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Memory: Fast, Large & Cheap!

For efficient computation we need

-  fast processors
- fast and large ( but not so expensive ) memory

But memory cannot be cheap, large and fast at the same time, because of

- finite signal speed
- lack of space to put enough connecting wires

A reasonable compromise is to use a memory hierarchy.
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To perform well on a memory hierarchy algorithms must have high

locality in their memory access patterns.




The Two-level I/O Model

The two-level I/0 (or cache-aware)
model [ Aggarwal & Vitter, CACM’88 ]
consists of:

- an internal memory of size M

- an arbitrarily large external
memory partitioned into blocks
of size B.

I/0 complexity of an algorithm

Cache Lines

internal memory
(size = M)

Cache Misses

block transfer
(size = B)

external memory i

= number of blocks transferred between these two levels

N N
Basic I/0 complexities: scan(N) = @(%) and sort(N) = @(Blog ]

*B

Algorithms often crucially depend on the knowledge of M and B
= algorithms do not adapt well when M or B changes



The Ideal-Cache Model

The ideal-cache model [ Frigo et al.,

FOCS’99 ] is an extension of the I/0 model

with the following additional feature:

algorithms for this model are not

allowed to use knowledge of M and B.

Consequences of this extension

I Cache Lines

internal memory
(size = M)

Cache Misses@bl?gikzgin;;er

— algorithms can simultaneously adapt to all levels of a multi-level

memory hierarchy

— algorithms become more flexible and portable

Algorithms for this model are known as cache-oblivious algorithms.




The Ideal-Cache Model: Assumptions

The model makes the following assumptions:
O Optimal offline cache replacement policy

O Exactly two levels of memory

O Automatic replacement & full associativity



The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

O Optimal offline cache replacement policy

— LRU & FIFO allow for a constant factor approximation of optimal
[ Sleator & Tarjan, JACM’85 ]



The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

O Exactly two levels of memory

— can be effectively removed by making several reasonable
assumptions about the memory hierarchy [ Frigo et al., FOCS’99 ]



The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

O Automatic replacement & full associativity

— in practice, cache replacement is automatic ( by OS or hardware )

—  fully associative LRU caches can be simulated in software with only a
constant factor loss in expected performance [ Frigo et al., FOCS’99 ]



The Ideal-Cache Model: Assumptions

The model makes the following assumptions:
O Optimal offline cache replacement policy

O Exactly two levels of memory

O Automatic replacement & full associativity

Often makes the following assumption, too:

Q M=Q(B’), i.e., the cache is tall



The Ideal-Cache Model: Assumptions

The model makes the following assumptions:
O Optimal offline cache replacement policy

O Exactly two levels of memory

O Automatic replacement & full associativity

Often makes the following assumption, too:

Q M=Q(B’), i.e., the cache is tall

— most practical caches are tall



The Ideal-Cache Model: I/O Bounds

Cache-oblivious vs. cache-aware bounds:

O Basic I/0 bounds ( same as the cache-aware bounds ):

— scan(N) = @(%)

N N
— sort(N)=0| —log, —
(N) [B ggBj
O Most cache-oblivious results match the 1/0 bounds of their cache-

aware counterparts

O There are few exceptions; e.g., no cache-oblivious solution to
the permutation problem can match cache-aware 1/0 bounds
[ Brodal & Fagerberg, STOC’03 ]



Some Known Cache Aware / Oblivious Resulis

Problem

Cache-Aware Results

Cache-Oblivious Results

Array Scanning (scan(N))

Sorting O(ElogM EJ 0(ﬁlogM EJ
(sort(N)) B "B B ", B
Selection O (scan(N)) O (scan(N))

B-Trees [Am] 0(log3 N J 0(log3 N J

(Insert, Delete) B B
Priority Queue [Am]
1 I N 0 ilo E

(Insert, Weak Delete, O\ % O8u g B Mg

Delete-Min)

. . e e N’ N’
Matrix Multiplication O(ij O(ij

Sequence Alighment

(o)

ol

Single Source
Shortest Paths

oty

oty

Minimum Spanning Forest

O(min(sort (E)log,log,V, V +sort (E)))

o (min(sort (E)log, log, %, V +sort (E )D

Table 1: N = #elements, V = #vertices, E = #edges, Am = Amortized.




Matrix
Multiplication
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Matrix Multiplication

n
Z; = Z XY
k=1

X, X, - X

2 In

Xy Xy o Xy, X

xnl xnj T X
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yn]

Y
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.V1n

Zn
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Iter-MM( X, Y, Z, n)

1. for i< 1 to n do

2. for j«<1 to n do
3. for k<1 to n do
4.

