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Fibonacci Heaps
( Fredman & Tarjan, 1984 )

Heap Operation
Binary Heap

( worst-case )

Binomial Heap

( amortized )

MAKE-HEAP Θ 1 Θ 1
INSERT Ο log � Θ 1
MINIMUM Θ 1 Θ 1
EXTRACT-MIN Ο log � Ο log �
UNION Θ � Θ 1
DECREASE-KEY Ο log � �
DELETE Ο log � �

A Fibonacci heap can be viewed as an extension of Binomial heaps 

which supports DECREASE-KEY and DELETE operations efficiently.
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Dijkstra’s SSSP Algorithm with a Min-Heap
( SSSP: Single-Source Shortest Paths )

Dijkstra-SSSP ( � � 	, � , �, 
 )
1. for each � ∈ � 	 do �. � ← ∞
2. 
. � ← 0
3. � ← � { empty min-heap }

4. for each � ∈ � 	 do INSERT( �, � )

5. while � � ∅ do

6. � ← EXTRACT-MIN( � )

7. for each � ∈ ��� � do

8. if �. � � �. � � ��,� then
9. DECREASE-KEY( �, �, �. � � ��,� )

10. �. � ← �. � � ��,�

Input: Weighted graph � � 	, � with vertex set 	 and edge set �, a 

weight function �, and a source vertex 
 ∈ � 	 . 

Output: For all � ∈ � 	 , �. � is set to the shortest distance from 
 to �.
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# INSERTS � �
# EXTRACT-MINS � �
# DECREASE-KEYS!  
Total cost! 	� #$
%&'()*+ � #$
%,-+*./+012'�	 #$
%3)/*).()04)5
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%,-+*./+012' � Ο log �#$
%3)/*).()04)5 � Ο log �
∴ Total cost ( worst-case ) � Ο  � � log�
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Total cost! 	� #$
%&'()*+ � #$
%,-+*./+012'�	 #$
%3)/*).()04)5
Observation:

Obtaining a worst-case bound for a 

sequence of � INSERTS, � EXTRACT-MINS

and  DECREASE-KEYS is enough.∴ Amortized bound per operation is 

sufficient.
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Dijkstra-SSSP ( � � 	, � , �, 
 )
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Total cost! 	� #$
%&'()*+ � #$
%,-+*./+012'�	 #$
%3)/*).()04)5
Observation:

For � #$
%&'()*+ � #$
%,-+*./+012' 	
the best possible bound is Θ � log � . 

( else violates sorting lower bound ) 

Perhaps  #$
%3)/*).()04)5 can be 

improved to o  log � .



Fibonacci Heaps from Binomial Heaps

A Fibonacci heap can be viewed as an extension of Binomial heaps 

which supports DECREASE-KEY and DELETE operations efficiently.

But the trees in a Fibonacci heap are no longer binomial trees as we 

will be cutting subtrees out of them.

However, all operations ( except DECREASE-KEY and DELETE ) are still 

performed in the same way as in binomial heaps. 

The rank of a tree is still defined as the number of children of the root, 

and we still link two trees if they have the same rank.



Implementing DECREASE-KEY7	8, 9, :	;
DECREASE-KEY( 8,9, : ): One possible approach is to cut out the 

subtree rooted at < from �, reduce the value of < to =, and insert that 

subtree into the root list of �. 

Problem: If we cut out a lot of subtrees from a tree its size will no 

longer be exponential in its rank. Since our analysis of EXTRACT-MIN in 

binomial heaps was highly dependent on this exponential relationship, 

that analysis will no longer hold.

Solution: Limit #cuts among the children of any node to 2. We will 

show that the size of each tree will still remain exponential in its rank. 

When a 2nd child is cut from a node <, we also cut < from its parent 

leading to a possible sequence of cuts moving up towards the root.



Analysis of Fibonacci Heap Operations

>' � ? 0 @>	� � 0,1 @>	� � 1,>'0A � >'0B $%CDE�@
D.Recurrence for Fibonacci numbers:

We showed in a pervious lecture:  >' � AF �' � �G' ,

where � � AH FB and �G � AH FB 	 are the roots IB � I � 1 � 0.



Lemma 1: For all integers � J 0, >'HB � 1 � ∑ >2'2LM .

Inductive hypothesis:  >NHB � 1 � ∑ >2N2LM for 0 ! = ! � � 1.

Then >'HB � >'HA � >' � >' � 1 � ∑ >2'0A2LM � 1 � ∑ >2'2LM .

Proof: By induction on �. 

Base case: >B � 1 � 1 � 0 � 1 � >M � 1 � ∑ >2'2LM .

Analysis of Fibonacci Heap Operations



Lemma 2: For all integers � J 0, >'HB J �'.

Inductive hypothesis:  >NHB J �N for 0 ! = ! � � 1.

Then >'HB � >'HA � >'J �'0A � �'0B� � � 1 �'0B� �B�'0B� �'

Proof: By induction on �. 

Base case: >B � 1 � �M and >O � 2 � �A.

Analysis of Fibonacci Heap Operations



Lemma 3: Let < be any node in a Fibonacci heap, and suppose that = � EQ�= < .  Let RA, RB, … , RN be the children of < in the order in 

which they were linked to <, from the earliest to the latest. Then EQ�= R2 J max 0, @ � 2 for 1 ! @ ! =.

Proof: Obviously, EQ�= RA J 0. 

For @ � 1, when R2 was linked to <, all of RA, RB, … , R20A were children 

of <. So, EQ�= < J @ � 1. 

