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Memory: Fast, Large & Cheap!

For efficient computation we need

− fast processors

− fast and large ( but not so expensive ) memory

But memory cannot be cheap, large and fast at the same time, because of

− finite signal speed

− lack of space to put enough connecting wires

A reasonable compromise is to use a memory hierarchy.



The Memory Hierarchy
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A memory hierarchy is

− almost as fast as its fastest level

− almost as large as its largest level

− inexpensive



The Memory Hierarchy

To perform well on a memory hierarchy algorithms must have high 

locality in their memory access patterns.
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The Two-level I/O Model

The two-level I/O (or cache-aware) 

model [ Aggarwal & Vitter, CACM’88 ]

consists of:

− an internal memory of size M

− an arbitrarily large external

memory partitioned into blocks 

of size B.

I/O complexity of an algorithm 

= number of blocks transferred between these two levels

Basic I/O complexities:                              and

Algorithms often crucially depend on the knowledge of M and B

⇒⇒⇒⇒ algorithms do not adapt well when M or B changes
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The Ideal-Cache Model

The ideal-cache model [ Frigo et al., 

FOCS’99 ] is an extension of the I/O model 

with the following additional feature:

algorithms for this model are not 

allowed to use knowledge of M and B. 

Consequences of this extension

− algorithms can simultaneously adapt to all levels of a multi-level 

memory hierarchy

− algorithms become more flexible and portable

block transfer 
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CPU

Algorithms for this model are known as cache-oblivious algorithms.



The Ideal-Cache Model: Assumptions

� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:



� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

− LRU & FIFO allow for a constant factor approximation of optimal  

[ Sleator & Tarjan, JACM’85 ]

The Ideal-Cache Model: Assumptions



� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

− can be effectively removed by making several reasonable 

assumptions about the memory hierarchy [ Frigo et al., FOCS’99 ]

The Ideal-Cache Model: Assumptions



� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

− in practice, cache replacement is automatic ( by OS or hardware ) 

− fully associative LRU caches can be simulated in software with only a 

constant factor loss in expected performance [ Frigo et al., FOCS’99 ]

The Ideal-Cache Model: Assumptions



� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

� , i.e., the cache is tall

Often makes the following assumption, too:
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The Ideal-Cache Model: Assumptions



� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

� , i.e., the cache is tall

Often makes the following assumption, too:

(((( ))))Ω==== 2M B

− most practical caches are tall

The Ideal-Cache Model: Assumptions



The Ideal-Cache Model: I/O Bounds

� Basic I/O bounds ( same as the cache-aware bounds ):

� Most cache-oblivious results match the I/O bounds of their cache-

aware counterparts

� There are few exceptions; e.g., no cache-oblivious solution to 

the permutation problem can match cache-aware I/O bounds       

[ Brodal & Fagerberg, STOC’03 ]

Cache-oblivious vs. cache-aware bounds:
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Some Known Cache Aware / Oblivious Results

Problem Cache-Aware Results Cache-Oblivious Results

Array Scanning (scan(N))

Sorting 

(sort(N))

Selection

B-Trees [Am]

(Insert, Delete)

Priority Queue [Am]

(Insert, Weak Delete, 
Delete-Min)

Matrix Multiplication

Sequence Alignment

Single Source 

Shortest Paths

Minimum Spanning Forest
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Matrix 

Multiplication



Matrix Multiplication
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Iter-MM ( X, Y, Z, n )

1.   for i ←←←← 1  to n  do

2.         for j ←←←← 1  to n  do

3.               for k ←←←← 1  to n  do

4.                      zij ←←←← zij + xik ×××× ykj



I/O-Complexity: Iter-MM

row-major order
store in

Each iteration of the for loop in line 3 incurs           cache misses.(((( ))))nΟ

I/O-complexity of Iter-MM (((( ))))3nΟ====

row-major order
store in

Iter-MM ( X, Y, Z, n )

1.   for i ←←←← 1  to n  do

2.         for j ←←←← 1  to n  do

3.               for k ←←←← 1  to n  do

4.                      zij ←←←← zij + xik ×××× ykj



I/O-Complexity: Iter-MM

Each iteration of the for loop in line 3 incurs                  cache misses.1
n
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Iter-MM ( X, Y, Z, n )

1.   for i ←←←← 1  to n  do

2.         for j ←←←← 1  to n  do

3.               for k ←←←← 1  to n  do

4.                      zij ←←←← zij + xik ×××× ykj

row-major order
store in

column-major order
store in



Block Matrix Multiplication

Block-MM ( X, Y, Z, n )

1.   for i ←←←← 1  to n / s  do

2.         for j ←←←← 1  to n / s  do

3.               for k ←←←← 1  to n / s  do

4.                      Iter-MM ( Xik, Ykj, Zij, s )

==== ××××
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I/O-Complexity: Block-MM

n

n

s

s

Choose                    , so that Xik, Ykj and Zij just fit into the cache.(((( ))))s MΘ====