Zjj < Zjj + Xj X Yij




|/O-Complexity: Iter-MM

Iter-MM( X, Y, Z, n)

1. for i< 1 to n do
2 for j«<1 to n do
3. for k<1 to n do
4 Zjj <= Zj; T X X Yij
store in store in
row-major order row-major order
X, Xpo o X, Yo (Yo o Yia
—_— Xy Xy 0 Xy, X Yoo Yoo = ¥
xnl xnj xnn yn] yni yrrn

I/0-complexity of Iter-MM = O(n3)

Each iteration of the for loop in line 3 incurs O(n) cache misses.




|/O-Complexity: Iter-MM

Iter-MM( X, Y, Z, n)

1. for i< 1 to n do
2 for j«<1 to n do
3. for k<1 to n do
4 Zjj < Zjj + Xj X Yij
store in
row-major order
Z, Z, - Z, X, Xpo o X,
0 |%xml 2n —_— Xy Xy o Xy,
znl zn? T znn xnl xnj T xnn

X

store in
column-major order
YI] ylj Y1n
yjl y:i yin
yn] yni yrrn

Each iteration of the for loop in line 3 incurs 0(1 + 2) cache misses.

I/0-complexity of Iter-MM = ()(n2 (1 + %D =

ofr

3 3
LI e { LU
B B




Block Matrix Multiplication

Z X Y
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_
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=

—— n —» —— n —» —— n —»

Block-MM ( X, Y, Z, n)
1. for i< 1 to n/s do
2. for j«<1 to n/s do
3. for k<1 to n/s do
4. Iter-MM ( Xixs Yij» Zij» S )




|/O-Complexity: Block-MM

Thsﬂ
S T Block-MM ( X, Y, Z, n)

for i< 1 to n/s do

1.

2. for j<1 to n/s do

3. for k<1 to n/s do

4. Iter-MM ( Xik: ij’ Zij’ S )

«—— n —»
Choose s = @ (\/ﬂ), so that X;,, Y,; and Z;; just fit into the cache.

Then line 4 incurs @(s(l + %D cache misses.

I/0-complexity of Block-MM [assuming a tall cache, i.e., M = Q(Bz)]

- %H(EJJ -0l 3+ 5:) -5+ avm) - a7m)

( Optimal: Hong & Kung, STOC’81 )




Multiple Levels of Cache

< n
«— s —>

I Block-MM ( X, Y, Z, n)

for i< 1 to n/s do

for j«<1 to n/s do

1.
2.
3. for k<1 to n/s do
4,

Iter-MM ( X;,, ij, Zij; s)




Multiple Levels of Cache

< n

I

S

l \ Block-MM ( X, Y, Z, n)

for i, <1 to n/s do

for j,«<1 to n/s do

for ki< 1 to n/s do

1.
2
3
4, for i« 1 to s/t do
5
6
7

for j,«<1 to s/t do
for ko, <1 to s/t do

Iter-MM ( (X;.k,)ik, (Y koipr (Xisi)iniys €)




Multiple Levels of Cache

< n

m ‘

‘ One Parameter Per Caching Level!

S

l \ Block-MM ( X, Y, Z, n)

for i, <1 to n/s do

for j,«<1 to n/s do

for ki< 1 to n/s do

1.
2
3
4, for i« 1 to s/t do
5
6
7

for j,«<1 to s/t do
for ko, <1 to s/t do

Iter-MM ( (X;.k,)ik, (Y koipr (Xisi)iniys €)
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Recursive Matrix Multiplication
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Recursive Matrix Multiplication

l—

b— iz

X1 Y+ Xq2 Yo

X1 Y2+ X2 Y

= niZ o
Z11 Z12
ZZ1 222
—— n —>

X1 Y+ X2 Yo

X1 Y2+ X2 Yo

S

Rec-MM( X, Y, Z, n)

if n=1thenZ«<Z+X-Y

else

Rec-MM( Xy4, Y11, Z44,n 1 2), Rec-MM( X3, Y3y, Z44, N1 2)

Rec-MM ( X1, Y12, Z12, 01 2)),
Rec-MM ( X34, Y11, £, 01 2)),
Rec-MM ( X341, Y12, Z32, 01 2)),

Rec-MM( X432, Y32, Z13, N1 2)
Rec-MM ( X3z, Y21, Z31,n1 2))
Rec-MM ( X3z, Y22, Z35,n 1 2)




|/O-Complexity: Rec-MM

Rec-MM( X, Y, Z, n)

1. if n=1 thenZ« Z+ XY

2. else
3 Rec-MM ( X414, Y11, Z11, N/ 2 ), Rec-MM ( X445, Y31, Z14, N/ 2)
4, Rec-MM ( X44, Y12, Z49, N1 2), Rec-MM ( X45, Y92, Z19, N1 2)
5 Rec-MM ( X34, Y11, Z31, N1 2), Rec-MM ( X535, Y91, Z54, N1 2)
6 Rec-MM ( X34, Y19, Z92, N1 2), Rec-MM ( X34, Y39, Z59, N[ 2)

e n2
O(n+ij, if n*> <aM
I/0-complexity of Rec-MM, I (n) = <

81 (g) +O(1), otherwise

3

n° n n’ ,
=0(M+ij=o(mj, when M= Q(B*)

( Optimal: Hong & Kung, STOC’81 )




Searching
( Static B-Trees )



A Static Search Tree

h =0©(log, n) i\g

degree: 2

Yy L I It i ------ I .

