CSE 548: Analysis of Algorithms

Lecture 24
 (Analyzing I/O and Cache Performance)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2012

Memory: Fast, Large \& Cheap!

For efficient computation we need

- fast processors
- fast and large (but not so expensive) memory

But memory cannot be cheap, large and fast at the same time, because of

- finite signal speed
- lack of space to put enough connecting wires

A reasonable compromise is to use a memory hierarchy.

The Memory Hierarchy

A memory hierarchy is

- almost as fast as its fastest level
- almost as large as its largest level
- inexpensive

The Memory Hierarchy

To perform well on a memory hierarchy algorithms must have high locality in their memory access patterns.

The Two-level I/O Model

The two-level IIO (or cache-aware) model [Aggarwal \& Vitter, CACM'88] consists of:

- an internal memory of size M
- an arbitrarily large external memory partitioned into blocks of size B.

I/O complexity of an algorithm
= number of blocks transferred between these two levels
Basic I/O complexities: $\operatorname{scan}(N)=\Theta\left(\frac{N}{B}\right)$ and $\operatorname{sort}(N)=\Theta\left(\frac{N}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)$
Algorithms often crucially depend on the knowledge of M and B \Rightarrow algorithms do not adapt well when M or B changes

The Ideal-Cache Model

The ideal-cache model [Frigo et al., FOCS'99] is an extension of the I/O model with the following additional feature:
algorithms for this model are not allowed to use knowledge of M and B.

Consequences of this extension

- algorithms can simultaneously adapt to all levels of a multi-level memory hierarchy
- algorithms become more flexible and portable

Algorithms for this model are known as cache-oblivious algorithms.

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

- Optimal offline cache replacement policy
- Exactly two levels of memory
- Automatic replacement \& full associativity

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

- Optimal offline cache replacement policy
- LRU \& FIFO allow for a constant factor approximation of optimal [Sleator \& Tarjan, JACM'85]
- Exactly two levels of memory
- Automatic replacement \& full associativity

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

- Optimal offline cache replacement policy
- Exactly two levels of memory
- can be effectively removed by making several reasonable assumptions about the memory hierarchy [Frigo et al., FOCS'99]
- Automatic replacement \& full associativity

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

- Optimal offline cache replacement policy

Exactly two levels of memory

- Automatic replacement \& full associativity
- in practice, cache replacement is automatic (by OS or hardware)
- fully associative LRU caches can be simulated in software with only a constant factor loss in expected performance [Frigo et al., FOCS'99]

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

- Optimal offline cache replacement policy
- Exactly two levels of memory
- Automatic replacement \& full associativity

Often makes the following assumption, too:

- $M=\Omega\left(B^{2}\right)$, i.e., the cache is tall

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

- Optimal offline cache replacement policy
- Exactly two levels of memory
- Automatic replacement \& full associativity

Often makes the following assumption, too:

- $M=\Omega\left(B^{2}\right)$, i.e., the cache is tall
- most practical caches are tall

The Ideal-Cache Model: I/O Bounds

Cache-oblivious vs. cache-aware bounds:

- Basic I/O bounds (same as the cache-aware bounds):

$$
\begin{aligned}
& -\operatorname{scan}(N)=\Theta\left(\frac{N}{B}\right) \\
& -\operatorname{sort}(N)=\Theta\left(\frac{N}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)
\end{aligned}
$$

- Most cache-oblivious results match the I/O bounds of their cacheaware counterparts
- There are few exceptions; e.g., no cache-oblivious solution to the permutation problem can match cache-aware I/O bounds [Brodal \& Fagerberg, STOC’03]

