CSE 548: Analysis of Algorithms

Lectures 16, 17 & 18 (The α Technique)

Inspiration Comes from Lectures Given by Jeff Erickson, Seth Pettie, Vijaya Ramachandran and Raimund Seidel

Rezaul A. Chowdhury

Department of Computer Science SUNY Stony Brook Fall 2012

Iterated Functions

$$f^*(n) = \begin{cases} 0 & \text{if } n \le 1\\ 1 + f^*(f(n)) & \text{if } n > 1 \end{cases}$$

$$= \min\left\{i \ge 0: \underbrace{f\left(f(f(\dots f(n) \dots))\right)}_{i \text{ times}} \le 1\right\}$$
$$= \min\{i \ge 0: f^{(i)}(n) \le 1\},$$

where
$$f^{(i)}(n) = \begin{cases} n & \text{if } i = 0 \\ f(f^{(i-1)}(n)) & \text{if } i > 0 \end{cases}$$

Example: If $f = \log$, we have:

$$log^{(0)}(65536) = 65536 \qquad log^{(3)}(65536) = 2$$

$$log^{(1)}(65536) = 16 \qquad log^{(4)}(65536) = 1$$

$$log^{(2)}(65536) = 4 \qquad \therefore log^{*}(65536) = 4$$

Iterated Functions

f(n)	$f^*(n)$
n - 1	n - 1
<i>n</i> – 2	$\frac{n}{2}$
n-c	$\frac{n}{c}$
$\frac{n}{2}$	$\log_2 n$
$\frac{n}{c}$	$\log_c n$
\sqrt{n}	log log n
$\log n$	$\log^* n$

The Inverse Ackermann Function: $\alpha(n)$

	f(n)	$f^*(n)$	
	$\log n$	$\log^* n$	> 3
	$\log^* n$	$\log^{**} n$	> 3
	$\log^{**} n$	$\log^{***} n$	> 3
$k = \alpha(n)$			
rows			
	$\log^{\frac{k-2}{*\cdots*}} n$	$\log^{\frac{k-1}{*\cdots*}}n$	> 3
	$\log^{\frac{k-1}{*\cdots*}} n$	$\log^{\stackrel{k}{\widetilde{\ast\cdots\ast}}} n$	≤ 3
	$\alpha(n) = \min\left\{k \ge 1: l\right\}$	$\log^{\frac{k}{*\cdots*}}n \leq 3$	}

Union-Find: A Disjoint-Set Data Structure

Disjoint Set Operations

A *disjoint-set data structure* maintains a collection of disjoint dynamic sets. Each set is identified by a *representative* which must be a member of the set.

The collection is maintained under the following operations:

MAKE-SET(x): create a new set $\{x\}$ containing only element x. Element x becomes the representative of the set.

FIND(x): returns a pointer to the representative of the set containing x

UNION(x, y): replace the dynamic sets S_x and S_y containing x and y, respectively, with the set $S_x \cup S_y$

<u> Union-Find Data Structure</u>

with Union by Rank and Find with Path Compression

MAKE-SET (x) 1. $\pi(x) \leftarrow x$ 2. $rank(x) \leftarrow 0$

LINK (x, y)

- 1. *if* rank(x) > rank(y) *then* $\pi(y) \leftarrow x$
- 2. else $\pi(x) \leftarrow y$
- 3. if rank(x) = rank(y) then $rank(y) \leftarrow rank(y) + 1$

UNION (x, y)

1. LINK (FIND (x), FIND (y))

FIND (x)

- 1. if $x \neq \pi(x)$ then $\pi(x) \leftarrow F$ IND $(\pi(x))$
- 2. return $\pi(x)$

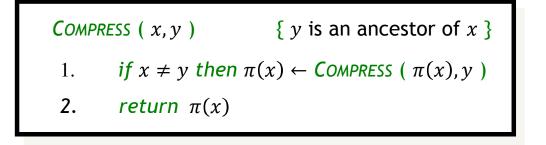
Some Useful Properties of Rank

- If x is not a root then $rank(x) < rank(\pi(x))$
- Node ranks strictly increase along any simple path towards a root
- Once a node becomes a non-root its rank never changes
- If $\pi(x)$ changes from y to z then rank(z) > rank(y)
- If the root of x's tree changes from y to z then rank(z) > rank(y)
- If x is the root of a tree then $size(x) \ge 2^{rank(x)}$
- If there are only n nodes the highest possible rank is $\lfloor \log_2 n \rfloor$
- There are at most $\frac{n}{2^r}$ nodes with rank $r \ge 0$

