
CSE 548: Analysis of Algorithms

Lectures 14 & 15

(Dijkstra’s SSSP & Fibonacci Heaps)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2012

Fibonacci Heaps
(Fredman & Tarjan, 1984)

Heap Operation
Binary Heap

(worst-case)

Binomial Heap

(amortized)

MAKE-HEAP Θ 1 Θ 1
INSERT Ο log � Θ 1
MINIMUM Θ 1 Θ 1
EXTRACT-MIN Ο log � Ο log �
UNION Θ � Θ 1
DECREASE-KEY Ο log � �
DELETE Ο log � �

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

Fibonacci Heaps
(Fredman & Tarjan, 1984)

Heap Operation
Binary Heap

(worst-case)

Binomial Heap

(amortized)

MAKE-HEAP Θ 1 Θ 1
INSERT Ο log � Θ 1
MINIMUM Θ 1 Θ 1
EXTRACT-MIN Ο log � Ο log �
UNION Θ � Θ 1
DECREASE-KEY Ο log � Ο log �

(worst case)

DELETE Ο log � Ο log �
(worst case)

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

Fibonacci Heaps
(Fredman & Tarjan, 1984)

Heap Operation
Binary Heap

(worst-case)

Binomial Heap

(amortized)

Fibonacci Heap

(amortized)

MAKE-HEAP Θ 1 Θ 1 Θ 1
INSERT Ο log � Θ 1 Θ 1
MINIMUM Θ 1 Θ 1 Θ 1
EXTRACT-MIN Ο log � Ο log � Ο log �
UNION Θ � Θ 1 Θ 1
DECREASE-KEY Ο log � Ο log �

(worst case)
Θ 1

DELETE Ο log � Ο log �
(worst case)

Ο log �

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (� � 	, � , �,
)
1. for each � ∈ � 	 do �. � ← ∞
2.
. � ← 0
3. � ← � { empty min-heap }

4. for each � ∈ � 	 do INSERT(�, �)

5. while � � ∅ do

6. � ← EXTRACT-MIN(�)

7. for each � ∈ ��� � do

8. if �. � � �. � � ��,� then
9. DECREASE-KEY(�, �, �. � � ��,�)

10. �. � ← �. � � ��,�

Input: Weighted graph � � 	, � with vertex set 	 and edge set �, a

weight function �, and a source vertex
 ∈ � 	 .

Output: For all � ∈ � 	 , �. � is set to the shortest distance from
 to �.

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (� � 	, � , �,
)
1. for each � ∈ � 	 do �. � ← ∞
2.
. � ← 0
3. � ← � { empty min-heap }

4. for each � ∈ � 	 do INSERT(�, �)

5. while � � ∅ do

6. � ← EXTRACT-MIN(�)

7. for each � ∈ ��� � do

8. if �. � � �. � � ��,� then
9. DECREASE-KEY(�, �, �. � � ��,�)

10. �. � ← �. � � ��,�

Input: Weighted graph � � 	, � with vertex set 	 and edge set �, a

weight function �, and a source vertex
 ∈ � 	 .

Output: For all � ∈ � 	 , �. � is set to the shortest distance from
 to �.

Let � � � 	 and � � �
INSERTS � �
EXTRACT-MINS � �
DECREASE-KEYS!
Total cost! 	� #$
%&'()*+ � #$
%,-+*./+012'�	 #$
%3)/*).()04)5

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (� � 	, � , �,
)
1. for each � ∈ � 	 do �. � ← ∞
2.
. � ← 0
3. � ← � { empty min-heap }

4. for each � ∈ � 	 do INSERT(�, �)

5. while � � ∅ do

6. � ← EXTRACT-MIN(�)

7. for each � ∈ ��� � do

8. if �. � � �. � � ��,� then
9. DECREASE-KEY(�, �, �. � � ��,�)

10. �. � ← �. � � ��,�

Input: Weighted graph � � 	, � with vertex set 	 and edge set �, a

weight function �, and a source vertex
 ∈ � 	 .

