CSE 548: Analysis of Algorithms

Lecture 2
(Divide-and-Conquer Algorithms: Integer Multiplication)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2012

A Latin Phrase

> "Divide et impera" (meaning: "divide and rule" or "divide and conquer")
> - Philip II, , king of Macedon (382-336 BC), describing his poficy toward the Greek, city-states (some say the Roman emperor Jutius Caesar, 100-44 $\mathcal{B C}$, is the source of this phrase)

The strategy is to break large power alliances into smaller ones that are easier to manage (or subdue).

This is a combination of political, military and economic strategy of gaining and maintaining power.

Unsurprisingly, this is also a very powerful problem solving strategy in computer science.

Divide-and-Conquer

1. Divide: divide the original problem into smaller subproblems that are easier are to solve
2. Conquer: solve the smaller subproblems
(perhaps recursively)
3. Merge: combine the solutions to the smaller subproblems to obtain a solution for the original problem

Integer
 Multiplication

Multiplying Two n-bit Numbers

$$
x y=\left(2^{n / 2} x_{L}+x_{R}\right)\left(2^{n / 2} y_{L}+y_{R}\right)=2^{n} x_{L} y_{L}+2^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
$$

So \# $\frac{n}{2}$-bit products: 4
\# bit shifts (by n or $\frac{n}{2}$ bits): 2
\# additions (at most $2 n$ bits long) : 3
We can compute the $\frac{n}{2}$-bit products recursively.
Let $T(n)$ be the overall running time for n-bit inputs. Then

$$
T(n)=\left\{\begin{array}{cc}
\Theta(1) & \text { if } n=1, \\
4 T\left(\frac{n}{2}\right)+\mathrm{O}(n) & \text { otherwise. }
\end{array}=\mathrm{O}\left(n^{2}\right)\right. \text { (how? derive) }
$$

Multiplying Two n-bit Numbers Faster (Karatsuba's Algorithm)

$$
\begin{aligned}
x y & =\left(2^{n / 2} x_{L}+x_{R}\right)\left(2^{n / 2} y_{L}+y_{R}\right) \\
& =2^{n} x_{L} y_{L}+2^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R} \\
& =2^{n} x_{L} y_{L}+2^{n / 2}\left(\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)-x_{L} y_{L}-x_{R} y_{R}\right)+x_{R} y_{R}
\end{aligned}
$$

So \# $\frac{n}{2}$ - or $\left(\frac{n}{2}+1\right)$-bit products: 3
Then the overall running time for n-bit inputs:

$$
\begin{aligned}
& T(n)=\left\{\begin{array}{cc}
\Theta(1) & \text { if } n=1, \\
3 T\left(\frac{n}{2}\right)+\mathrm{O}(n) & \text { otherwise } .
\end{array}\right. \\
& =\mathrm{O}\left(n^{\log _{2} 3}\right)=\mathrm{O}\left(n^{1.59}\right)(\text { how? derive })
\end{aligned}
$$

Algorithms for Multiplying Two n-bit Numbers

Inventor	Year	Complexity
Classical	-	$\Theta\left(n^{2}\right)$
Anatolii Karatsuba	1960	$\Theta\left(n^{\log _{2} 3}\right)$
Andrei Toom \& Stephen Cook (generalization of Karatsuba's algorithm)	$1963-66$	$\Theta\left(n 2^{\left.\sqrt{2 \log _{2} n} \log n\right)}\right.$
Arnold Schönhage \& Volker Strassen (Fast Fourier Transform)	1971	$\Theta(n \log n \log \log n)$
Martin Fürer (Fast Fourier Transform)	2005	$n \log n 2 \mathrm{O}\left(\log ^{*} n\right)$

Lower bound: $\Omega(n)$ (why?)