Some Useful Properties of Rank

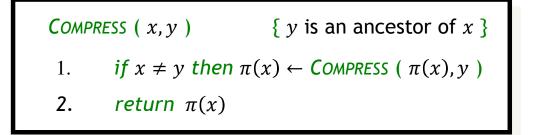
- We will analyze the total running time of m' MAKE-SET, UNION and FIND operations of which exactly $n (\leq m')$ are MAKE-SET
- But each UNION can be replaced with two FIND and one LINK
- Hence, we can simply analyze the total running time of mMAKE-SET, LINK and FIND operations of which exactly $n~(\leq m)$ are MAKE-SET and where $m' \leq m \leq 3m'$

<u>Compress</u>

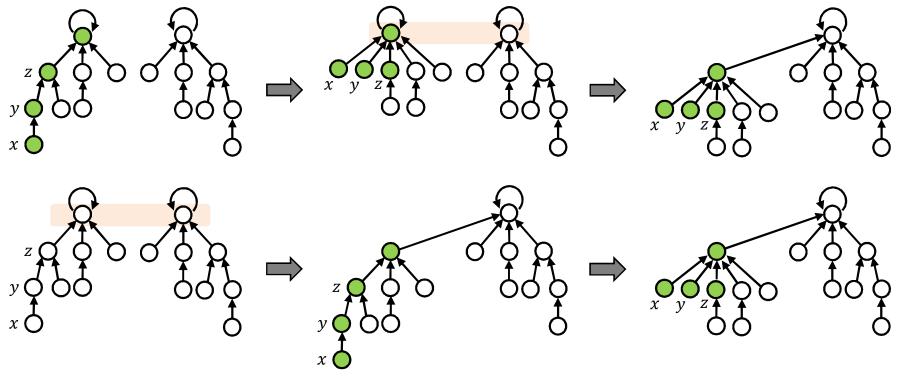


- We will analyze the total running time of m MAKE-SET, UNION and FIND operations of which exactly $n (\leq m)$ are MAKE-SET
- But FIND(x) is nothing but COMPRESS(x, y), where y is the root of the tree containing x
- Hence, we can analyze the total running time of m Make-Set, LINK and COMPRESS operations of which exactly $n~(\leq m)$ are Make-Set

<u>Compress</u>



We can reorder the sequence of LINK and COMPRESS operations so that all LINK's are performed before all COMPRESS operations without changing the number of parent pointer reassignments!

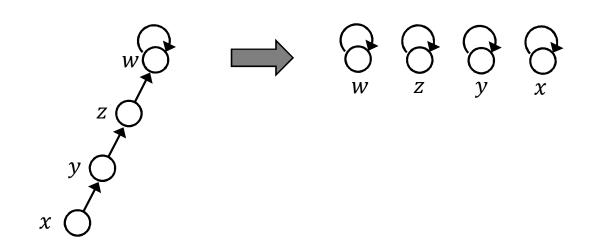


<u>Shatter</u>

Shatter (x)

1. if $x \neq \pi(x)$ then SHATTER ($\pi(x)$)

2.
$$\pi(x) \leftarrow x$$



Let T(m, n, r) = worst-case number of parent pointer assignments

- during any sequence of at most *m* COMPRESS operations
- on a forest of n nodes
- with maximum rank r

Bound 0: $T(m, n, r) \leq nr$.

Proof: Since there are at most *r* distinct ranks, and each new parent of a node has a higher rank than its previous parent, any node can change parents fewer than *r* times.

Bound 1: $T(m, n, r) \le m + 2n \log^* r$.

