CSE 548: Analysis of Algorithms

Lecture 2 (Divide-and-Conquer Algorithms: Integer Multiplication)

Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Fall 2012

<u>A Latin Phrase</u>

"Divide et impera" (meaning: "divide and rule" or "divide and conquer")

> — Philip II, king of Macedon (382-336 BC), describing his policy toward the Greek city-states (some say the Roman emperor Julius Caesar, 100-44 BC, is the source of this phrase)

The strategy is to break large power alliances into smaller ones that are easier to manage (or subdue).

This is a combination of political, military and economic strategy of gaining and maintaining power.

Unsurprisingly, this is also a very powerful problem solving strategy in computer science.

Divide-and-Conquer

- 1. **Divide:** divide the original problem into smaller subproblems that are easier are to solve
- 2. Conquer: solve the smaller subproblems(perhaps recursively)
- 3. Merge: combine the solutions to the smaller subproblems to obtain a solution for the original problem

<u>Integer</u> <u>Multiplication</u>

Multiplying Two n-bit Numbers

$$x = \underbrace{\begin{array}{c} \frac{n}{2} bits & \frac{n}{2} bits \\ x_L & x_R \\ y = \underbrace{\begin{array}{c} y_L & y_R \\ \hline y_L & y_R \end{array}}_{n \, bits} = 2^{n/2} x_L + x_R$$

 $xy = (2^{n/2}x_L + x_R)(2^{n/2}y_L + y_R) = 2^n x_L y_L + 2^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

So
$$\# \frac{n}{2}$$
-bit products: 4
bit shifts (by n or $\frac{n}{2}$ bits): 2
additions (at most $2n$ bits long) : 3

We can compute the $\frac{n}{2}$ -bit products recursively.

Let T(n) be the overall running time for n-bit inputs. Then

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 4T\left(\frac{n}{2}\right) + O(n) & \text{otherwise.} \end{cases} = O(n^2) \text{ (how? derive)}$$

<u>Multiplying Two *n*-bit Numbers Faster</u> (Karatsuba's Algorithm)

$$x = \underbrace{\begin{array}{c} \frac{n}{2} bits & \frac{n}{2} bits \\ x_L & x_R \\ y = \underbrace{\begin{array}{c} y_L & y_R \\ y_L & y_R \end{array}}_{n \, bits} = 2^{n/2} x_L + x_R$$

$$xy = (2^{n/2}x_L + x_R)(2^{n/2}y_L + y_R)$$

= $2^n x_L y_L + 2^{n/2}(x_L y_R + x_R y_L) + x_R y_R$
= $2^n x_L y_L + 2^{n/2}((x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R) + x_R y_R$
So # $\frac{n}{2}$ - or $(\frac{n}{2} + 1)$ -bit products: 3

Then the overall running time for *n*-bit inputs:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 3T\left(\frac{n}{2}\right) + O(n) & \text{otherwise.} \end{cases}$$
$$= O(n^{\log_2 3}) = O(n^{1.59}) (\text{ how? derive })$$

Algorithms for Multiplying Two n-bit Numbers

Inventor	Year	Complexity
Classical	—	$\Theta(n^2)$
Anatolii Karatsuba	1960	$\Theta(n^{\log_2 3})$
Andrei Toom & Stephen Cook (generalization of Karatsuba's algorithm)	1963 – 66	$\Theta\left(n2^{\sqrt{2\log_2 n}}\log n\right)$
Arnold Schönhage & Volker Strassen (Fast Fourier Transform)	1971	$\Theta(n\log n\log\log n)$
Martin Fürer (Fast Fourier Transform)	2005	$n\log n 2^{O(\log^* n)}$

Lower bound: $\Omega(n)$ (why?)