CSE 548: Analysis of Algorithms

Lecture 6 (Divide-and-Conquer Algorithms: Some Applications of the Fourier Transform & the Master Theorem)

> Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Fall 2012

Some Applications of Fourier Transform and FFT

- Signal processing
- Image processing
- Noise reduction
- Data compression
- Solving partial differential equation
- Multiplication of large integers
- Polynomial multiplication
- Molecular docking

Some Applications of Fourier Transform and FFT

Any periodic signal can be represented as a sum of a series of sinusoidal (sine & cosine) waves. [1807]

<u>Spatial (Time) Domain ⇔ Frequency Domain</u>

Frequency Domain

Source: The Scientist and Engineer's Guide to Digital Signal Processing by Steven W. Smith

<u>Spatial (Time) Domain ⇔ Frequency Domain</u> <u>(Fourier Transforms)</u>

Let s(t) be a signal specified in the time domain.

The strength of s(t) at frequency f is given by:

$$S(f) = \int_{-\infty}^{\infty} s(t) \cdot e^{-2\pi i f t} dt$$

Evaluating this integral for all values of f gives the frequency domain function.

Now s(t) can be retrieved by summing up the signal strengths at all possible frequencies:

$$s(t) = \int_{-\infty}^{\infty} S(f) \cdot e^{2\pi i f t} df$$

Why do the Transforms Work?

Let's try to get a little intuition behind why the transforms work. We will look at a very simple example.

Suppose: $s(t) = \cos(2\pi h \cdot t)$

$$\frac{1}{T} \int_{-T}^{T} s(t) \cdot e^{-2\pi i f t} dt = \begin{cases} 1 + \frac{\sin(4\pi f T)}{4\pi f T}, & \text{if } f = h, \\ \frac{\sin(2\pi (h-f)T)}{2\pi (h-f)T} + \frac{\sin(2\pi (h+f)T)}{2\pi (h+f)T}, & \text{otherwise.} \end{cases}$$

$$\Rightarrow \lim_{T \to \infty} \left(\frac{1}{T} \int_{-T}^{T} s(t) \cdot e^{-2\pi i f t} dt \right) = \begin{cases} 1, & \text{if } f = h, \\ 0, & \text{otherwise.} \end{cases}$$

So, the transform can detect if f = h!

Noise Reduction

Source: http://www.mediacy.com/index.aspx?page=AH_FFTExample

Data Compression

- Discrete Cosine Transforms (DCT) are used for lossy data compression (e.g., MP3, JPEG, MPEG)
- DCT is a Fourier-related transform similar to DFT (Discrete Fourier Transform) but uses only real data (uses cosine waves only instead of both cosine and sine waves)
- Forward DCT transforms data from spatial to frequency domain
- Each frequency component is represented using a fewer number of bits (i.e., truncated / quantized)
- Low amplitude high frequency components are also removed
- Inverse DCT then transforms the data back to spatial domain
- The resulting image compresses better

Data Compression

Transformation to frequency domain using cosine transforms work in the same way as the Fourier transform.

Suppose: $s(t) = \cos(2\pi h \cdot t)$

$$\frac{1}{T} \int_{-T}^{T} s(t) \cdot \cos(2\pi f t) \, dt = \begin{cases} 1 + \frac{\sin(4\pi f T)}{4\pi f T}, & \text{if } f = h, \\ \frac{\sin(2\pi (h - f)T)}{2\pi (h - f)T} + \frac{\sin(2\pi (h + f)T)}{2\pi (h + f)T}, & \text{otherwise.} \end{cases}$$

$$\Rightarrow \lim_{T \to \infty} \left(\frac{1}{T} \int_{-T}^{T} s(t) \cdot \cos(2\pi ft) \, dt \right) = \begin{cases} 1, & \text{if } f = h, \\ 0, & \text{otherwise.} \end{cases}$$

So, this transform can also detect if f = h.

Protein-Protein Docking

□ Knowledge of complexes is used in

- Drug design
 Structure function analysis
- Studying molecular assemblies Protein interactions

Protein-Protein Docking: Given two proteins, find the best relative transformation and conformations to obtain a stable complex.

Docking is a hard problem

- Search space is huge (6D for rigid proteins)
- Protein flexibility adds to the difficulty

To maximize skin-skin overlaps and minimize core-core overlaps

- assign positive real weights to skin atoms
- assign positive imaginary weights to core atoms

Let A ' denote molecule A with the pseudo skin atoms.

For $P \in \{A', B\}$ with M_P atoms, affinity function: $f_P(x) = \sum_{k=1}^{M_P} w_k \cdot g_k(x)$ Here $g_k(x)$ is a Gaussian representation of atom k, and w_k its weight.

a possible docking solution

Let A' denote molecule A with the pseudo skin atoms.

For $P \in \{A', B\}$ with M_P atoms, affinity function:

$$f_P(x) = \sum_{k=1}^{M_P} w_k \cdot g_k(x)$$

For rotation r and translation t of molecule B (i.e., $B_{t,r}$),

the interaction score, $F_{A,B}(t,r) = \int_x f_{A'}(x) f_{B_{t,r}}(x) dx$

a possible docking solution

For rotation r and translation t of molecule B (i.e., $B_{t,r}$),

the interaction score, $F_{A,B}(t,r) = \int_x f_{A'}(x) f_{B_{t,r}}(x) dx$

 $Re(F_{A,B}(t,r)) = skin-skin overlap score - core-core overlap score$ $Im(F_{A,B}(t,r)) = skin-core overlap score$

Docking: Rotational & Translational Search

Docking: Rotational & Translational Search

Translational Search using FFT

<u>The</u> <u>Master Theorem</u>

<u>A Useful Recurrence</u>

Consider the following recurrence:

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise;} \end{cases}$$

where, $a \ge 1$ and b > 1.

Arises frequently in the analyses of *divide-and-conquer* algorithms.

Recall the following from recurrences from earlier lectures.

Karatsuba's Algorithm: $T(n) = 3T\left(\frac{n}{2}\right) + \Theta(n)$ Strassen's Algorithm: $T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n)$ Fast Fourier Transform: $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

T(n) \downarrow $f(n) + aT\left(\frac{n}{h}\right)$

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

T(n) $f(n) + aT\left(\frac{n}{b}\right)$ a

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \le 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \le 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise.} \end{cases}$$

How the Recurrence Unfolds: Case 1

How the Recurrence Unfolds: Case 2

How the Recurrence Unfolds: Case 3

The Master Theorem

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise } (a \geq 1, b > 1). \end{cases}$$

Case 1: $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$ $T(n) = \Theta(n^{\log_b a})$

Case 2: $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$. $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$

Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 and $af\left(\frac{n}{b}\right) \le cf(n)$
for constants $\epsilon > 0$ and $c < 1$.
$$T(n) = \Theta(f(n))$$

Example Applications of Master Theorem

Example 1: $T(n) = 3T\left(\frac{n}{2}\right) + \Theta(n)$

Master Theorem Case 1: $T(n) = \Theta(n^{\log_2 3})$

Example 2: $T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2)$

Master Theorem Case 1: $T(n) = \Theta(n^{\log_2 7})$

Example 3:
$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$

Master Theorem Case 2: $T(n) = \Theta(n \log n)$

Assuming that we have an infinite number of processors, and each recursive call in example 2 above can be executed in parallel:

Example 4:
$$T(n) = T\left(\frac{n}{2}\right) + \Theta(n^2)$$

Master Theorem Case 3: $T(n) = \Theta(n^2)$