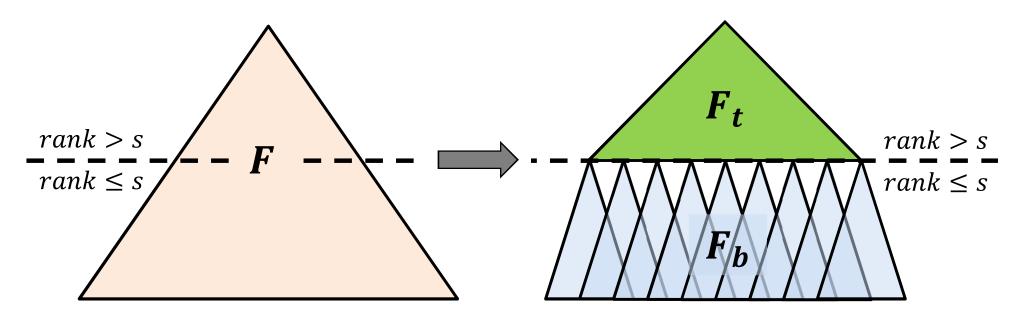
Proof: Let *F* be the forest, and *C* be the sequence of COMPRESS operations performed on *F*.

Let T(F, C) be the number of parent pointer assignments by C in F.

Let *s* be an arbitrary rank. We partition *F* into two subforests:

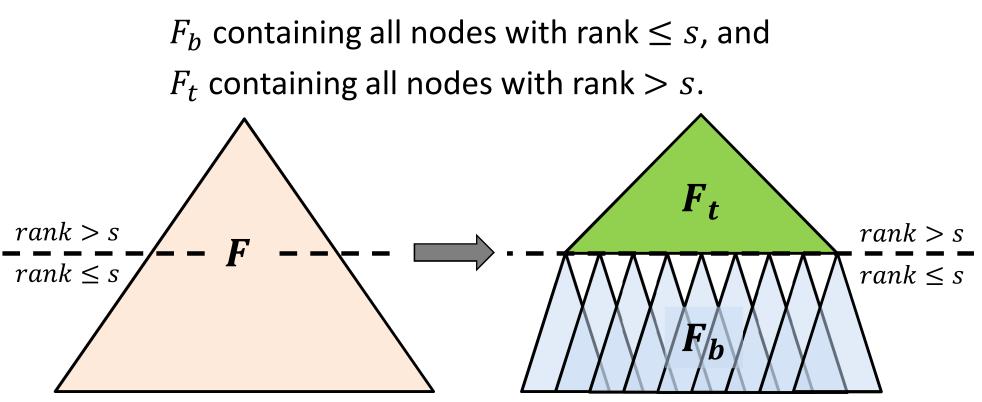
 F_b containing all nodes with rank $\leq s$, and

 F_t containing all nodes with rank > s.



Bound 1: $T(m, n, r) \le m + 2n \log^* r$.

Proof: Let *s* be an arbitrary rank. We partition *F* into two subforests:



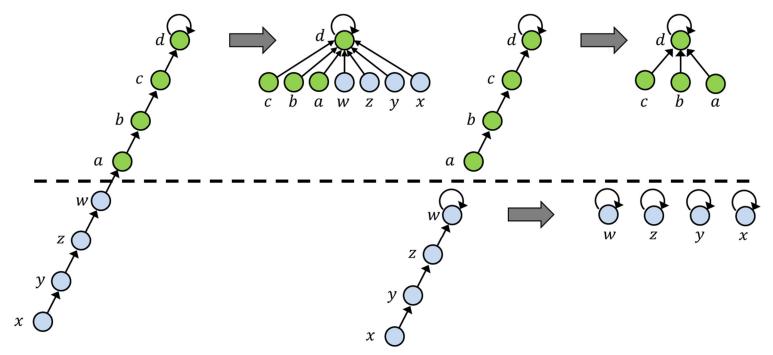
Let $n_t =$ #nodes in F_t , and $n_b =$ #nodes in F_b

Let $m_t = \#COMPRESS$ operations with at least one node in F_t , and $m_b = m - m_t$

Bound 1: $T(m, n, r) \le m + 2n \log^* r$.