Output: For all � ∈ � 	 , �. � is set to the shortest distance from
 to �.

Let � � � 	 and � � �
For Binary Heap (worst-case costs):#$
%&'()*+ � Ο log � 	#$
%,-+*./+012' � Ο log �#$
%3)/*).()04)5 � Ο log �
∴ Total cost (worst-case) � Ο � � log�

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (� � 	, � , �,
)
1. for each � ∈ � 	 do �. � ← ∞
2.
. � ← 0
3. � ← � { empty min-heap }

4. for each � ∈ � 	 do INSERT(�, �)

5. while � � ∅ do

6. � ← EXTRACT-MIN(�)

7. for each � ∈ ��� � do

8. if �. � � �. � � ��,� then
9. DECREASE-KEY(�, �, �. � � ��,�)

10. �. � ← �. � � ��,�

Input: Weighted graph � � 	, � with vertex set 	 and edge set �, a

weight function �, and a source vertex
 ∈ � 	 .

Output: For all � ∈ � 	 , �. � is set to the shortest distance from
 to �.

Let � � � 	 and � � �
For Binomial Heap (amortized costs):#$
%&'()*+ � Ο 1 	#$
%,-+*./+012' � Ο log �#$
%3)/*).()04)5 � Ο log �

(worst-case)

∴ Total cost (worst-case) � Ο � � log�

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (� � 	, � , �,
)
1. for each � ∈ � 	 do �. � ← ∞
2.
. � ← 0
3. � ← � { empty min-heap }

4. for each � ∈ � 	 do INSERT(�, �)

5. while � � ∅ do

6. � ← EXTRACT-MIN(�)

7. for each � ∈ ��� � do

8. if �. � � �. � � ��,� then
9. DECREASE-KEY(�, �, �. � � ��,�)

10. �. � ← �. � � ��,�

Input: Weighted graph � � 	, � with vertex set 	 and edge set �, a

weight function �, and a source vertex
 ∈ � 	 .

Output: For all � ∈ � 	 , �. � is set to the shortest distance from
 to �.

Let � � � 	 and � � �
Total cost! 	� #$
%&'()*+ � #$
%,-+*./+012'�	 #$
%3)/*).()04)5
Observation:

Obtaining a worst-case bound for a

sequence of � INSERTS, � EXTRACT-MINS

and DECREASE-KEYS is enough.∴ Amortized bound per operation is

sufficient.

Dijkstra’s SSSP Algorithm with a Min-Heap
(SSSP: Single-Source Shortest Paths)

Dijkstra-SSSP (� � 	, � , �,
)
1. for each � ∈ � 	 do �. � ← ∞
2.
. � ← 0
3. � ← � { empty min-heap }

4. for each � ∈ � 	 do INSERT(�, �)

5. while � � ∅ do

6. � ← EXTRACT-MIN(�)

7. for each � ∈ ��� � do

8. if �. � � �. � � ��,� then
9. DECREASE-KEY(�, �, �. � � ��,�)

10. �. � ← �. � � ��,�

Input: Weighted graph � � 	, � with vertex set 	 and edge set �, a

weight function �, and a source vertex
 ∈ � 	 .

Output: For all � ∈ � 	 , �. � is set to the shortest distance from
 to �.

Let � � � 	 and � � �
Total cost! 	� #$
%&'()*+ � #$
%,-+*./+012'�	 #$
%3)/*).()04)5
Observation:

For � #$
%&'()*+ � #$
%,-+*./+012' 	
the best possible bound is Θ � log � .

(else violates sorting lower bound)

Perhaps #$
%3)/*).()04)5 can be

improved to o log � .

Fibonacci Heaps from Binomial Heaps

A Fibonacci heap can be viewed as an extension of Binomial heaps

which supports DECREASE-KEY and DELETE operations efficiently.

But the trees in a Fibonacci heap are no longer binomial trees as we

will be cutting subtrees out of them.

However, all operations (except DECREASE-KEY and DELETE) are still

performed in the same way as in binomial heaps.

