CSE 548: Analysis of Algorithms

Lecture 6
(Divide-and-Conquer Algorithms:
Some Applications of the Fourier Transform
& the Master Theorem)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Fall 2012

Some Applications of Fourier Transform and FFT

e Signal processing

* Image processing

* Noise reduction

e Data compression

e Solving partial differential equation
 Multiplication of large integers

e Polynomial multiplication

 Molecular docking

Some Applications of Fourier Transform and FFT

_ f. .1 s
Jean Baptiste]d—seioh Fourier

Any periodic signal can be represented as a sum of a series of
sinusoidal (sine & cosine) waves. [1807]

Spatial (Time) Domdain & Frequency Domain

Frequency Domain

apmjdury

] m) o) o
3 L 3 e 5 S
s Lo s 1a = o
“ g 2 =
s s 5 .
=4 =] (=] o
2 2
% o+ -+
= - -
3 = -
> . .
Qm o — o
& [? [
wo o I
fl_ o [=]
k=]
[= | | | } | -
o m— | | | |
© | | | |
m | | | |
| | | |
ol ——+———+4——m——+-—+2
D | | | |
I _ H
S| ek
v 1 _ B
g W7 f
= N _ LY
= o _
| | | |
~— _ _ _ | ! v
e [S I N N o N
(¢+] 1 1 T
o | | | |
b | | | |
C L _
Q. _ _ _ _
Vg __ __ __ l _ =
= 8 F A < &8 g

’s Guide to Digital Signal Processing by Steven W. Smith

ineer

tist and Eng

The Scien

Source

Spatial (Time) Domdain & Frequency Domain
(Fourier Transforms)

Let s(t) be a signal specified in the time domain.
The strength of s(t) at frequency f is given by:

S(f) = f_oos(t) - e T2t gt

Evaluating this integral for all values of f gives the frequency

domain function.

Now s(t) can be retrieved by summing up the signal strengths

at all possible frequencies:

s = [st ay

Why do the Transforms Work?

Let’s try to get a little intuition behind why the transforms work.

We will look at a very simple example.

Suppose: s(t) = cos(2mh - t)

| 1+ Sin4(7j;[7]jT)) lff — h’
%f_TTS(t) e 2Mift Jp =
sin2re(h—f)T) |, sin2re(h+f)T) |
| 2n(h-£)T 2t)T otherwise.
1 ! . (1’ lff — h’
:>71im <Tf s(t) - e 2mift dt) .y
o L0, otherwise.

So, the transform can detect if f = h!

Noise Reduction

inverse FFT

—

remove
noise

Source: http://www.mediacy.com/index.aspx?page=AH_FFTExample

Data Compression

Discrete Cosine Transforms (DCT) are used for lossy data
compression (e.g., MP3, JPEG, MPEG)

DCT is a Fourier-related transform similar to DFT (Discrete
Fourier Transform) but uses only real data (uses cosine waves
only instead of both cosine and sine waves)

Forward DCT transforms data from spatial to frequency domain

Each frequency component is represented using a fewer
number of bits (i.e., truncated / quantized)

Low amplitude high frequency components are also removed
Inverse DCT then transforms the data back to spatial domain

The resulting image compresses better

Data Compression

Transformation to frequency domain using cosine transforms
work in the same way as the Fourier transform.

Suppose: s(t) = cos(2mh - t)

(sin(4ntfT)
T
1+ anfT if f =h,

T
%j s(t) - cos(2mft) dt = <
-T sin(2n(h — f)T) sin(2r(h+ f)T)

therwise.
T 2e(h— T | 2nh+ T 0 orerwise

1 (T 1, iff=h,
:>T11_)r£1O (Tj s(t) - cos(2mft) dt) =

-T 0, otherwise.

So, this transform can also detect if f = h.

Protein-Protein Docking

J Knowledge of complexes is used in

— Drug design — Structure function analysis

— Studying molecular assemblies — Protein interactions

 Protein-Protein Docking: Given two proteins, find the best relative
transformation and conformations to obtain a stable complex.

- b
" -] .
JJJJJ

 Docking is a hard problem
— Search space is huge (6D for rigid proteins)
— Protein flexibility adds to the difficulty

Shape Complementarity

[Wang’'?1, Katchalski-Katzir et al.’?2, Chen et al.’03]

Molecule A

skin

Molecule B

surface atom

a possible docking solution

To maximize skin-skin overlaps and minimize core-core overlaps

— assign positive real weights to skin atoms
— assign positive imaginary weights to core atoms

Let A~ denote molecule A with the pseudo skin atoms.
For P € {A’, B} with M, atoms, affinity function: fp(x) = Zfﬁl Wy * G (x)

Here g, (x) is a Gaussian representation of atom k, and wy, its weight.

Shape Complementarity

[Wang’'?1, Katchalski-Katzir et al.’?2, Chen et al.’03]

Molecule A

skin

Molecule B

surface atom

a possible docking solution

Let A~ denote molecule A with the pseudo skin atoms.