Because R2 is linked to < only if EQ�= R2 � EQ�= < , we must have 

had EQ�= R2 J @ � 1 at that time.

Since then, R2 has lost at most one child, and hence EQ�= R2 J @ � 2.

<
RARBRORN0ARN

Analysis of Fibonacci Heap Operations



Lemma 4: Let I be any node in a Fibonacci heap with � � 
@ID I and E � EQ�= I . Then E ! logW �.

Proof: Let 
N be the minimum possible size of any node of rank = in 

any Fibonacci heap. 

Trivially, 
M � 1 and 
A � 2.

Since adding children to a node cannot decrease its size, 
N increases 

monotonically with =.

Let < be a node in any Fibonacci heap with EQ�= < � E and 
@ID < � 
*.

Analysis of Fibonacci Heap Operations



Proof ( continued ): Let RA, RB, … , R* be the children of < in the order 

in which they were linked to <, from the earliest to the latest. 

Then 
* J 1 � ∑ 
*.'N 5X*2LA J 1 � ∑ 
YZ[ M,20B*2LA � 2 � ∑ 
20B*2LB
We now show by induction on E that 
* J >*HB for all integer E J 0.

Base case: 
M � 1 � >B and 
A � 2 � >O.

Inductive hypothesis:  
N J >NHB for 0 ! = ! E � 1.

Then 
* J 2 � ∑ 
20B*2LB J 2 � ∑ >2*2LB � 1 � ∑ >2*2LA � >*HB.
Hence � J 
* J >*HB J �* ⇒ E ! logW � .

Lemma 4: Let I be any node in a Fibonacci heap with � � 
@ID I and E � EQ�= I . Then E ! logW �.

Analysis of Fibonacci Heap Operations



Proof: Let I be any node in the heap. 

Then from Lemma 4, 							�D]EDD I � EQ�= I ! logW 
@ID I ! logW � � Ο log � .

Corollary: The maximum degree of any node in an � node Fibonacci 

heap is Ο log � .

Analysis of Fibonacci Heap Operations



We extend the potential function used for binomial heaps:

Φ _2 � 2% _2 � 3 _2 ,

where _2 is the state of the data structure after the @+a operation,% _2 is the number of trees in the root list, and _2 is the number of marked nodes. 

Analysis of Fibonacci Heap Operations

We mark a node when

− it loses its first child

We unmark a node when

− it loses its second child, or

− becomes the child of another node ( e.g., LINKed )

All nodes are initially unmarked.



∴ overall actual cost, #2 � 1 � =

DECREASE-KEY( 8, 9, :9 ): Let = � #cascading cuts performed. 

We extend the potential function used for binomial heaps:

Φ _2 � 2% _2 � 3 _2 ,

where _2 is the state of the data structure after the @+a operation,% _2 is the number of trees in the root list, and _2 is the number of marked nodes. 

Then the actual cost of cutting the tree rooted at < is 1, and

the actual cost of each of the cascading cuts is also 1.

Analysis of Fibonacci Heap Operations



Fibonacci Heaps from Binomial Heaps

∴ % _2 � % _20A � 1 � =

DECREASE-KEY( 8, 9, :9 ):

Potential function: Φ _2 � 2% _2 � 3 _2
New trees: 1 tree rooted at <, and

1 tree produced by each of the = cascading cuts.

∴  _2 � _20A ! �= � 1
Marked nodes: 1 node unmarked by each cascading cut, and

at most 1 node marked by the last cut/cascading cut.

Potential drop, Δ2 � Φ _2 �Φ _20A� 2 % _2 � % _20A � 3  _2 � _20A! 2 1 � = � 3 �= � 1� �= � 5



Fibonacci Heaps from Binomial Heaps

Amortized cost, #̂2 � #2 � Δ2! 1 � = � �= � 5� 6� Ο 1

Potential function: Φ _2 � 2% _2 � 3 _2
DECREASE-KEY( 8, 9, :9 ):



Fibonacci Heaps from Binomial Heaps

Potential function: Φ _2 � 2% _2 � 3 _2
EXTRACT-MIN( 8 ):

Let �' be the max degree of any node in an �-node Fibonacci heap. 

Cost of creating the array of pointers is ! �' �1.

Suppose we start with = trees in the doubly linked list, and perform f
link operations during the conversion from linked list to array version.  

So we perform = � f work, and end up with = � f trees.

Cost of converting to the linked list version is = � f.
actual cost, #2 ! �' � 1 � = � f � = � f � 2= � �' � 1
Since no node is marked, and each link reduces the #trees by 1,

potential change, Δ2 � Φ _2 �Φ _20A J �2f



Fibonacci Heaps from Binomial Heaps

Potential function: Φ _2 � 2% _2 � 3 _2
EXTRACT-MIN( 8 ):

actual cost, #2 ! �' � 1 � = � f � = � f � 2= � �' � 1
potential change, Δ2 � Φ _2 �Φ _20A J �2f
amortized cost, #̂2 � #2 � Δ2 ! 2 = � f � �' � 1
But  = � f ! �' � 1 ( as we have at most one tree of each rank )

So, #̂2 ! 3�' � 3 � Ο log � .



Fibonacci Heaps from Binomial Heaps

Potential function: Φ _2 � 2% _2 � 3 _2
DELETE( 8,9 ):

STEP 1: DECREASE-KEY( �, <,�∞)

STEP 2: EXTRACT-MIN( � )

amortized cost, #̂2 � amortized cost of DECREASE-KEY� amortized cost of EXTRACT-MIN� Ο 1 �Ο log �� Ο log �


