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Some Applications of Fourier Transform and FFT

• Signal processing

• Image processing

• Noise reduction

• Data compression

• Solving partial differential equation

• Multiplication of large integers

• Polynomial multiplication

• Molecular docking



Some Applications of Fourier Transform and FFT

Jean Baptiste Joseph Fourier

Any periodic signal can be represented as a sum of a series of 

sinusoidal ( sine & cosine ) waves. [ 1807 ]



Spatial ( Time ) Domain ⇔⇔⇔⇔ Frequency Domain

Spatial ( Time ) Domain

Frequency Domain

Source: The Scientist and Engineer’s Guide to Digital Signal Processing by Steven W. Smith



Spatial ( Time ) Domain ⇔⇔⇔⇔ Frequency Domain

( Fourier Transforms )
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Let � � be a signal specified in the time domain.

The strength of � � at frequency � is given by:

Now � � can be retrieved by summing up the signal strengths 

at all possible frequencies:

Evaluating this integral for all values of � gives the frequency 

domain function.
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Let’s try to get a little intuition behind why the transforms work.

We will look at a very simple example.

Suppose: � � � cos 2+� ⋅ �

Why do the Transforms Work?

⇒	 lim�→� 10� � � ∙ �	
��
��
	� �� � 11, if	� � �,

0, otherwise.
So, the transform can detect if � � �!





Noise Reduction

Source: http://www.mediacy.com/index.aspx?page=AH_FFTExample

FFT
inverse FFT

remove 
noise



Data Compression

− Discrete Cosine Transforms ( DCT ) are used for lossy data 

compression ( e.g., MP3, JPEG, MPEG )

− DCT is a Fourier-related transform similar to DFT ( Discrete 

Fourier Transform ) but uses only real data ( uses cosine waves 

only instead of both cosine and sine waves )

− Forward DCT transforms data from spatial to frequency domain

− Each frequency component is represented using a fewer 

number of bits ( i.e., truncated / quantized)

− Low amplitude high frequency components are also removed

− Inverse DCT then transforms the data back to spatial domain

− The resulting image compresses better



10� � � ∙ cos 2+���
	� �� �

1 � sin 4+�04+�0 , if	� � �,
sin 2+ � 5 � 02+ � 5 � 0 � sin 2+ � � � 02+ � � � 0 , otherwise.

Transformation to frequency domain using cosine transforms 

work in the same way as the Fourier transform.

Suppose: � � � cos 2+� ⋅ �

Data Compression

⇒	 lim�→� 10� � � ∙ cos 2+���
	� �� � 11, if	� � �,

0, otherwise.
So, this transform can also detect if � � �.



Protein-Protein Docking

� Knowledge of complexes is used in

− Drug design

− Studying molecular assemblies

� Protein-Protein Docking: Given two proteins, find the best relative 

transformation and conformations to obtain a stable complex.

� Docking is a hard problem

− Search space is huge ( 6D for rigid proteins )

− Protein flexibility adds to the difficulty

− Structure function analysis

− Protein interactions



Here 67 8 is a Gaussian representation of atom 9, and :7 its weight.

Shape Complementarity
[ Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03 ]

To maximize skin-skin overlaps and minimize core-core overlaps

− assign positive real weights to skin atoms

− assign positive imaginary weights to core atoms

For P ∈ {A′, B} with MP atoms, affinity function: �; 8 � ∑ :7 ⋅ 67 8=>7?�
Let A′ denote molecule A with the pseudo skin atoms.



For rotation @ and translation � of molecule A ( i.e., A�,B ), 

the interaction score, CD,E �, @ � � �DF 8 �EG,H 8I �8

For P ∈ {A′, B} with MP atoms, affinity function:

Let A′ denote molecule A with the pseudo skin atoms.

�; 8 � ∑ :7 ⋅ 67 8=>7?�

Shape Complementarity
[ Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03 ]



For rotation @ and translation � of molecule A ( i.e., A�,B ), 

the interaction score, CD,E �, @ � � �DF 8 �EG,H 8I �8
J� CD,E �, @ � skin-skin overlap score  – core-core overlap scoreKL CD,E �, @ � skin-core overlap score

Shape Complementarity
[ Wang’91, Katchalski-Katzir et al.’92, Chen et al.’03 ]



Docking: Rotational & Translational Search



Docking: Rotational & Translational Search



Forward

Translational Search using FFT
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discretize
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FFT

multiply frequency maps

MA’ atoms
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The

Master Theorem



A Useful Recurrence

Consider the following recurrence:

0 P � RΘ 1 , 																							S�	P T 1,U0 PV � � P , W���@:S��;
where, U Y 1 and V Z 1.
Arises frequently in the analyses of divide-and-conquer algorithms.

Recall the following from recurrences from earlier lectures.

Karatsuba’s Algorithm: 0 P � 30 \
 �Θ P
Strassen’s Algorithm: 0 P � 70 \
 �Θ P
Fast Fourier Transform: 0 P � 20 \
 �Θ P