The rank of a tree is still defined as the number of children of the root,

and we still link two trees if they have the same rank.

Implementing DECREASE-KEY7	8, 9, :	;
DECREASE-KEY(8,9, :): One possible approach is to cut out the

subtree rooted at < from �, reduce the value of < to =, and insert that

subtree into the root list of �.

Problem: If we cut out a lot of subtrees from a tree its size will no

longer be exponential in its rank. Since our analysis of EXTRACT-MIN in

binomial heaps was highly dependent on this exponential relationship,

that analysis will no longer hold.

Solution: Limit #cuts among the children of any node to 2. We will

show that the size of each tree will still remain exponential in its rank.

When a 2nd child is cut from a node <, we also cut < from its parent

leading to a possible sequence of cuts moving up towards the root.

Analysis of Fibonacci Heap Operations

>' � ? 0 @>	� � 0,1 @>	� � 1,>'0A � >'0B $%CDE�@
D.Recurrence for Fibonacci numbers:

We showed in a pervious lecture: >' � AF �' � �G' ,

where � � AH FB and �G � AH FB 	 are the roots IB � I � 1 � 0.

Lemma 1: For all integers � J 0, >'HB � 1 � ∑ >2'2LM .

Inductive hypothesis: >NHB � 1 � ∑ >2N2LM for 0 ! = ! � � 1.

Then >'HB � >'HA � >' � >' � 1 � ∑ >2'0A2LM � 1 � ∑ >2'2LM .

Proof: By induction on �.

Base case: >B � 1 � 1 � 0 � 1 � >M � 1 � ∑ >2'2LM .

Analysis of Fibonacci Heap Operations

Lemma 2: For all integers � J 0, >'HB J �'.

Inductive hypothesis: >NHB J �N for 0 ! = ! � � 1.

Then >'HB � >'HA � >'J �'0A � �'0B� � � 1 �'0B� �B�'0B� �'

Proof: By induction on �.

Base case: >B � 1 � �M and >O � 2 � �A.

Analysis of Fibonacci Heap Operations

Lemma 3: Let < be any node in a Fibonacci heap, and suppose that = � EQ�= < . Let RA, RB, … , RN be the children of < in the order in

which they were linked to <, from the earliest to the latest. Then EQ�= R2 J max 0, @ � 2 for 1 ! @ ! =.

Proof: Obviously, EQ�= RA J 0.

For @ � 1, when R2 was linked to <, all of RA, RB, … , R20A were children

of <. So, EQ�= < J @ � 1.

Because R2 is linked to < only if EQ�= R2 � EQ�= < , we must have

had EQ�= R2 J @ � 1 at that time.

Since then, R2 has lost at most one child, and hence EQ�= R2 J @ � 2.

<
RARBRORN0ARN

Analysis of Fibonacci Heap Operations

Lemma 4: Let I be any node in a Fibonacci heap with � �
@ID I and E � EQ�= I . Then E ! logW �.

Proof: Let
N be the minimum possible size of any node of rank = in

any Fibonacci heap.

Trivially,
M � 1 and
A � 2.

Since adding children to a node cannot decrease its size,
N increases

monotonically with =.

Let < be a node in any Fibonacci heap with EQ�= < � E and
@ID < �
*.

Analysis of Fibonacci Heap Operations

Proof (continued): Let RA, RB, … , R* be the children of < in the order

in which they were linked to <, from the earliest to the latest.

Then
* J 1 � ∑
*.'N 5X*2LA J 1 � ∑
YZ[M,20B*2LA � 2 � ∑
20B*2LB
We now show by induction on E that
* J >*HB for all integer E J 0.

Base case:
M � 1 � >B and
A � 2 � >O.

Inductive hypothesis:
N J >NHB for 0 ! = ! E � 1.

Then
* J 2 � ∑
20B*2LB J 2 � ∑ >2*2LB � 1 � ∑ >2*2LA � >*HB.
Hence � J
* J >*HB J �* ⇒ E ! logW � .