For P € {A’ B} with M, atoms, affinity function:
M
fp(x) = Zkfl Wi - gk (X)
For rotation r and translation t of molecule B (i.e., B,),

the interaction score, F, g(t,7) = fx far (x)thm (x) dx

Shape Complementarity

[Wang’'?1, Katchalski-Katzir et al.’?2, Chen et al.’03]

Molecule A

skin

Molecule B

surface atom

a possible docking solution

For rotation r and translation t of molecule B (i.e., B),

the interaction score, F, g(t,7) = fx far (x)th’r (x) dx

Re(FA,B (¢, r)) = skin-skin overlap score — core-core overlap score

Im(FA,B (¢, r)) = skin-core overlap score

: Rotational & Translational Search

Dockin

IIIIIIIIIIIIIII

: Rotational & Translational Search

Dockin

IIIIIIIIIIIIIII

Translational Search using FFT

[,/-.,_.‘)“"*\
(} _/_\ .-_I —r \ - J‘: /.‘[J L
cl D discretize N S S] Forward
ik \AT b« N > - (= *}'_,l»{

N { T .]

SR NSRS EE FFT
e NN

:ik o "— -

complex
conjugate

Inverse

FFT

multiply frequency maps ® >

W ,) discretize T Forward h(z),vVze Q
: > EESEEREuEE|
) !'1.‘I :.-‘l_ \‘{*f‘*j FFT

vze=lmnl, k@ = | frCofs - ds

The
Master Theorem

A Useful Recurrence

Consider the following recurrence:

O(1), ifn<1l,
T = n
(n) aT (—) + f(n), otherwise;

b
where,a = 1and b > 1.
Arises frequently in the analyses of divide-and-conquer algorithms.
Recall the following from recurrences from earlier lectures.
Karatsuba’s Algorithm: T(n) = 3T (2) + O(n)
Strassen’s Algorithm: T(n) = 7T (2) + O(n)

Fast Fourier Transform: T(n) = 2T (2) + O(n)

How the Recurrence Unfolds

O(1), ifn<l,

T(n) = aT (g) + f(n), otherwise.

How the Recurrence Unfolds

o(1), ifn<l,

T(n) = aT (g) + f(n), otherwise.
T(n)
v

f(n) + aT (%)

How the Recurrence Unfolds

O(1), ifn<l,

T(n) = {aT (g) + f(n), otherwise.

__’/

How the Recurrence Unfolds

O(1), ifn<l,
T(n) = {aT (E) + f(n), otherwise.
b
T(n)

How the Recurrence Unfolds

O(1), ifn<l,
— n
Ir(n) {aT (—) + f(n), otherwise.
b
T(n)
— T~ -- g —

~
—————————

How the Recurrence Unfolds

o(1), ifn<l,
T(n) = {aT (g) + f(n), otherwise.
T(n)
f(n)-\+ ,
«— \“a’/ -
G)-@G) 6)-@B) 0 €6
T Syt '

How the Recurrence Unfolds

o(1), ifn<l,
T(n) = {aT (g) + f(n), otherwise.
T(n)
f(n)~\+ ,
— “ \“a’/ -
G)-@G) 6)-@B) 0 €6
T Syt '

\5——-’ \5—-—’

How the Recurrence Unfolds

o(1), ifn<l,
T(n) = {aT (g) + f(n), otherwise.
T(n)
f(n)~\+ ,
«— “ \“a’/ -
G)-@G) 6)-@B) 0 €6
T Syt I
(G @G) - 16+ @G
\ia_,’ \‘—Cl—”

How the Recurrence Unfolds

o(1), ifn<l,
T(n) = {aT (g) + f(n), otherwise.

T(n)
<« « \-a—/ B
D@D) @) 7G) @ ()
1) @) G @)

How the Recurrence Unfolds: Case 1

o(1), ifn<t,
n .
aT (B) + f(n), otherwise.

T(n) =

T(n)

i "

\5—-—’ \h___f

Sums Geometrically Increase
Level by Level.

Last Level Dominates.
U — ®(nlogba)

T(n) = O(n %)

How the Recurrence Unfolds: Case 2

o(1), ifn<l,
T(n) = { aT (g) +f(n), otherwise.

T(n)

How the Recurrence Unfolds: Case 3

O(1), ifn<l,

T(n) = aT (g) + f(n), otherwise.

T(n)

£Laa) % f(n)

log,a+¢€ n
N\ f =20) &af (2) < of () ,,
) + for constants e > 0 & ¢ < 1.)
" .. \Sums Geometrically decrease . o
FG) Level by Level. 5
N\ First Level
Dominates. |

T(n) = O(f(n))

The Master Theorem

O(1), ifn<l1,

T(n) = aT (g) + f(n), otherwise (a = 1,b > 1).

log,a-¢€

Casel: f(n) = O(n) for some constant € > 0

T(n) = O %%

log,a

Case 2: f(n) = O(n " lg*n) for some constant k = 0.

log,a

T(n) =0(n " lghtin)

Case 3: f(n) = Q""" and af (1) < cf ()

for constants € > 0 and ¢ < 1.

T(n) =0(f(n)

Example Applications of Master Theorem
Example 1: T(n) = 3T (g) + O(n)

Master Theorem Case 1: T(n) = (H)(nlogz 3)

Example 2: T(n) = 7T (g) + O(n?)

Master Theorem Case 1: T(n) = (H)(nlogz 7)

Example 3: T(n) = 2T (g) + O(n)
Master Theorem Case 2: T(n) = ®(nlogn)

Assuming that we have an infinite number of processors, and each
recursive call in example 2 above can be executed in parallel:

Example4:T(n) =T (g) + O(n?)
Master Theorem Case 3: T(n) = ©(n?)