Some Known Cache Aware / Oblivious Results

Problem	Cache-Aware Results	Cache-Oblivious Results
Array Scanning (scan(N))	$O\left(\frac{N}{B}\right)$	$O\left(\frac{N}{B}\right)$
Sorting (sort(N))	$O\left(\frac{N}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)$	$O\left(\frac{N}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)$
Selection	$O(\operatorname{scan}(N))$	$O(\operatorname{scan}(N))$
B-Trees [Am] (Insert, Delete)	$O\left(\log _{B} \frac{N}{B}\right)$	$O\left(\log _{B} \frac{N}{B}\right)$
Priority Queue [Am] (Insert, Weak Delete, Delete-Min)	$O\left(\frac{1}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)$	$O\left(\frac{1}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)$
Matrix Multiplication	$o\left(\frac{N^{3}}{B \sqrt{M}}\right)$	$o\left(\frac{N^{3}}{B \sqrt{M}}\right)$
Sequence Alignment	$o\left(\frac{N^{2}}{B M}\right)$	$o\left(\frac{N^{2}}{B M}\right)$
Single Source Shortest Paths	$O\left(\left(V+\frac{E}{B}\right) \cdot \log _{2} \frac{V}{B}\right)$	$O\left(\left(V+\frac{E}{B}\right) \cdot \log _{2} \frac{V}{B}\right)$
Minimum Spanning Forest	$O\left(\min \left(\operatorname{sort}(E) \log _{2} \log _{2} V, V+\operatorname{sort}(E)\right)\right)$	$O\left(\min \left(\operatorname{sort}(E) \log _{2} \log _{2} \frac{V B}{E}, V+\operatorname{sort}(E)\right)\right)$

Table 1: $N=\#$ elements, $V=\#$ vertices, $E=\#$ edges, Am = Amortized.

Matrix
 Multiplication

Matrix Multiplication

$$
z_{i j}=\sum_{k=1}^{n} x_{i k} y_{k j}
$$

\boldsymbol{z}_{11}	\boldsymbol{z}_{12}	\cdots	$\boldsymbol{z}_{1 n}$
\boldsymbol{z}_{21}	\boldsymbol{z}_{22}	\cdots	$\boldsymbol{z}_{2 n}$
\vdots	\vdots	\ddots	\vdots
$\boldsymbol{z}_{n 1}$	$\boldsymbol{z}_{n 2}$	\cdots	$\boldsymbol{z}_{n n}$

\boldsymbol{x}_{21} \& \boldsymbol{x}_{22} \& \cdots \& \boldsymbol{x}_{2 n}

\vdots \& \vdots \& \ddots \& \vdots

\boldsymbol{x}_{n 1} \& \boldsymbol{x}_{n 2} \& \cdots \& \boldsymbol{x}_{n n}\end{array} \quad \times \quad $$
\begin{array}{|cccc|}\boldsymbol{y}_{11} & \boldsymbol{y}_{12} & \cdots & \boldsymbol{y}_{1 n} \\
\boldsymbol{y}_{21} & \boldsymbol{y}_{22} & \cdots & \boldsymbol{y}_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\boldsymbol{y}_{n 1} & \boldsymbol{y}_{n 2} & \cdots & \boldsymbol{y}_{n n} \\
\hline\end{array}
$$\right.\)

$$
\begin{aligned}
& \text { Iter-MM }(X, Y, Z, n) \\
& \text { 1. for } i \leftarrow 1 \text { to } n \text { do } \\
& \text { 2. for } j \leftarrow 1 \text { to } n \text { do } \\
& \text { 3. } \quad \text { for } k \leftarrow 1 \text { to } n \text { do } \\
& \text { 4. } \quad z_{i j} \leftarrow z_{i j}+x_{i k} \times y_{k j}
\end{aligned}
$$

I/O-Complexity: Iter-MM

Each iteration of the for loop in line 3 incurs $\mathrm{O}(n)$ cache misses. I/O-complexity of Iter-MM $=\mathrm{O}\left(n^{3}\right)$