Q Aperfectly balanced binary search tree
d Static: no insertions or deletions

O Height of the tree, h = ©(log, n)



OO0 0 O

A Static Search Tree

a search path

N

h=0(log, n)

e ------ CIC1C ]

A perfectly balanced binary search tree

<

Static: no insertions or deletions

Height of the tree, h = ®(log, n)
A search path visits O(h) nodes, and incurs O(h) = O(log, n) 1/0Os



|/O-Efficient Static B-Trees

h = ©(log, n)

d Each node stores B keys, and has degree B + 1

d Height of the tree, h = ©(log, n)



|/O-Efficient Static B-Trees

a search path

h = ©(log, n)

<

d Each node stores B keys, and has degree B + 1
d Height of the tree, h = ©(log, n)
O Asearch path visits O(h) nodes, and incurs O(h) = O(log, n) 1/0s



Cache-Oblivious Static B-Trees?



van Emde Boas Layout

a binary search tree



van Emde Boas Layout

a binary search tree

A[B,[B,| B,

If the tree contains n nodes,

h
each subtree contains ®(22j — @(\/ﬁ) nodes,
and k = @(Jﬁ)



van Emde Boas Layout

a binary search tree

A

B,

B,

Recursive Subdivision

If the tree contains n nodes,

j = @(\/ﬁ) nodes,

each subtree contains ®

and k = @(«/ﬁ)



van Emde Boas Layout

a binary search tree

A|By|B,| = B, Recursive Subdivision

If the tree contains n nodes,

h
each subtree contains ®(22j — @(\/ﬁ) nodes,
and k = @(Jﬁ)



van Emde Boas Layout

a binary search tree

A|By|B,| = B, Recursive Subdivision

If the tree contains n nodes,

h
each subtree contains ®(22j — @(\/ﬁ) nodes,
and k = @(Jﬁ)



van Emde Boas Layout

a binary search tree

A|By|B,| = B, Recursive Subdivision

If the tree contains n nodes,

h
each subtree contains ®(22j — @(\/ﬁ) nodes,
and k = @(Jﬁ)



|/O-Complexity of a Search

O The height of the tree is = logn

d Each A has height between —logB and logB.
; ; d Each A spans at most 2 blocks of size B.




|/O-Complexity of a Search

Q The height of the tree is = logn

d Each A has height between %logB and logB.

Each A spans at most 2 blocks of size B.

Q p = number of A‘s visited by a search path

Q Then p > logn =log,n, and p < log = 2log, n
log B llogB
2

d The number of blocks transferred is < 2x 2log, n = 4log, n



Sorting
( Distribution Sort )



Cache-Complexity of Sorting

Algorithm

Cache-Complexity

Traditional
( e.g., mergesort and heapsort )

O(NlogN)

Cache-Aware

( e.g., external-memory versions of mergesort
and distribution sort )

Cache-Oblivious

( e.g. funnelsort, cache-oblivious distribution
sort and proximity mergesort )




Cache-Complexity of Sorting

Algorithm Cache-Complexity
Traditional O( N log, N)
( e.g., mergesort and heapsort ) B
Cache-Aware N N
( e.g., external-memory versions of mergesort O ElogM E
B

and distribution sort )

( e.g. funnelsort, cache-oblivious distribution
sort and proximity mergesort )

Cache-Oblivious ( N Nj
O




Cache-Oblivious Distribution Sori

Step 1: Partition, and recursively sort partitions.

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.



Step 1: Partition & Recursively Sort Partitions

Jn sub-arrays <

Partitioned

/rmmrﬂ'm [ N

JEd. AENE B 2 E.E
JEd J EES OE EEE
(I N T ST N
AERAOddE 4. ma
BT | N | WINPT
JANOEEE NN
| NN BN EEaEN
[(INFT FRCT TS N N

“Sil  GERREREEE B

Ll J00E NS EaEES

\ B[ [ 5E W [oE ]

. J

J/n elements

D

Recursively Sorted

BFEFEFFT

BT 7]

BEEFET ]

ml[ |
EEEECT T [ T EEE
BT T .
BT T 1T .
ERNT T TT e
BT T 1T 1 .
BEER T T T 1T T
BT T 1T 1T .
BEETT T 11 [ e
BEEEEET (11 11" e
EREEE [ T Freee.
BRETT T T1 1 e

