {n1,2n1}.

~ o~
o o

P N N N N a2

Transpose: Treat X as a row-major n1 X ne matrix. Transpose X in-place.

Congquer: for i< 0tons—1do FFT( X[ixny, iXxni+n—1], n1)

—
)

Multiply: Multiply each entry of X by the appropriate twiddle factor.

Transpose: Treat X as a row-major na X n; matrix. Transpose X in-place.

—_
@

Conquer: fori<« 0toni —1do FFT( X[ixXna, i Xna+n2—1], na2)

Transpose: Treat X as a row-major n; X ng matrix. Transpose X in-place.

—~ o~
=P

return X

Figure 2: A divide-and-conquer algorithm for computing FFT.