1/O-Complexity: Iter-MM

$$
\begin{aligned}
& \text { Iter-MM }(X, Y, Z, n) \\
& \text { 1. for } i \leftarrow 1 \text { to } n \text { do } \\
& \text { 2. for } j \leftarrow 1 \text { to } n \text { do } \\
& \text { 3. for } k \leftarrow 1 \text { to } n \text { do } \\
& \text { 4. } \quad z_{i j} \leftarrow z_{i j}+x_{i k} \times y_{k j}
\end{aligned}
$$

store in
row - major order

\boldsymbol{z}_{11}	\boldsymbol{z}_{12}	\cdots	$\boldsymbol{z}_{1 n}$
\boldsymbol{z}_{21}	\boldsymbol{z}_{22}	\cdots	$\boldsymbol{z}_{2 n}$
\vdots	\vdots	\ddots	\vdots
$\boldsymbol{z}_{n 1}$	$\boldsymbol{z}_{n 2}$	\cdots	$\boldsymbol{z}_{n n}$

Each iteration of the for loop in line 3 incurs $O\left(1+\frac{n}{B}\right)$ cache misses. I/O-complexity of Iter-MM $=\mathrm{O}\left(n^{2}\left(1+\frac{n}{B}\right)\right)=\mathrm{O}\left(n^{2}+\frac{n^{3}}{B}\right)=\mathrm{O}\left(\frac{n^{3}}{B}\right)$

Block Matrix Multiplication

Block-MM (X, Y, Z, n)

1. for $i \leftarrow 1$ to n / s do
2. for $j \leftarrow 1$ to n / s do
3.

for $k \leftarrow 1$ to n / s do
4.

$$
\operatorname{Iter-MM}\left(X_{i k}, Y_{k j}, Z_{i j}, s\right)
$$

1/O-Complexity: Block-MM

$$
\begin{aligned}
& \text { Block-MM }(X, Y, Z, n) \\
& \text { 1. for } i \leftarrow 1 \text { to } n / s \text { do } \\
& \text { 2. for } j \leftarrow 1 \text { to } n / s \text { do } \\
& \text { 3. for } k \leftarrow 1 \text { to } n / s \text { do } \\
& \text { 4. } \\
& \text { Iter-MM }\left(X_{i k}, Y_{k j}, Z_{i j}, s\right)
\end{aligned}
$$

Choose $s=\Theta(\sqrt{M})$, so that $X_{i k}, Y_{k j}$ and $Z_{i j}$ just fit into the cache.
Then line 4 incurs $\Theta\left(s\left(1+\frac{s}{B}\right)\right)$ cache misses.
I/O-complexity of Block-MM [assuming a tall cache, i.e., $M=\Omega\left(B^{2}\right)$]

$$
=\Theta\left(\left(\frac{n}{s}\right)^{3}\left(s+\frac{s^{2}}{B}\right)\right)=\Theta\left(\frac{n^{3}}{s^{2}}+\frac{n^{3}}{B s}\right)=\Theta\left(\frac{n^{3}}{M}+\frac{n^{3}}{B \sqrt{M}}\right)=\Theta\left(\frac{n^{3}}{B \sqrt{M}}\right)
$$

Multiple Levels of Cache

Multiple Levels of Cache

Multiple Levels of Cache

Recursive Matrix Multiplication

Recursive Matrix Multiplication

$\operatorname{Rec}-M M(X, Y, Z, n)$

1. if $n=1$ then $Z \leftarrow Z+X \cdot Y$
2. else
3. $\operatorname{Rec-MM}\left(X_{11}, Y_{11}, Z_{11}, n / 2\right), \operatorname{Rec}-M M\left(X_{12}, Y_{21}, Z_{11}, \boldsymbol{n} / 2\right)$
4. $\operatorname{Rec}-M M\left(X_{11}, Y_{12}, z_{12}, n / 2\right), \operatorname{Rec}-M M\left(X_{12}, Y_{22}, z_{12}, n / 2\right)$
5. $\operatorname{Rec}-M M\left(X_{21}, Y_{11}, Z_{21}, n / 2\right), \operatorname{Rec}-M M\left(X_{22}, Y_{21}, Z_{21}, n / 2\right)$
6. $\operatorname{Rec}-M M\left(X_{21}, Y_{12}, Z_{22}, n / 2\right), \operatorname{Rec}-M M\left(X_{22}, Y_{22}, z_{22}, n / 2\right)$

1/O-Complexity: Rec-MM

$\operatorname{Rec}-M M(X, Y, Z, n)$

1. if $n=1$ then $Z \leftarrow Z+X \cdot Y$
2. else
3. $\operatorname{Rec}-M M\left(X_{11}, Y_{11}, Z_{11}, n / 2\right), \operatorname{Rec}-M M\left(X_{12}, Y_{21}, Z_{11}, n / 2\right)$
4. $\operatorname{Rec}-M M\left(X_{11}, Y_{12}, Z_{12}, n / 2\right), \operatorname{Rec}-M M\left(X_{12}, Y_{22}, Z_{12}, n / 2\right)$
5. $\operatorname{Rec}-M M\left(X_{21}, Y_{11}, Z_{21}, n / 2\right), \operatorname{Rec}-M M\left(X_{22}, Y_{21}, Z_{21}, n / 2\right)$
6. $\operatorname{Rec}-M M\left(X_{21}, Y_{12}, Z_{22}, n / 2\right), \operatorname{Rec}-M M\left(X_{22}, Y_{22}, Z_{22}, n / 2\right)$

I/O-complexity of Rec-MM, $\boldsymbol{I}(\boldsymbol{n})=\left\{\begin{array}{ll}O\left(n+\frac{n^{2}}{\boldsymbol{B}}\right), & \text { if } \boldsymbol{n}^{2} \leq \alpha M \\ 8 \boldsymbol{I}\left(\frac{n}{2}\right)+O(1), & \text { otherwise }\end{array}\right\} \begin{aligned}=O\left(\frac{\boldsymbol{n}^{3}}{\boldsymbol{M}}+\frac{\boldsymbol{n}^{3}}{\boldsymbol{B} \sqrt{M}}\right)=O\left(\frac{\boldsymbol{n}^{3}}{\boldsymbol{B} \sqrt{M}}\right), \text { when } M=\Omega\left(\boldsymbol{B}^{2}\right)\end{aligned}$
(Optimal: Hong \& Kung, STOC’81)

Searching (Static B-Trees)

A Static Search Tree

- A perfectly balanced binary search tree
] Static: no insertions or deletions
] Height of the tree, $h=\Theta\left(\log _{2} n\right)$

A Static Search Tree

- A perfectly balanced binary search tree
] Static: no insertions or deletions
] Height of the tree, $h=\Theta\left(\log _{2} n\right)$
- A search path visits $O(h)$ nodes, and incurs $O(h)=O\left(\log _{2} n\right)$ I/Os

I/O-Efficient Static B-Trees

- Each node stores B keys, and has degree $B+1$
- Height of the tree, $h=\Theta\left(\log _{B} n\right)$

I/O-Efficient Static B-Trees

- Each node stores B keys, and has degree $B+1$
- Height of the tree, $h=\Theta\left(\log _{B} n\right)$
- A search path visits $O(h)$ nodes, and incurs $O(h)=O\left(\log _{B} n\right) I / O s$

Cache-Oblivious Static B-Trees?

van Emde Boas Layout

van Emde Boas Layout

If the tree contains \boldsymbol{n} nodes,
each subtree contains $\Theta\left(2^{\frac{h}{2}}\right)=\Theta(\sqrt{n})$ nodes, and $k=\Theta(\sqrt{n})$

van Emde Boas Layout

A	B_{1}	B_{2}	$\ldots \ldots \ldots$.	B_{k}

Recursive Subdivision
If the tree contains \boldsymbol{n} nodes,
each subtree contains $\Theta\left(2^{\frac{h}{2}}\right)=\Theta(\sqrt{n})$ nodes, and $k=\Theta(\sqrt{n})$

van Emde Boas Layout

Recursive Subdivision
If the tree contains \boldsymbol{n} nodes,
each subtree contains $\Theta\left(2^{\frac{h}{2}}\right)=\Theta(\sqrt{n})$ nodes, and $k=\Theta(\sqrt{n})$

van Emde Boas Layout

A	B_{1}	B_{2}	$\ldots \ldots \ldots \ldots \ldots \ldots$	B_{k}

Recursive Subdivision

If the tree contains \boldsymbol{n} nodes,
each subtree contains $\Theta\left(2^{\frac{h}{2}}\right)=\Theta(\sqrt{n})$ nodes, and $k=\Theta(\sqrt{n})$

van Emde Boas Layout

| A | B_{1} | B_{2} | \cdots |
| :--- | :--- | :--- | :--- | :--- |

Recursive Subdivision
If the tree contains \boldsymbol{n} nodes,
each subtree contains $\Theta\left(2^{\frac{h}{2}}\right)=\Theta(\sqrt{n})$ nodes, and $k=\Theta(\sqrt{n})$

1/O-Complexity of a Search

1/O-Complexity of a Search

- $p=$ number of \triangle 's visited by a search path
- Then $p \geq \frac{\log n}{\log B}=\log _{B} n$, and $p \leq \frac{\log n}{\frac{1}{2} \log B}=2 \log _{B} n$
- The number of blocks transferred is $\leq 2 \times 2 \log _{B} n=4 \log _{B} n$

Sorting (Distribution Sort)

Cache-Complexity of Sorting

Algorithm	Cache-Complexity
Traditional (e.g., mergesort and heapsort)	$\mathrm{O}(N \log N)$
Cache-Aware (e.g., external -memory versions of mergesort and distribution sort)	$\mathrm{O}\left(\frac{N}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)$
Cache-Oblivious (e.g. funnelsort, cache-oblivious distribution sort and proximity mergesort)	$\mathrm{O}\left(\frac{N}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)$

Cache-Complexity of Sorting

Algorithm	Cache-Complexity
Traditional (e.g., mergesort and heapsort)	$\mathrm{O}\left(\frac{N}{B} \log _{2} N\right)$
Cache-Aware (e.g., external -memory versions of mergesort and distribution sort)	$\mathrm{O}\left(\frac{N}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)$
Cache-Oblivious (e.g. funnelsort, cache-oblivious distribution sort and proximity mergesort)	$\mathrm{O}\left(\frac{N}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)$

Cache-Oblivious Distribution Sort

Step 1: Partition, and recursively sort partitions.

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.

Step 1: Partition \& Recursively Sort Partitions

Order: $\square||\square|| \square|\square||\mid \square \square$

Step 2: Distribute to Buckets

Recursively Sorted

Distributed to Buckets
B_{1} :

$\square \square \square \square \square \square \square П \square \square \square$

\square Number of buckets, $q \leq \sqrt{n}$

- Number of elements in $B_{i}=n_{i} \leq 2 \sqrt{n}$
$\square \max \left\{x \mid x \in B_{i}\right\} \leq \min \left\{x \mid x \in B_{i+1}\right\}$

Step 3: Recursively Sort Buckets

Recursively Sort Each Bucket

Done!

Distribution Sort

Step 1: Partition, and recursively sort partitions.

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.

The Distribution Step

Sorted Partitions

Buckets

\square We can take the partitions one by one, and distribute all elements of current partition to buckets
\square Has very poor cache performance: $\Theta(\sqrt{n} \times \sqrt{n})=\Theta(n)$ I/Os

Recursive Distribution

Distribute ($\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{m}$)
$\left[A_{i}, \ldots, A_{i+m-1}\right]$

$\left[B_{j}, \ldots, B_{j+m-1}\right]$

1. if $m=1$ then copy elements from A_{i} to $B_{j} \longrightarrow$ may need
2. else
3. Distribute (i, j, m/2)
4. Distribute $(i+m / 2, \quad j, m / 2)$
5. Distribute ($\quad i, j+m / 2, m / 2$)
6. Distribute $(i+m / 2, j+m / 2, m / 2)$
to split B_{j} to maintain $B_{j} \leq 2 \sqrt{ } n$

Recursive Distribution

Distribute (i, j, m)

1. if $m=1$ then copy elements from A_{i} to B_{j}
2. else
3. Distribute ($j, m / 2)$
4. Distribute ($\boldsymbol{i}+\boldsymbol{m} / 2$,
$j, m / 2$)
5. Distribute (
$i, j+m / 2, m / 2)$
6. Distribute (i+m/2,j+m/2, m/2)
the cost of splits for the time being

Let $\boldsymbol{R}(m, d)$ denote the cache misses incurred by Distribute ($\mathbf{i}, \boldsymbol{j}, \boldsymbol{m}$) that copies d elements from m partitions to m buckets. Then

$$
\begin{aligned}
\boldsymbol{R}(\boldsymbol{m}, \boldsymbol{d}) & = \begin{cases}\mathrm{O}\left(\boldsymbol{B}+\frac{d}{B}\right), & \text { if } m \leq \alpha B, \\
\sum_{1 \leq i \leq 4} \boldsymbol{R}\left(\frac{\boldsymbol{m}}{2}, d_{i}\right), & \text { otherwise, where } \boldsymbol{d}=\sum_{1 \leq i \leq 4} \boldsymbol{d}_{i}\end{cases} \\
& =\mathrm{O}\left(B+\frac{m^{2}}{B}+\frac{d}{B}\right) \\
\therefore \boldsymbol{R}(\sqrt{n}, n) & =\mathrm{O}\left(\frac{n}{B}\right)
\end{aligned}
$$

Recursive Distribution

Distribute (i, j, m)

1. if $m=1$ then copy elements from A_{i} to B_{j}
2. else
3. Distribute (i, j, m/2)
4. Distribute $(i+m / 2, \quad j, m / 2)$
5. Distribute ($\quad i, j+m / 2, m / 2$)
6. Distribute ($\mathbf{i}+\boldsymbol{m} / 2, j+m / 2, \quad m / 2)$

Recursive Distribution

Distribute (i, j, m)

1. if $m=1$ then copy elements from A_{i} to B_{j}
2. else
3. Distribute (i, j, m/2) cache misses incurred
4. Distribute $(i+m / 2, \quad j, m / 2)$
5. Distribute ($\quad i, j+m / 2, m / 2$) by all splits
6. Distribute $(i+m / 2, j+m / 2, m / 2)$

$$
=\sqrt{n} \times O\left(\frac{\sqrt{n}}{B}\right)=O\left(\frac{n}{B}\right)
$$

I/O-complexity of Distribute $(1,1, \sqrt{n})$ is

$$
=R(\sqrt{n}, n)+\mathrm{O}\left(\frac{n}{B}\right)=\mathrm{O}\left(\frac{n}{B}\right)
$$

1/O-Complexity of Distribution Sort

Step 1: Partition into \sqrt{n} sub-arrays containing \sqrt{n} elements each and sort the sub-arrays recursively.

Step 2: Distribute sub-arrays into buckets $B_{1}, B_{2}, \ldots, B_{q}$.
Step 3: Recursively sort the buckets.
I/O-complexity of Distribution Sort:

$$
\begin{aligned}
Q(n) & = \begin{cases}O\left(1+\frac{n}{B}\right), & \text { if } n \leq \alpha^{\prime} M \\
\sqrt{n} Q(\sqrt{n})+\sum_{i=1}^{q} Q\left(n_{i}\right)+O\left(1+\frac{n}{B}\right), & \text { otherwise }\end{cases} \\
& =O\left(\frac{n}{B} \log _{M} n\right), \text { when } M=\Omega\left(B^{2}\right)
\end{aligned}
$$