Order: BT T [ [ [ [ [ I




Step 2: Disitribute to Buckets

Recursively Sorted

| [TIFFF N

BT [ | [ T T

I | [T
| |

—

e
|-

1

:

1

i

C
o[

i

i

>
5
B

-
H
=

Distributed to Buckets

B, :
B, :
B, :
O 0 ol ol .l
D0 O = |
W T O 0 = T
[ T 00 O
[ JOMEIN ™ O™ 000 ™ ™ O ™
FT FFT FINFFNT ST WFEFET T

O Number of buckets, g < /n

O Number of elementsin B, = n. < 2/n

O max{x|x e B;} <min{x|x e B,,,}



Step 3: Recursively Sort Buckets

Recursively Sort Each Bucket

B, : I I T T | T S
B, : NI [* ] [ [ [ |
B, : NN TFTF =T = T T 1™ T 1= IS

ddddddd dd (dddd il JilEdd
0O 1 ™ |

[ ]

T 5 s 0

[ IO O™ WSO ™ O

FI FFT FEFFENEF NEFET T




Distribution Sori

Step 1: Partition, and recursively sort partitions.

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.



> > >

The Disiribution Step

Sorted Partitions Buckets

EEEERE [ [T R B,
) _ B,
BIEEET 71 1 1 T T . = . _

ERREREET T T 1 1T NN —> T T T T TR TR B,
BR[| FEE - Jddddddd.idaliddddl i dnnda :
S TP EEESNEE SN
CEEEEENEEERNNN .

T LT EEESEEEENE NN NN AN

— IEEEEEEEE i 0 o
bbb LELE 1l T G

BEER [T [[FrEhmN : : .5

S 8 L
ERETT T [ 1 [ e =

BT 1T [

EEEE [ e

BRI T 11 T [ e

d We can take the partitions one by one, and distribute
all elements of current partition to buckets

Q Has very poor cache performance: @ (~/n x+/n) = ©(n) 1/Os



Recursive Distribution

Sorted Partitions

[T T TN
[FEFN

Buckets

=

o)

S

Distribute ( i, j, m)

1. if m=1 then

copy elements from A; to B;

2. else

3. Distribute (
4, Distribute (
5. Distribute (
6. Distribute (

i, Jj, ml2)
i+m/ 2, j, ml2)
i, j+m/ 2, m/2)
i+m/2, j+m/2, m/2)

» may need
to split B;
to maintain

B; < 2Vn



Recursive Distribution

Distribute ( i, j, m)
1. if m =1 then|copy elements from A; to B; » ignore
2. else . . the cost of splits
3. Distribute ( i, Jj, ml2) . i
4.  Distribute (i+m/ 2, i, m/2) for the time being
5. Distribute ( i, j+m/ 2, m/2)
6 Distribute (i+m/ 2, j+m/2, m/2)

Let R(m, d) denote the cache misses incurred by Distribute (i, j, m)
that copies d elements from m partitions to m buckets. Then

O(B+%), if m< aB,

R(m,d) =+

Z R(m,di), otherwise, where d = Z d.
L1<i<4 2 I<i<4

4 2

-o/B+T 4 d

N B B

~ R(¥n,n) = o[g)




Recursive Distribution

Distribute (i, j, m)

1. if m =1 then|copy elements from A; to B;

2. else

3. Distribute ( i, j, ml2)
4 Distribute (i + m/ 2, j, ml2)
5. Distribute ( i, j+m/ 2, m/2)
6 Distribute (i+m/ 2, j+m/2, m/2)

» ignore
the cost of splits
for the time being



Recursive Distribution

Distribute (i, j, m)

1. if m =1 then|copy elements from A; to B; » total

2. else _ . cache misses

3. Distribute ( i, Jj, ml2) . d

4, Distribute (i + m/ 2, j, m/2) iheurre .

5.  Distribute ( i, j+m/2, m/2) by all splits

6 Distribute (i+m/2, j+m/2, m/2) Jn n

=Jnx0| — | = o(—)

B

I/0-complexity of Distribute (1, 1,/n ) is

= R(v/n,n)+ o(gj = o(g)



|/O-Complexity of Distribution Sort

Step 1: Partition into Jn sub-arrays containing Jn elements each
and sort the sub-arrays recursively.
Step 2: Distribute sub-arrays into buckets B,, B,, ..., B,,.

Step 3: Recursively sort the buckets.

I/0-complexity of Distribution Sort:

o(1+%), ifn<aM
0(n)=-

\/EQ(\/E) + Zq:Q(n,-) +O(1 + %), otherwise

= O(%logM n), when M= Q(B’)