Then line 4 incurs                        cache misses.1
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I/O-complexity of Block-MM [assuming a tall cache, i.e.,                  ]
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( Optimal: Hong & Kung, STOC’81 )
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Block-MM ( X, Y, Z, n )

1.   for i ←←←← 1  to n / s  do

2.         for j ←←←← 1  to n / s  do

3.               for k ←←←← 1  to n / s  do

4.                      Iter-MM ( Xik, Ykj, Zij, s )



Multiple Levels of Cache
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Block-MM ( X, Y, Z, n )

1.   for i ←←←← 1  to n / s  do

2.         for j ←←←← 1  to n / s  do

3.               for k ←←←← 1  to n / s  do

4.                      Iter-MM ( Xik, Ykj, Zij, s )



Multiple Levels of Cache
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Block-MM ( X, Y, Z, n )

1.   for i1 ←←←← 1  to n / s  do

2.         for j1 ←←←← 1  to n / s  do

3.               for k1 ←←←← 1  to n / s  do

7.                                          Iter-MM ( (Xi1k1
)i2k2, (Yk1j1

)k2j2, (Xi1j1
)i2j2, t )

4.                      for i2 ←←←← 1  to s / t  do

5.                            for j2 ←←←← 1  to s / t  do

6.                                   for k2 ←←←← 1  to s / t  do



Multiple Levels of Cache

n

n
s

s

t

t

Block-MM ( X, Y, Z, n )

1.   for i1 ←←←← 1  to n / s  do

2.         for j1 ←←←← 1  to n / s  do

3.               for k1 ←←←← 1  to n / s  do

7.                                          Iter-MM ( (Xi1k1
)i2k2, (Yk1j1

)k2j2, (Xi1j1
)i2j2, t )

4.                      for i2 ←←←← 1  to s / t  do

5.                            for j2 ←←←← 1  to s / t  do

6.                                   for k2 ←←←← 1  to s / t  do

One Parameter Per Caching Level!



Recursive Matrix Multiplication
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Recursive Matrix Multiplication

n
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n
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n/2 X11 Y11 + X12 Y21
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Rec-MM ( X, Y, Z, n )

1.  if n = 1  then Z ←←←← Z + X �Y

2.  else

3.       Rec-MM ( X11, Y11, Z11, n / 2 ), Rec-MM ( X12, Y21, Z11, n / 2 )

4.       Rec-MM ( X11, Y12, Z12, n / 2 ), Rec-MM ( X12, Y22, Z12, n / 2 )

5.       Rec-MM ( X21, Y11, Z21, n / 2 ), Rec-MM ( X22, Y21, Z21, n / 2 )

6.       Rec-MM ( X21, Y12, Z22, n / 2 ), Rec-MM ( X22, Y22, Z22, n / 2 )



I/O-Complexity: Rec-MM

Rec-MM ( X, Y, Z, n )

1.  if n = 1  then Z ←←←← Z + X �Y

2.  else

3.       Rec-MM ( X11, Y11, Z11, n / 2 ), Rec-MM ( X12, Y21, Z11, n / 2 )

4.       Rec-MM ( X11, Y12, Z12, n / 2 ), Rec-MM ( X12, Y22, Z12, n / 2 )

5.       Rec-MM ( X21, Y11, Z21, n / 2 ), Rec-MM ( X22, Y21, Z21, n / 2 )

6.       Rec-MM ( X21, Y12, Z22, n / 2 ), Rec-MM ( X22, Y22, Z22, n / 2 )

I/O-complexity of Rec-MM, (((( ))))
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( Optimal: Hong & Kung, STOC’81 )



Searching

( Static B-Trees )



A Static Search Tree

(((( ))))2
Θ==== logh n

� A perfectly balanced binary search tree

� Height of the tree,

(((( ))))2
Θ==== logh n

degree: 2 

� Static: no insertions or deletions



(((( ))))2
Θ==== logh n

a search path

(((( ))))2
Θ==== logh n

� A perfectly balanced binary search tree

� Height of the tree,

� Static: no insertions or deletions

� A search path visits         nodes, and incurs                           I/Os(((( )))) (((( ))))2
Ο Ο==== logh n(((( ))))hΟ

A Static Search Tree



I/O-Efficient Static B-Trees

(((( ))))logBh nΘ====

B + 1

� Each node stores B keys, and has degree B + 1

� Height of the tree,

(((( ))))logBh nΘ====



I/O-Efficient Static B-Trees

(((( ))))logBh nΘ====

B + 1

a search path

(((( ))))logBh nΘ====

� Each node stores B keys, and has degree B + 1

� Height of the tree,

� A search path visits         nodes, and incurs                           I/Os(((( )))) (((( ))))logBh nΟ Ο====(((( ))))hΟ



Cache-Oblivious Static B-Trees?



van Emde Boas Layout

h

a binary search tree



van Emde Boas Layout
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van Emde Boas Layout
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van Emde Boas Layout
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� Each          has height between              and         .
1