How the Recurrence Unfolds

0 P � RΘ 1 , 																							S�	P T 1,U0 PV � � P , W���@:S��.



How the Recurrence Unfolds

^ _
` _ 	� 		a^ _b

0 P � RΘ 1 , 																							S�	P T 1,U0 PV � � P , W���@:S��.



How the Recurrence Unfolds

^ _
` _ 	� 		a^ _ba

0 P � RΘ 1 , 																							S�	P T 1,U0 PV � � P , W���@:S��.



How the Recurrence Unfolds

^ _
` _ 	� 		a^ _b

` _b 	� 	a^ _bc ` _b 	� 	a^ _bc ` _b 	� 	a^ _bc
a

0 P � RΘ 1 , 																							S�	P T 1,U0 PV � � P , W���@:S��.

… 



How the Recurrence Unfolds

^ _

… 

` _ 	� 		a^ _b
` _b 	� 	a^ _bc ` _b 	� 	a^ _bc ` _b 	� 	a^ _bc

a
aa a

0 P � RΘ 1 , 																							S�	P T 1,U0 PV � � P , W���@:S��.



How the Recurrence Unfolds

^ _

… 

` _ 	� 		a^ _b
` _b 	� 	a^ _bc ` _b 	� 	a^ _bc ` _b 	� 	a^ _bc

` _bc 	� 	a^ _bd ` _bc 	� 	a^ _bd… 

a
aa a

0 P � RΘ 1 , 																							S�	P T 1,U0 PV � � P , W���@:S��.



How the Recurrence Unfolds

^ _

… 

` _ 	� 		a^ _b
` _b 	� 	a^ _bc ` _b 	� 	a^ _bc ` _b 	� 	a^ _bc

` _bc 	� 	a^ _bd ` _bc 	� 	a^ _bd… 

a
aa a

a a

0 P � RΘ 1 , 																							S�	P T 1,U0 PV � � P , W���@:S��.



How the Recurrence Unfolds

^ _

… 

` _ 	� 		a^ _b
` _b 	� 	a^ _bc ` _b 	� 	a^ _bc ` _b 	� 	a^ _bc

` _bc 	� 	a^ _bd ` _bc 	� 	a^ _bd… 

a
aa a

a a
^ e^ e …

…

0 P � RΘ 1 , 																							S�	P T 1,U0 PV � � P , W���@:S��.



` _
a` _b

ac` _bc

afghb_	^ e� Θ _fghba	

…
 

How the Recurrence Unfolds

^ _

… 

` _ 	� 		a^ _b
` _b 	� 	a^ _bc ` _b 	� 	a^ _bc ` _b 	� 	a^ _bc

` _bc 	� 	a^ _bd ` _bc 	� 	a^ _bd… 

a
aa a

a a
^ e^ e …

…

0 P � RΘ 1 , 																							S�	P T 1,U0 PV � � P , W���@:S��.

fghb_



` _
a` _b

ac` _bc

afghb_	^ e� Θ _fghba	

…
 

How the Recurrence Unfolds: Case 1

^ _

… 

` _ 	� 		a^ _b
` _b 	� 	a^ _bc ` _b 	� 	a^ _bc ` _b 	� 	a^ _bc

` _bc 	� 	a^ _bd ` _bc 	� 	a^ _bd… 

a
aa a

a a
^ e^ e …

…

0 P � RΘ 1 , 																							S�	P T 1,U0 PV � � P , W���@:S��.

fghb_
Sums Geometrically Increase

Level by Level.

� P � Ο PlogjU	_	l	
for some constant l Z 0.

^ _ � Θ _fghba	
Last Level Dominates.
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ac` _bc

afghb_	^ e� Θ _fghba	
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How the Recurrence Unfolds: Case 2

^ _

… 

` _ 	� 		a^ _b
` _b 	� 	a^ _bc ` _b 	� 	a^ _bc ` _b 	� 	a^ _bc

` _bc 	� 	a^ _bd ` _bc 	� 	a^ _bd… 

a
aa a

a a
^ e^ e …

…

0 P � RΘ 1 , 																							S�	P T 1,U0 PV � � P , W���@:S��.

fghb_ Sums Arithmetically Increase

Level by Level.

� P � Θ PlogjU	lg9P
for some constant 9 Y 0.

^ _ � Θ _fghba	fhm+e_
No Level Dominates.
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ac` _bc

afghb_	^ e� Θ _fghba	

…
 

How the Recurrence Unfolds: Case 3

^ _

… 

` _ 	� 		a^ _b
` _b 	� 	a^ _bc ` _b 	� 	a^ _bc ` _b 	� 	a^ _bc

` _bc 	� 	a^ _bd ` _bc 	� 	a^ _bd… 

a
aa a

a a
^ e^ e …

…

0 P � RΘ 1 , 																							S�	P T 1,U0 PV � � P , W���@:S��.

fghb_ Sums Geometrically decrease

Level by Level.

� P � Ω PlogjU	+	l	 & U� \j T n� P
for constants l Z 0 & n o 1.

First Level 

Dominates.

^ _ � Θ ` _



0 P � RΘ 1 , 																																																		S�	P T 1,U0 PV � � P , W���@:S��	 U Y 1, V Z 1 .
Case 1: � P � Ο PlogjU	_	l	 for some constant l Z 0

0 P � Θ PlogjU	
Case 2: � P � Θ PlogjU	lg9P for some constant 9 Y 0.

0 P � Θ PlogjU	lg9+1P
Case 3: � P � Ω PlogjU	+	l	 and U� \j T n� P 	

for constants l Z 0 and n o 1.
0 P � Θ � P

The Master Theorem



Example Applications of Master Theorem

Example 1: 0 P � 30 \
 �Θ P
Master Theorem Case 1: 0 P � Θ Ppqrs Q

Example 2: 0 P � 70 \
 �Θ P

Master Theorem Case 1: 0 P � Θ Ppqrs t

Example 3: 0 P � 20 \
 �Θ P
Master Theorem Case 2: 0 P � Θ Plog P

Assuming that we have an infinite number of processors, and each 

recursive call in example 2 above can be executed in parallel:

Example 4: 0 P � 0 \
 �Θ P

Master Theorem Case 3: 0 P � Θ P



