CSE 548: Analysis of Algorithms

Lecture 6
 (Divide-and-Conquer Algorithms:
 Some Applications of the Fourier Transform
 \& the Master Theorem)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2012

Some Applications of Fourier Transform and FFT

- Signal processing
- Image processing
- Noise reduction
- Data compression
- Solving partial differential equation
- Multiplication of large integers
- Polynomial multiplication
- Molecular docking

Some Applications of Fourier Transform and FFT

Any periodic signal can be represented as a sum of a series of sinusoidal (sine \& cosine) waves. [1807]

Spatial (Time) Domain \Leftrightarrow Frequency Domain

Frequency Domain

Spatial (Time) Domain

Sine Waves

Source: The Scientist and Engineer's Guide to Digital Signal Processing by Steven W. Smith

Spatial (Time) Domain \Leftrightarrow Frequency Domain (Fourier Transforms)

Let $s(t)$ be a signal specified in the time domain.
The strength of $s(t)$ at frequency f is given by:

$$
S(f)=\int_{-\infty}^{\infty} s(t) \cdot e^{-2 \pi i f t} d t
$$

Evaluating this integral for all values of f gives the frequency domain function.

Now $s(t)$ can be retrieved by summing up the signal strengths at all possible frequencies:

$$
s(t)=\int_{-\infty}^{\infty} S(f) \cdot e^{2 \pi i f t} d f
$$

Why do the Transforms Work?

Let's try to get a little intuition behind why the transforms work.
We will look at a very simple example.
Suppose: $s(t)=\cos (2 \pi h \cdot t)$

$$
\begin{aligned}
& \frac{1}{T} \int_{-T}^{T} S(t) \cdot e^{-2 \pi i f t} d t=\left\{\begin{array}{cc}
1+\frac{\sin (4 \pi f T)}{4 \pi f T}, & \text { if } f=h \\
\frac{\sin (2 \pi(h-f) T)}{2 \pi(h-f) T}+\frac{\sin (2 \pi(h+f) T)}{2 \pi(h+f) T}, & \text { otherwise. }
\end{array}\right. \\
& \Rightarrow \lim _{T \rightarrow \infty}\left(\frac{1}{T} \int_{-T}^{T} s(t) \cdot e^{-2 \pi i f t} d t\right)= \begin{cases}1, & \text { if } f=h \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

So, the transform can detect if $f=h$!

Noise Reduction

Source: http://www.mediacy.com/index.aspx?page=AH_FFTExample

Data Compression

- Discrete Cosine Transforms (DCT) are used for lossy data compression (e.g., MP3, JPEG, MPEG)
- DCT is a Fourier-related transform similar to DFT (Discrete Fourier Transform) but uses only real data (uses cosine waves only instead of both cosine and sine waves)
- Forward DCT transforms data from spatial to frequency domain
- Each frequency component is represented using a fewer number of bits (i.e., truncated / quantized)
- Low amplitude high frequency components are also removed
- Inverse DCT then transforms the data back to spatial domain
- The resulting image compresses better

Data Compression

Transformation to frequency domain using cosine transforms work in the same way as the Fourier transform.

Suppose: $s(t)=\cos (2 \pi h \cdot t)$

$$
\frac{1}{T} \int_{-T}^{T} s(t) \cdot \cos (2 \pi f t) d t=\left\{\begin{array}{cl}
1+\frac{\sin (4 \pi f T)}{4 \pi f T}, & \text { if } f=h \\
\frac{\sin (2 \pi(h-f) T)}{2 \pi(h-f) T}+\frac{\sin (2 \pi(h+f) T)}{2 \pi(h+f) T}, & \text { otherwise. }
\end{array}\right.
$$

$$
\Rightarrow \lim _{T \rightarrow \infty}\left(\frac{1}{T} \int_{-T}^{T} s(t) \cdot \cos (2 \pi f t) d t\right)= \begin{cases}1, & \text { if } f=h \\ 0, & \text { otherwise }\end{cases}
$$

So, this transform can also detect if $f=h$.

Protein-Protein Docking

Knowledge of complexes is used in

- Drug design - Structure function analysis
- Studying molecular assemblies - Protein interactions

Protein-Protein Docking: Given two proteins, find the best relative transformation and conformations to obtain a stable complex.

Docking is a hard problem

- Search space is huge (6D for rigid proteins)
- Protein flexibility adds to the difficulty

Shape Complementarity

[Wang'91, Katchalski-Katzir et al.'92, Chen et al.'03]
Molecule A

a possible docking solution
To maximize skin-skin overlaps and minimize core-core overlaps

- assign positive real weights to skin atoms
- assign positive imaginary weights to core atoms

Let A^{\prime} denote molecule A with the pseudo skin atoms.
For $P \in\left\{A^{\prime}, B\right\}$ with M_{P} atoms, affinity function: $f_{P}(x)=\sum_{k=1}^{M_{P}} w_{k} \cdot g_{k}(x)$ Here $g_{k}(x)$ is a Gaussian representation of atom k, and w_{k} its weight.