2
log B log B

� The height of the tree is            log n====

� Each          spans at most 2 blocks of size   .B

I/O-Complexity of a Search



� p = number of         ‘s  visited by a search path
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� Each          has height between              and         .
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2
log B log B

� The height of the tree is            log n====

� Each          spans at most 2 blocks of size   .B

� The number of blocks transferred is 2 2 4log logB Bn n≤ × =≤ × =≤ × =≤ × =

a search path

I/O-Complexity of a Search



Sorting 

( Distribution Sort )



Cache-Complexity of Sorting
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Algorithm Cache-Complexity

Traditional

( e.g., mergesort and heapsort )

Cache–Aware

( e.g., external -memory versions of mergesort 
and distribution sort )

Cache–Oblivious

( e.g. funnelsort, cache-oblivious distribution 
sort and proximity mergesort )
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Cache-Complexity of Sorting
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Cache–Aware
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and distribution sort )
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( e.g. funnelsort, cache-oblivious distribution 
sort and proximity mergesort )
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Step 1: Partition, and recursively sort partitions.

Cache-Oblivious Distribution Sort

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.



Step 1: Partition & Recursively Sort Partitions

sub-arraysn

elementsn

Partitioned Recursively Sorted

Order:



Step 2: Distribute to Buckets

1
:A

elementsn

Recursively Sorted

2
:A

3
:A

:
n

A

1
:B

2
:B

3
:B

:qB

Distributed to Buckets

� Number of buckets, q n≤≤≤≤

� Number of elements in 2i iB n n= ≤= ≤= ≤= ≤

� {{{{ }}}} {{{{ }}}}1
max mini ix x B x x B ++++∈ ≤ ∈∈ ≤ ∈∈ ≤ ∈∈ ≤ ∈



Step 3: Recursively Sort Buckets

Recursively Sort Each Bucket

1
:B

2
:B

3
:B

:qB

Done!



Step 1: Partition, and recursively sort partitions.

Distribution Sort

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.



The Distribution Step

1
A

Sorted Partitions

2
A

3
A

n
A

1
B

2
B

3
B

qB

Buckets

� We can take the partitions one by one, and  distribute 

all elements of current partition to buckets

� Has very poor cache performance:                                   I/Os(((( )))) (((( ))))n n nΘ Θ× =× =× =× =



Recursive Distribution
Sorted Partitions Buckets

1
A

2
A

3
A

n
A

1
B

2
B

3
B

n
B

Distribute ( i, j, m )

1.  if m = 1  then copy elements from Ai to Bj

2.  else

3.       Distribute (             i,               j,   m / 2 )

4.       Distribute ( i + m / 2,               j,   m / 2 )

5.       Distribute (             i,   j + m / 2,   m / 2 )

6.       Distribute ( i + m / 2,   j + m / 2,   m / 2 )

[ Ai, …, Ai + m – 1 ]

[ Bj, …, Bj + m – 1 ]

may need 

to split Bj

to maintain 

Bj ≤≤≤≤ 2√√√√n



Recursive Distribution

ignore 

the cost of splits 

for the time being

Distribute ( i, j, m )

1.  if m = 1  then copy elements from Ai to Bj

2.  else

3.       Distribute (             i,               j,   m / 2 )

4.       Distribute ( i + m / 2,               j,   m / 2 )

5.       Distribute (             i,   j + m / 2,   m / 2 )

6.       Distribute ( i + m / 2,   j + m / 2,   m / 2 )

Let R(m, d) denote the cache misses incurred by Distribute ( i, j, m ) 

that copies d elements from m partitions to m buckets. Then
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Recursive Distribution

ignore 

the cost of splits 

for the time being

Distribute ( i, j, m )

1.  if m = 1  then copy elements from Ai to Bj

2.  else

3.       Distribute (             i,               j,   m / 2 )

4.       Distribute ( i + m / 2,               j,   m / 2 )

5.       Distribute (             i,   j + m / 2,   m / 2 )

6.       Distribute ( i + m / 2,   j + m / 2,   m / 2 )



Recursive Distribution

total 

cache misses

incurred 

by all splits

n n
n

B B
Ο Ο
         = × == × == × == × =         

        

Distribute ( i, j, m )

1.  if m = 1  then copy elements from Ai to Bj

2.  else

3.       Distribute (             i,               j,   m / 2 )

4.       Distribute ( i + m / 2,               j,   m / 2 )

5.       Distribute (             i,   j + m / 2,   m / 2 )

6.       Distribute ( i + m / 2,   j + m / 2,   m / 2 )

I/O-complexity of Distribute ( 1, 1,      ) is
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n



Step 1: Partition into       sub-arrays containing       elements each

and sort the sub-arrays recursively.

I/O-Complexity of Distribution Sort

Step 2: Distribute sub-arrays into buckets B1, B2, …, Bq.

Step 3: Recursively sort the buckets.

I/O-complexity of Distribution Sort:

n n
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