CSE 548: Analysis of Algorithms

Lecture 2
( Divide-and-Conquer Algorithms:
Integer Multiplication )

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Fall 2012



A Latin Phrase

“Divide et impera”
(meaning: “divide and rule” or “divide and conquer” )

— Philip 11, Ring of Macedon (382-336 BC)
describing his policy toward the GreeR city-states

(some say the Roman emperor Julius Caesar,
100-44 BC, is the source of this phrase )

The strategy is to break large power alliances into smaller ones that
are easier to manage ( or subdue ).

This is a combination of political, military and economic strategy of
gaining and maintaining power.

Unsurprisingly, this is also a very powerful problem solving strategy in
computer science.



Divide-and-Conquer

1. Divide: divide the original problem into smaller
subproblems that are easier are to solve

2. Conquer: solve the smaller subproblems
( perhaps recursively )

3. Merge: combine the solutions to the smaller subproblems
to obtain a solution for the original problem



Infeger
Multiplication



Multiplying Two n-bit Numbers

n., . n.,.
7b‘ltS 7bAlts
X = X XR = 2™2x, + xp
y = VL YR = 2"/2yL + yp
n bits

xy = (Zn/zxL + xR)(Zn/ZYL + YR) = 2"y, + 22 (x Y + XgYL) + XRVR

So # 2-bit products: 4
# bit shifts (by n org bits): 2
# additions (at most 2n bits long) : 3

We can compute the g-bit products recursively.
Let T'(n) be the overall running time for n-bit inputs. Then

(1) if n=1,

— 2 ? :
4T (g) + O(n) otherwise. O(n?) (how? derive )

T(n) =



Multiplying Two n-bit Numbers Faster
( Karatsuba's Algorithm )

n., . n,.
7b‘ltS 7bAlts
X = X XR = 2™2x, + xp
y = VL YR = 2"/2yL + yp
n bits

xy = (2™2%x, + xg)(2™%y, + yg)
= 2"x,y; + 2™2(x YR + XRYL) + XRYr
= 2"x,yy + 22 (e, + xg) (Y1, + YR) — XLV — XRYR) + XRYR

So # - or (g + 1) -bit products: 3
Then the overall running time for n-bit inputs:
O(1) if n=1,

n
E) + O(n) otherwise.

= O(nlog2 3) = O(n'>?)( how? derive )

') = 3T(



Algorithms for Multiplying Two n-bit Numbers

Classical — O(n?)
Anatolii Karatsuba 1960 ®(nlo823)
Andrei Toom & Stephen Cook JZTlogz n

( generalization of Karatsuba’s algorithm ) 1963 66 E (n2 log n)

Arnold Schéonhage & Volker Strassen

( Fast Fourier Transform ) Lo O(nlognloglogn)
Martin Furer Odlog'n)
( Fast Fourier Transform ) 2 nlogn2

Lower bound: Q(n) ( why?)