Proof: The sequence *C* on *F* can be decomposed into

- a sequence of COMPRESS operations in F_t , and
- a sequence of COMPRESS and SHATTER operations in F_b



Suppose, this decomposition partitions C into two subsequences

- C_t in F_t , and

$$-C_b$$
 in F_b

Bound 1: $T(m, n, r) \le m + 2n \log^* r$.

Proof: We get the following recurrence:

```
T(F,C) \le T(F_t,C_t) + T(F_b,C_b) + m_t + n_b
```

<u>Cost on Left Side</u>	Corresponding Cost on Right Side
node $\in F_t$ gets new parent $\in F_t$	$T(F_t, C_t)$
node $\in F_b$ gets new parent $\in F_b$	$T(F_b, C_b)$
node $\in F_b$ gets new parent $\in F_t$ (for the first time)	n_b
node $\in F_b$ gets new parent $\in F_t$	m_t
(again)	

Bound 1: $T(m, n, r) \le m + 2n \log^* r$.

Proof: We get the following recurrence:

 $T(F,C) \le T(F_t,C_t) + T(F_b,C_b) + m_t + n_b$

Now $n_t \leq \sum_{i>s} \frac{n}{2^i} = \frac{n}{2^s}$, and $r_t = r - s < r$.

Hence, using bound 0: $T(F_t, C_t) \le n_t r_t < \frac{nr}{2^s}$

Let $s = \log r$. Then $T(F_t, C_t) < n$.

Hence, $T(F,C) \le T(F_b,C_b) + m_t + 2n$ $\Rightarrow T(F,C) - m \le T(F_b,C_b) - m_b + 2n$

Bound 1: $T(m, n, r) \le m + 2n \log^* r$. **Proof:**

We got $T(F, C) - m \le T(F_b, C_b) - m_b + 2n$ Let $T_1(m, n, r) = T(m, n, r) - m$ Then $T_1(m, n, r) \le T_1(m_b, n_b, r_b) + 2n$ $\Rightarrow T_1(m, n, r) \le T_1(m, n, \log r) + 2n$

Solving, $T_1(m, n, r) \le 2n \log^* r$

Hence, $T(m, n, r) \le m + 2n \log^* r$

Bound 2: $T(m, n, r) \le 2m + 3n \log^{**} r$.

Proof: Similar to the proof of bound 1.

But we solve $T(F_t, C_t)$ using bound 1, instead of bound 0!

We fix $s = \log^* r$ (instead of $\log r$ for bound 1)

Then using bound 1: $T(F_t, C_t) \le m_t + 2n_t \log^* r_t$ $\le m_t + 2 \frac{n}{2^{\log^* r}} \log^* r$ $\le m_t + 2n$

Then from $T(F,C) \leq T(F_t,C_t) + T(F_b,C_b) + m_t + n_b$, we get $T(F,C) \leq T(F_b,C_b) + 2m_t + 3n_b$

Bound 2: $T(m, n, r) \le 2m + 3n \log^{**} r$.

Proof: Our recurrence:

 $T(F,C) \leq T(F_b,C_b) + 2m_t + 3n_b$ $\Rightarrow T(F,C) - 2m \leq T(F_b,C_b) - 2m_b + 3n_b$ Let $T_2(m,n,r) = T(m,n,r) - 2m$ Then $T_2(m,n,r) \leq T_2(m_b,n_b,r_b) + 3n$ $\Rightarrow T_2(m,n,r) \leq T_2(m,n,\log^* r) + 3n$

Solving, $T_2(m, n, r) \leq 3n \log^{**} r$

Hence, $T(m, n, r) \le 2m + 3n \log^{**} r$

Bound k: $T(m, n, r) \leq km + (k + 1)n \log^{k} r$.

Observation: As we increase *k*:

- the dependency on *m* increases
- the dependency on *r* decreases

When $k = \alpha(r)$, we have $\log^{k} r \le 3!$

Bound α : $T(m, n, r) \le m\alpha(r) + 3(\alpha(r) + 1)n$.

<u>The *α* Bound</u>

Bound α : $T(m, n, r) \le m\alpha(r) + 3(\alpha(r) + 1)n$.

Observing that r < n, we have:

Bound α : $T(m, n, r) \leq (m + 3n)\alpha(n) + 3n = O((m + n)\alpha(n)).$

Assuming $m \ge n$, we have:

Bound α : $T(m, n, r) = O(m\alpha(n))$.

So, amortized complexity of each operation is only $O(\alpha(n))!$

The Partial Sums Data Structure

<u>Semigroups</u>

Semigroup (Π , \oplus): A set Π together with an associative binary operation $\oplus: \Pi \times \Pi \to \Pi$.

Examples:

(\mathcal{R}, max) ({ true, false }, logical OR) (k × k matrices, matrix multiplication)

Partial Semigroup Sums

Given (*i*) a semigroup (Π, \bigoplus), and (*ii*) an array $A[1 \dots n]$ with each entry $A[i] \in \Pi$

Goal: Preprocess A using as little space as possible so that for all $1 \le i \le j \le n$, queries of the form $A[i] \bigoplus A[i+1] \bigoplus \dots \bigoplus A[j]$ can be answered efficiently.

Space Complexity: #values from Π stored in the data structure

Query Complexity: #times the \oplus operation is applied

 $S_k(n)$: #values from Π to be stored so that every partial sum query can be answered using at most k applications of the \oplus operation

k-op structure: A data structure with query complexity *k*

Bound 0: $S_1(n) \leq n \log n$.

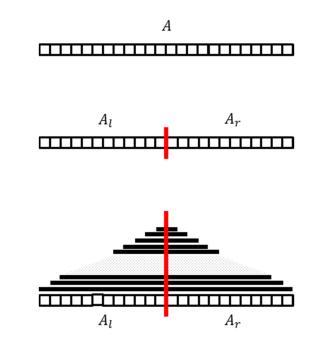
Construction of a 1-op structure:

Input array A of size n

Split A into A_l and A_r of size $\frac{n}{2}$ each

Compute: all suffix-sums of A_l , and all prefix-sums of A_r

Recurse: 1-op structure for A_l , and 1-op structure for A_r



Query: Either crosses A's midpoint (return suffix-sum \bigoplus prefix-sum), or lies completely inside A_l (recurse) or A_r (recurse)

Bound 0: $S_1(n) \leq n \log n$.

Construction of a 1-op structure:

Input array A of size n

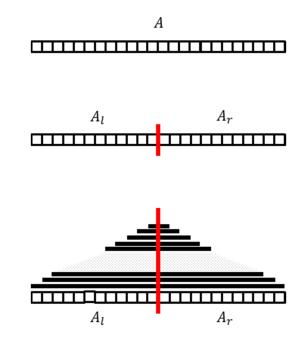
Split A into A_l and A_r of size $\frac{n}{2}$ each

Compute: all suffix-sums of A_l , and all prefix-sums of A_r

Recurse: 1-op structure for A_l , and 1-op structure for A_r

Space:
$$S_1(n) \le n + 2S_1\left(\frac{n}{2}\right)$$

 $\le n \log n$



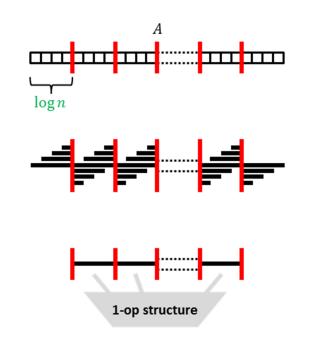
Bound 1: $S_3(n) \le 3n \log^* n$.

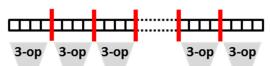
Construction of a 3-op structure:

Split A into $\frac{n}{\log n}$ subarrays of size $\leq \log n$ each

Compute: all suffix- and prefix- sums within each subarray Build: 1-op structure for $\frac{n}{\log n}$ subarray sums

Query: Either completely inside a subarray (recurse), or crosses subarray boundaries (return suffix-sum ⊕ answer from 1-op structure ⊕ prefix-sum)



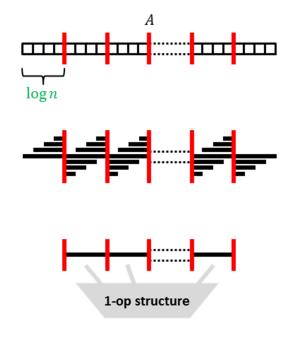


Bound 1: $S_3(n) \le 3n \log^* n$.