Shape Complementarity

[Wang'91, Katchalski-Katzir et al.'92, Chen et al.'03]
Molecule A

a possible docking solution
Let A^{\prime} denote molecule A with the pseudo skin atoms.
For $P \in\left\{A^{\prime}, B\right\}$ with M_{P} atoms, affinity function:

$$
f_{P}(x)=\sum_{k=1}^{M_{P}} w_{k} \cdot g_{k}(x)
$$

For rotation r and translation t of molecule B (i.e., $B_{t, r}$), the interaction score, $F_{A, B}(t, r)=\int_{x} f_{A^{\prime}}(x) f_{B_{t, r}}(x) d x$

Shape Complementarity

[Wang'91, Katchalski-Katzir et al.'92, Chen et al.'03]
Molecule A

a possible docking solution
For rotation r and translation t of molecule B (i.e., $B_{t, r}$), the interaction score, $F_{A, B}(t, r)=\int_{x} f_{A^{\prime}}(x) f_{B_{t, r}}(x) d x$
$\operatorname{Re}\left(F_{A, B}(t, r)\right)=$ skin-skin overlap score - core-core overlap score $\operatorname{Im}\left(F_{A, B}(t, r)\right)=$ skin-core overlap score

Docking: Rotational \& Translational Search

Docking: Rotational \& Translational Search

Translational Search using FFT

$$
\forall z \in \Omega=[-n, n]^{3}, \quad h(z)=\int_{x \in \Omega} f_{A^{\prime}}(x) f_{B_{r}}(z-x) d x
$$

The
 Master Theorem

A Useful Recurrence

Consider the following recurrence:

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1 \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise }
\end{array}\right.
$$

where, $a \geq 1$ and $b>1$.
Arises frequently in the analyses of divide-and-conquer algorithms.
Recall the following from recurrences from earlier lectures.
Karatsuba's Algorithm: $T(n)=3 T\left(\frac{n}{2}\right)+\Theta(n)$
Strassen's Algorithm: $T(n)=7 T\left(\frac{n}{2}\right)+\Theta(n)$
Fast Fourier Transform: $T(n)=2 T\left(\frac{n}{2}\right)+\Theta(n)$

How the Recurrence Unfolds

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1 \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise }
\end{array}\right.
$$

How the Recurrence Unfolds

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1 \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise }
\end{array}\right.
$$

$$
\begin{array}{r}
T(n) \\
\downarrow \\
f(n)+a T\left(\frac{n}{b}\right)
\end{array}
$$

How the Recurrence Unfolds

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1 \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise }
\end{array}\right.
$$

How the Recurrence Unfolds

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1 \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise }
\end{array}\right.
$$

How the Recurrence Unfolds

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1 \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise }
\end{array}\right.
$$

How the Recurrence Unfolds

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1 \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise }
\end{array}\right.
$$

How the Recurrence Unfolds

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1 \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise }
\end{array}\right.
$$

How the Recurrence Unfolds

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1 \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise }
\end{array}\right.
$$

How the Recurrence Unfolds

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1 \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise }
\end{array}\right.
$$

How the Recurrence Unfolds: Case 1

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1 \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise }
\end{array}\right.
$$

How the Recurrence Unfolds: Case 2

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1 \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise }
\end{array}\right.
$$

How the Recurrence Unfolds: Case 3

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1 \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise }
\end{array}\right.
$$

The Master Theorem

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1 \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise }(a \geq 1, b>1)
\end{array}\right.
$$

Case 1: $f(n)=\mathrm{O}\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

Case 2: $f(n)=\Theta\left(n^{\log _{b} a} \lg ^{k} n\right)$ for some constant $k \geq 0$.

$$
T(n)=\Theta\left(n^{\log _{b} a} \lg ^{k+1} n\right)
$$

Case 3: $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ and $a f\left(\frac{n}{b}\right) \leq c f(n)$
for constants $\epsilon>0$ and $c<1$.

$$
T(n)=\Theta(f(n))
$$

Example Applications of Master Theorem

Example 1: $T(n)=3 T\left(\frac{n}{2}\right)+\Theta(n)$
Master Theorem Case 1: $T(n)=\Theta\left(n^{\log _{2} 3}\right)$
Example 2: $T(n)=7 T\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right)$
Master Theorem Case 1: $T(n)=\Theta\left(n^{\log _{2} 7}\right)$
Example 3: $T(n)=2 T\left(\frac{n}{2}\right)+\Theta(n)$
Master Theorem Case 2: $T(n)=\Theta(n \log n)$
Assuming that we have an infinite number of processors, and each recursive call in example 2 above can be executed in parallel:
Example 4: $T(n)=T\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right)$
Master Theorem Case 3: $T(n)=\Theta\left(n^{2}\right)$

