
CSE 548: Analysis of Algorithms

Lecture 24

(Analyzing I/O and Cache Performance)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2012

Memory: Fast, Large & Cheap!

For efficient computation we need

− fast processors

− fast and large (but not so expensive) memory

But memory cannot be cheap, large and fast at the same time, because of

− finite signal speed

− lack of space to put enough connecting wires

A reasonable compromise is to use a memory hierarchy.

The Memory Hierarchy

Tape

Disk

Main Memory

On Board Cache

Registers

On Chip Cache

Larger

Smaller

Slower

Faster

Block Transfer

CPU

A memory hierarchy is

− almost as fast as its fastest level

− almost as large as its largest level

− inexpensive

The Memory Hierarchy

To perform well on a memory hierarchy algorithms must have high

locality in their memory access patterns.

Tape

Disk

Main Memory

On Board Cache

Registers

On Chip Cache

Larger

Smaller

Slower

Faster

Block Transfer

CPU

The Two-level I/O Model

The two-level I/O (or cache-aware)

model [Aggarwal & Vitter, CACM’88]

consists of:

− an internal memory of size M

− an arbitrarily large external

memory partitioned into blocks

of size B.

I/O complexity of an algorithm

= number of blocks transferred between these two levels

Basic I/O complexities: and

Algorithms often crucially depend on the knowledge of M and B

⇒⇒⇒⇒ algorithms do not adapt well when M or B changes

(((()))) Θ
N

scan N
B

====

(((()))) Θ logM

B

N N
sort N

B B

====

block transfer
(size = B)

Cache Lines

internal memory

external memory

(size = M)

Cache Misses

CPU

The Ideal-Cache Model

The ideal-cache model [Frigo et al.,

FOCS’99] is an extension of the I/O model

with the following additional feature:

algorithms for this model are not

allowed to use knowledge of M and B.

Consequences of this extension

− algorithms can simultaneously adapt to all levels of a multi-level

memory hierarchy

− algorithms become more flexible and portable

block transfer
(size = B)

Cache Lines

internal memory

external memory

(size = M)

Cache Misses

CPU

Algorithms for this model are known as cache-oblivious algorithms.

The Ideal-Cache Model: Assumptions

� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

− LRU & FIFO allow for a constant factor approximation of optimal

[Sleator & Tarjan, JACM’85]

The Ideal-Cache Model: Assumptions

� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

− can be effectively removed by making several reasonable

assumptions about the memory hierarchy [Frigo et al., FOCS’99]

The Ideal-Cache Model: Assumptions

� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

− in practice, cache replacement is automatic (by OS or hardware)

− fully associative LRU caches can be simulated in software with only a

constant factor loss in expected performance [Frigo et al., FOCS’99]

The Ideal-Cache Model: Assumptions

� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

� , i.e., the cache is tall

Often makes the following assumption, too:

(((())))Ω==== 2M B

The Ideal-Cache Model: Assumptions

� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

� , i.e., the cache is tall

Often makes the following assumption, too:

(((())))Ω==== 2M B

− most practical caches are tall

The Ideal-Cache Model: Assumptions

The Ideal-Cache Model: I/O Bounds

� Basic I/O bounds (same as the cache-aware bounds):

� Most cache-oblivious results match the I/O bounds of their cache-

aware counterparts

� There are few exceptions; e.g., no cache-oblivious solution to

the permutation problem can match cache-aware I/O bounds

[Brodal & Fagerberg, STOC’03]

Cache-oblivious vs. cache-aware bounds:

(((()))) Θ
N

scan N
B

====

−

− (((()))) Θ logM

B

N N
sort N

B B

====

Some Known Cache Aware / Oblivious Results

Problem Cache-Aware Results Cache-Oblivious Results

Array Scanning (scan(N))

Sorting

(sort(N))

Selection

B-Trees [Am]

(Insert, Delete)

Priority Queue [Am]

(Insert, Weak Delete,
Delete-Min)

Matrix Multiplication

Sequence Alignment

Single Source

Shortest Paths

Minimum Spanning Forest

N
O

B

log M

B

N N
O

B B

log M

B

N N
O

B B

1

log M

B

N
O

B B

1

log M

B

N
O

B B

logB

N
O

B

logB

N
O

B

(((())))(((())))O scan N (((())))(((())))O scan N

Table 1: N = #elements, V = #vertices, E = #edges, Am = Amortized.

2N
O

BM

3N
O

B M

3N
O

B M

N
O

B

2N
O

BM

2

+ ⋅+ ⋅+ ⋅+ ⋅

log

E V
O V

B B

(((()))) (((())))2 2

++++

min log log ,

VB
O sort E V sort E

E

2

+ ⋅+ ⋅+ ⋅+ ⋅

log

E V
O V

B B

(((()))) (((())))(((())))(((())))2 2
 min log log ,O sort E V V sort E++++

Matrix

Multiplication

Matrix Multiplication

1

n

ij ik kj
k

z x y
====

==== ∑∑∑∑

11 12 1

21 22 2

1 2

n

n

n n nn

z z z

z z z

z z z

L

L

M M O M

L

11 12 1

21 22 2

1 2

n

n

n n nn

x x x

x x x

x x x

L

L

M M O M

L

11 12 1

21 22 2

1 2

n

n

n n nn

y y y

y y y

y y y

L

L

M M O M

L

==== ××××

Iter-MM (X, Y, Z, n)

1. for i ←←←← 1 to n do

2. for j ←←←← 1 to n do

3. for k ←←←← 1 to n do

4. zij ←←←← zij + xik ×××× ykj

I/O-Complexity: Iter-MM

row-major order
store in

Each iteration of the for loop in line 3 incurs cache misses.(((())))nΟ

I/O-complexity of Iter-MM (((())))3nΟ====

row-major order
store in

Iter-MM (X, Y, Z, n)

1. for i ←←←← 1 to n do

2. for j ←←←← 1 to n do

3. for k ←←←← 1 to n do

4. zij ←←←← zij + xik ×××× ykj

I/O-Complexity: Iter-MM

Each iteration of the for loop in line 3 incurs cache misses.1
n

B
Ο ++++

I/O-complexity of Iter-MM
3 3

2 2
1

n n n
n n

B B B
Ο Ο Ο

 = + = + == + = + == + = + == + = + =

Iter-MM (X, Y, Z, n)

1. for i ←←←← 1 to n do

2. for j ←←←← 1 to n do

3. for k ←←←← 1 to n do

4. zij ←←←← zij + xik ×××× ykj

row-major order
store in

column-major order
store in

Block Matrix Multiplication

Block-MM (X, Y, Z, n)

1. for i ←←←← 1 to n / s do

2. for j ←←←← 1 to n / s do

3. for k ←←←← 1 to n / s do

4. Iter-MM (Xik, Ykj, Zij, s)

==== ××××

n

n

s

s

n

n

s

s

n

n

s

s

Z X Y

I/O-Complexity: Block-MM

n

n

s

s

Choose , so that Xik, Ykj and Zij just fit into the cache.(((())))s MΘ====

Then line 4 incurs cache misses.1
s

s
B

Θ

++++

I/O-complexity of Block-MM [assuming a tall cache, i.e.,]

3 2 3 3 3 3 3

2

n s n n n n n
s

s B s Bs M B M B M
Θ Θ Θ Θ

= + = + = + == + = + = + == + = + = + == + = + = + =
(Optimal: Hong & Kung, STOC’81)

(((())))2M BΩ====

Block-MM (X, Y, Z, n)

1. for i ←←←← 1 to n / s do

2. for j ←←←← 1 to n / s do

3. for k ←←←← 1 to n / s do

4. Iter-MM (Xik, Ykj, Zij, s)

Multiple Levels of Cache

n

n
s

s

Block-MM (X, Y, Z, n)

1. for i ←←←← 1 to n / s do

2. for j ←←←← 1 to n / s do

3. for k ←←←← 1 to n / s do

4. Iter-MM (Xik, Ykj, Zij, s)

Multiple Levels of Cache

n

n
s

s

t

t

Block-MM (X, Y, Z, n)

1. for i1 ←←←← 1 to n / s do

2. for j1 ←←←← 1 to n / s do

3. for k1 ←←←← 1 to n / s do

7. Iter-MM ((Xi1k1
)i2k2, (Yk1j1

)k2j2, (Xi1j1
)i2j2, t)

4. for i2 ←←←← 1 to s / t do

5. for j2 ←←←← 1 to s / t do

6. for k2 ←←←← 1 to s / t do

Multiple Levels of Cache

n

n
s

s

t

t

Block-MM (X, Y, Z, n)

1. for i1 ←←←← 1 to n / s do

2. for j1 ←←←← 1 to n / s do

3. for k1 ←←←← 1 to n / s do

7. Iter-MM ((Xi1k1
)i2k2, (Yk1j1

)k2j2, (Xi1j1
)i2j2, t)

4. for i2 ←←←← 1 to s / t do

5. for j2 ←←←← 1 to s / t do

6. for k2 ←←←← 1 to s / t do

One Parameter Per Caching Level!

Recursive Matrix Multiplication

==== ××××

Z X Y

n

n

n/2

n/2 Z11

Z21

Z12

Z22

n

n

n/2

n/2 X11

X21

X12

X22

n

n

n/2

n/2 Y11

Y21

Y12

Y22

====

n

n

n/2

n/2 X11 Y11 + X12 Y21

X21 Y11 + X22 Y21

X11 Y12 + X12 Y22

X21 Y12 + X22 Y22

Recursive Matrix Multiplication

n

n

n/2

n/2 Z11

Z21

Z12

Z22

====

n

n

n/2

n/2 X11 Y11 + X12 Y21

X21 Y11 + X22 Y21

X11 Y12 + X12 Y22

X21 Y12 + X22 Y22

Rec-MM (X, Y, Z, n)

1. if n = 1 then Z ←←←← Z + X �Y

2. else

3. Rec-MM (X11, Y11, Z11, n / 2), Rec-MM (X12, Y21, Z11, n / 2)

4. Rec-MM (X11, Y12, Z12, n / 2), Rec-MM (X12, Y22, Z12, n / 2)

5. Rec-MM (X21, Y11, Z21, n / 2), Rec-MM (X22, Y21, Z21, n / 2)

6. Rec-MM (X21, Y12, Z22, n / 2), Rec-MM (X22, Y22, Z22, n / 2)

I/O-Complexity: Rec-MM

Rec-MM (X, Y, Z, n)

1. if n = 1 then Z ←←←← Z + X �Y

2. else

3. Rec-MM (X11, Y11, Z11, n / 2), Rec-MM (X12, Y21, Z11, n / 2)

4. Rec-MM (X11, Y12, Z12, n / 2), Rec-MM (X12, Y22, Z12, n / 2)

5. Rec-MM (X21, Y11, Z21, n / 2), Rec-MM (X22, Y21, Z21, n / 2)

6. Rec-MM (X21, Y12, Z22, n / 2), Rec-MM (X22, Y22, Z22, n / 2)

I/O-complexity of Rec-MM, (((())))
(((())))

(((())))

2

2

3 3 3

2

 if

8 1 otherwise
2

 when

,

,

,

n
n n M

B
n

n

n n n
M B

M B M B M

αΟ

Ο

Ο Ο Ω

+ ≤+ ≤+ ≤+ ≤

 ====
 ++++

= + = == + = == + = == + = =

I

I

(Optimal: Hong & Kung, STOC’81)

Searching

(Static B-Trees)

A Static Search Tree

(((())))2
Θ==== logh n

� A perfectly balanced binary search tree

� Height of the tree,

(((())))2
Θ==== logh n

degree: 2

� Static: no insertions or deletions

(((())))2
Θ==== logh n

a search path

(((())))2
Θ==== logh n

� A perfectly balanced binary search tree

� Height of the tree,

� Static: no insertions or deletions

� A search path visits nodes, and incurs I/Os(((()))) (((())))2
Ο Ο==== logh n(((())))hΟ

A Static Search Tree

I/O-Efficient Static B-Trees

(((())))logBh nΘ====

B + 1

� Each node stores B keys, and has degree B + 1

� Height of the tree,

(((())))logBh nΘ====

I/O-Efficient Static B-Trees

(((())))logBh nΘ====

B + 1

a search path

(((())))logBh nΘ====

� Each node stores B keys, and has degree B + 1

� Height of the tree,

� A search path visits nodes, and incurs I/Os(((()))) (((())))logBh nΟ Ο====(((())))hΟ

Cache-Oblivious Static B-Trees?

van Emde Boas Layout

h

a binary search tree

van Emde Boas Layout

h

 h / 2

 h / 2

A

B1 Bk

A B1 B2 Bk

each subtree contains nodes,(((())))22

h

nΘ Θ

====

If the tree contains nodes,n

and .(((())))k nΘ====

a binary search tree

van Emde Boas Layout

h

 h / 2

 h / 2

A

B1 Bk

Recursive SubdivisionA B1 B2 Bk

each subtree contains nodes,(((())))22

h

nΘ Θ

====

If the tree contains nodes,n

and .(((())))k nΘ====

a binary search tree

van Emde Boas Layout

h

 h / 2

 h / 2

A

B1 Bk

Recursive SubdivisionA B1 B2 Bk

each subtree contains nodes,(((())))22

h

nΘ Θ

====

If the tree contains nodes,n

and .(((())))k nΘ====

a binary search tree

van Emde Boas Layout

h

 h / 2

 h / 2

A

B1 Bk

Recursive SubdivisionA B1 B2 Bk

each subtree contains nodes,(((())))22

h

nΘ Θ

====

If the tree contains nodes,n

and .(((())))k nΘ====

a binary search tree

van Emde Boas Layout

h

 h / 2

 h / 2

A

B1 Bk

Recursive SubdivisionA B1 B2 Bk

each subtree contains nodes,(((())))22

h

nΘ Θ

====

If the tree contains nodes,n

and .(((())))k nΘ====

a binary search tree

� Each has height between and .
1

2
log B log B

� The height of the tree is log n====

� Each spans at most 2 blocks of size .B

I/O-Complexity of a Search

� p = number of ‘s visited by a search path

log
log

log
B

n
p n

B
≥ =≥ =≥ =≥ = 2

1

2

log
log

log
B

n
p n

B
≤ =≤ =≤ =≤ =, and� Then

� Each has height between and .
1

2
log B log B

� The height of the tree is log n====

� Each spans at most 2 blocks of size .B

� The number of blocks transferred is 2 2 4log logB Bn n≤ × =≤ × =≤ × =≤ × =

a search path

I/O-Complexity of a Search

Sorting

(Distribution Sort)

Cache-Complexity of Sorting

Ο

logM

B

N N

B B

Algorithm Cache-Complexity

Traditional

(e.g., mergesort and heapsort)

Cache–Aware

(e.g., external -memory versions of mergesort
and distribution sort)

Cache–Oblivious

(e.g. funnelsort, cache-oblivious distribution
sort and proximity mergesort)

Ο

logM

B

N N

B B

(((())))Ο logN N

Ο

2
log

N
N

B

Cache-Complexity of Sorting

Ο

logM

B

N N

B B

Algorithm Cache-Complexity

Traditional

(e.g., mergesort and heapsort)

Cache–Aware

(e.g., external -memory versions of mergesort
and distribution sort)

Cache–Oblivious

(e.g. funnelsort, cache-oblivious distribution
sort and proximity mergesort)

Ο

logM

B

N N

B B

optimal

Step 1: Partition, and recursively sort partitions.

Cache-Oblivious Distribution Sort

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.

Step 1: Partition & Recursively Sort Partitions

sub-arraysn

elementsn

Partitioned Recursively Sorted

Order:

Step 2: Distribute to Buckets

1
:A

elementsn

Recursively Sorted

2
:A

3
:A

:
n

A

1
:B

2
:B

3
:B

:qB

Distributed to Buckets

� Number of buckets, q n≤≤≤≤

� Number of elements in 2i iB n n= ≤= ≤= ≤= ≤

� {{{{ }}}} {{{{ }}}}1
max mini ix x B x x B ++++∈ ≤ ∈∈ ≤ ∈∈ ≤ ∈∈ ≤ ∈

Step 3: Recursively Sort Buckets

Recursively Sort Each Bucket

1
:B

2
:B

3
:B

:qB

Done!

Step 1: Partition, and recursively sort partitions.

Distribution Sort

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.

The Distribution Step

1
A

Sorted Partitions

2
A

3
A

n
A

1
B

2
B

3
B

qB

Buckets

� We can take the partitions one by one, and distribute

all elements of current partition to buckets

� Has very poor cache performance: I/Os(((()))) (((())))n n nΘ Θ× =× =× =× =

Recursive Distribution
Sorted Partitions Buckets

1
A

2
A

3
A

n
A

1
B

2
B

3
B

n
B

Distribute (i, j, m)

1. if m = 1 then copy elements from Ai to Bj

2. else

3. Distribute (i, j, m / 2)

4. Distribute (i + m / 2, j, m / 2)

5. Distribute (i, j + m / 2, m / 2)

6. Distribute (i + m / 2, j + m / 2, m / 2)

[Ai, …, Ai + m – 1]

[Bj, …, Bj + m – 1]

may need

to split Bj

to maintain

Bj ≤≤≤≤ 2√√√√n

Recursive Distribution

ignore

the cost of splits

for the time being

Distribute (i, j, m)

1. if m = 1 then copy elements from Ai to Bj

2. else

3. Distribute (i, j, m / 2)

4. Distribute (i + m / 2, j, m / 2)

5. Distribute (i, j + m / 2, m / 2)

6. Distribute (i + m / 2, j + m / 2, m / 2)

Let R(m, d) denote the cache misses incurred by Distribute (i, j, m)

that copies d elements from m partitions to m buckets. Then

(((())))

1 4 1 4

2

 if

otherwise, where
2

, ,

,

, ,i i
i i

d
B m B

B
m d

m
d d d

m d
B

B B

αΟ

Ο

≤ ≤ ≤ ≤≤ ≤ ≤ ≤≤ ≤ ≤ ≤≤ ≤ ≤ ≤

 + ≤+ ≤+ ≤+ ≤
====

 ====

= + += + += + += + +

∑ ∑∑ ∑∑ ∑∑ ∑
R

R

(((()))),
n

n n
B

Ο ∴ =∴ =∴ =∴ =

R

Recursive Distribution

ignore

the cost of splits

for the time being

Distribute (i, j, m)

1. if m = 1 then copy elements from Ai to Bj

2. else

3. Distribute (i, j, m / 2)

4. Distribute (i + m / 2, j, m / 2)

5. Distribute (i, j + m / 2, m / 2)

6. Distribute (i + m / 2, j + m / 2, m / 2)

Recursive Distribution

total

cache misses

incurred

by all splits

n n
n

B B
Ο Ο
 = × == × == × == × =

Distribute (i, j, m)

1. if m = 1 then copy elements from Ai to Bj

2. else

3. Distribute (i, j, m / 2)

4. Distribute (i + m / 2, j, m / 2)

5. Distribute (i, j + m / 2, m / 2)

6. Distribute (i + m / 2, j + m / 2, m / 2)

I/O-complexity of Distribute (1, 1,) is

(((()))),
n n

n n
B B

Ο Ο = + == + == + == + =

R

n

Step 1: Partition into sub-arrays containing elements each

and sort the sub-arrays recursively.

I/O-Complexity of Distribution Sort

Step 2: Distribute sub-arrays into buckets B1, B2, …, Bq.

Step 3: Recursively sort the buckets.

I/O-complexity of Distribution Sort:

n n

(((())))
(((()))) (((())))

(((())))

1

2

1 if

1 otherwise

 when

,

,

log ,

q

i
i

M

n
n M

B
n

n
nQ n Q n

B

n
n M B

B

αΟ

Ο

Ο Ω

====

 ′′′′+ ≤+ ≤+ ≤+ ≤
====

 + + ++ + ++ + ++ + +

 = == == == =

∑∑∑∑
Q