Construction of a 3-op structure:

Split A into $\frac{n}{\log n}$ subarrays of size $\leq \log n$ each

Compute: all suffix- and prefix- sums within each subarray Build: 1-op structure for $\frac{n}{\log n}$ subarray sums



Recurse: 3-op structure for each subarray

Space:
$$S_3(n) \le 2n + S_1\left(\frac{n}{\log n}\right) + \frac{n}{\log n}S_3(\log n)$$

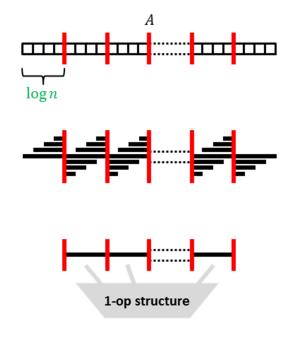
$$\le 3n + \frac{n}{\log n}S_3(\log n) \le 3n\log^* n$$

Bound 1: $S_3(n) \le 3n \log^* n$.

Construction of a 3-op structure:

Split A into $\frac{n}{\log n}$ subarrays of size $\leq \log n$ each

Compute: all suffix- and prefix- sums within each subarray Build: 1-op structure for $\frac{n}{\log n}$ subarray sums



Recurse: 3-op structure for each subarray

Space:
$$S_3(n) \le 2n + S_1\left(\frac{n}{\log n}\right) + \frac{n}{\log n}S_3(\log n)$$

$$\le 3n + \frac{n}{\log n}S_3(\log n) \le 3n\log^* n$$

Bound k: $S_{2k+1}(n) \le (2k+1)n \log^{\widetilde{*\cdots*}} n = (2k+1)n \log^{[[*(k)]]} n.$ Construction of a (2k + 1)-op structure: Split A into $n / \log^{[[*(k-1)]]} n$ subarrays of size $\leq \log^{\left[\left[*(k-1)\right]\right]} n$ each $\log^{\left[\left[*(k-1)\right]\right]}n$ Compute: all suffix- and prefix- sums ╡═╡┈╞═╏ within each subarray Build: (2k - 1)-op structure for $n/\log^{[[*(k-1)]]} n$ subarray sums Recurse: (2k + 1)-op structure for each subarray Query: Either completely inside a subarray (recurse), or crosses subarray boundaries (return suffix-sum

 \oplus answer from (2k-1)-op structure \oplus prefix-sum)

Bound k: $S_{2k+1}(n) \le (2k+1)n \log^{\widetilde{*\cdots*}} n = (2k+1)n \log^{[[*(k)]]} n.$ Construction of a (2k + 1)-op structure: Split A into $n / \log^{[[*(k-1)]]} n$ subarrays of size $\leq \log^{[[*(k-1)]]} n$ each $\log^{\left[\left[*(k-1)\right]\right]}n$ Compute: all suffix- and prefix- sums **╶╡**<u></u><u>╡</u><u></u> within each subarray Build: (2k - 1)-op structure for $n/\log^{[[*(k-1)]]} n$ subarray sums Recurse: (2k + 1)-op structure for each subarray **Space:** $S_{2k+1}(n) \le 2n + S_{2k-1}\left(\frac{n}{\log^{[[*(k-1)]]}n}\right) + \frac{n}{\log^{[[*(k-1)]]}n}S_{2k+1}\left(\log^{[[*(k-1)]]}n\right)$

 $\leq (2k+1)n + \frac{n}{\log^{[[*(k-1)]]}n} S_{2k+1} \left(\log^{[[*(k-1)]]}n \right) \leq (2k+1)n \log^{[[*(k)]]}n$

The *α* Bound

Bound k: $S_{2k+1}(n) \le (2k+1)n \log^{k} n$.

Putting $k = \alpha(n)$, we have:

Bound
$$\alpha$$
: $S_{2\alpha(n)+1}(n) \le 3(2\alpha(n)+1)n = O(n\alpha(n)).$

Linear Space: Use the α -bound to show that the space complexity of the data structure can be reduced to O(n) while still supporting range queries in $O(\alpha(n))$ time.