Lemma 4: Let I be any node in a Fibonacci heap with � �
@ID I and E � EQ�= I . Then E ! logW �.

Analysis of Fibonacci Heap Operations

Proof: Let I be any node in the heap.

Then from Lemma 4, 							�D]EDD I � EQ�= I ! logW
@ID I ! logW � � Ο log � .

Corollary: The maximum degree of any node in an � node Fibonacci

heap is Ο log � .

Analysis of Fibonacci Heap Operations

We extend the potential function used for binomial heaps:

Φ _2 � 2% _2 � 3 _2 ,

where _2 is the state of the data structure after the @+a operation,% _2 is the number of trees in the root list, and _2 is the number of marked nodes.

Analysis of Fibonacci Heap Operations

We mark a node when

− it loses its first child

We unmark a node when

− it loses its second child, or

− becomes the child of another node (e.g., LINKed)

All nodes are initially unmarked.

∴ overall actual cost, #2 � 1 � =

DECREASE-KEY(8, 9, :9): Let = � #cascading cuts performed.

We extend the potential function used for binomial heaps:

Φ _2 � 2% _2 � 3 _2 ,

where _2 is the state of the data structure after the @+a operation,% _2 is the number of trees in the root list, and _2 is the number of marked nodes.

Then the actual cost of cutting the tree rooted at < is 1, and

the actual cost of each of the cascading cuts is also 1.

Analysis of Fibonacci Heap Operations

Fibonacci Heaps from Binomial Heaps

∴ % _2 � % _20A � 1 � =

DECREASE-KEY(8, 9, :9):

Potential function: Φ _2 � 2% _2 � 3 _2
New trees: 1 tree rooted at <, and

1 tree produced by each of the = cascading cuts.

∴ _2 � _20A ! �= � 1
Marked nodes: 1 node unmarked by each cascading cut, and

at most 1 node marked by the last cut/cascading cut.

Potential drop, Δ2 � Φ _2 �Φ _20A� 2 % _2 � % _20A � 3 _2 � _20A! 2 1 � = � 3 �= � 1� �= � 5

Fibonacci Heaps from Binomial Heaps

Amortized cost, #̂2 � #2 � Δ2! 1 � = � �= � 5� 6� Ο 1

Potential function: Φ _2 � 2% _2 � 3 _2
DECREASE-KEY(8, 9, :9):

Fibonacci Heaps from Binomial Heaps

Potential function: Φ _2 � 2% _2 � 3 _2
EXTRACT-MIN(8):

Let �' be the max degree of any node in an �-node Fibonacci heap.

Cost of creating the array of pointers is ! �' �1.

Suppose we start with = trees in the doubly linked list, and perform f
link operations during the conversion from linked list to array version.

So we perform = � f work, and end up with = � f trees.

Cost of converting to the linked list version is = � f.
actual cost, #2 ! �' � 1 � = � f � = � f � 2= � �' � 1
Since no node is marked, and each link reduces the #trees by 1,

potential change, Δ2 � Φ _2 �Φ _20A J �2f

Fibonacci Heaps from Binomial Heaps

Potential function: Φ _2 � 2% _2 � 3 _2
EXTRACT-MIN(8):

actual cost, #2 ! �' � 1 � = � f � = � f � 2= � �' � 1
potential change, Δ2 � Φ _2 �Φ _20A J �2f
amortized cost, #̂2 � #2 � Δ2 ! 2 = � f � �' � 1
But = � f ! �' � 1 (as we have at most one tree of each rank)

So, #̂2 ! 3�' � 3 � Ο log � .

Fibonacci Heaps from Binomial Heaps

Potential function: Φ _2 � 2% _2 � 3 _2
DELETE(8,9):

STEP 1: DECREASE-KEY(�, <,�∞)

STEP 2: EXTRACT-MIN(�)

amortized cost, #̂2 � amortized cost of DECREASE-KEY� amortized cost of EXTRACT-MIN� Ο 1 �Ο log �� Ο log �

