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Iterated Functions

� � � � � � ��	� � 0
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� min � � 0: � � � …� � …
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� 1
� min � � 0: � � � � 1 ,

where

Example: If � � log, we have:

log�� 65536 � 65536
log�� 65536 � 16
log�$ 65536 � 4

log�& 65536 � 2
	log�( 65536 � 1

∴ log∗ 65536 � 4



Iterated Functions
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The Inverse Ackermann Function: � .
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6 � 5 �
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Union-Find:

A Disjoint-Set Data Structure



Disjoint Set Operations

MAKE-SET( 7 ): create a new set 8 containing only element 8.  

Element 8 becomes the representative of the set.

FIND( 7 ): returns a pointer to the representative of the set 

containing 8
UNION( 7, : ): replace the dynamic sets ;< and ;= containing 

8 and >, respectively, with the set ;< ∪ ;=

A disjoint-set data structure maintains a collection of disjoint 

dynamic sets. Each set is identified by a representative which must 

be a member of the set.

The collection is maintained under the following operations:



Union-Find Data Structure 
with Union by Rank and Find with Path Compression

MAKE-SET ( 8 )

1. @ 8 ← 8
2. BC�6 8 ← 0

UNION ( 8, > )

1. LINK ( FIND ( 8 ), FIND ( > ) )

LINK ( 8, > )

1. if BC�6 8 � BC�6 > then @ > ← 8
2. else 	@ 8 ← >
3. if BC�6 8 � BC�6 > then BC�6 > ← BC�6 > � 1

FIND ( 8 )

1. if 8 D @ 8 then @ 8 ← FIND ( @ 8 )

2. return 	@ 8



Some Useful Properties of Rank

− If 8 is not a root then BC�6 8 E BC�6 @ 8
− Node ranks strictly increase along any simple path towards a root

− Once a node becomes a non-root its rank never changes

− If @ 8 changes from > to F then BC�6 F � BC�6 >
− If the root of 8’s tree changes from > to F then BC�6 F � BC�6 >
− If 8 is the root of a tree then G�FH 8 � 2IJKL <

− If there are only � nodes the highest possible rank is log$ �
− There are at most 

K
$M nodes with rank B � 0



Some Useful Properties of Rank

− We will analyze the total running time of N′ MAKE-SET, UNION

and FIND operations of which exactly �	 � N′ are MAKE-SET

− But each UNION can be replaced with two FIND and one LINK

− Hence, we can simply analyze the total running time of N
MAKE-SET, LINK and FIND operations of which exactly �	 � N
are MAKE-SET and where NP � N � 3N′



Compress

COMPRESS ( 8, > )             { > is an ancestor of 8 }

1. if 8 D > then @ 8 ← COMPRESS ( @ 8 , > )

2. return 	@ 8

− We will analyze the total running time of N MAKE-SET, UNION

and FIND operations of which exactly �	 � N are MAKE-SET

− But FIND 8 is nothing but COMPRESS 8, > , where > is the root 

of the tree containing 8
− Hence, we can analyze the total running time of N MAKE-SET, 

LINK and COMPRESS operations of which exactly �	 � N are 

MAKE-SET



Compress

COMPRESS ( 8, > )             { > is an ancestor of 8 }

1. if 8 D > then @ 8 ← COMPRESS ( @ 8 , > )

2. return 	@ 8

We can reorder the sequence of LINK and COMPRESS operations so 

that all LINK’S are performed before all COMPRESS operations 

without changing the number of parent pointer reassignments!

8
>
F 8 > F

8 > F

8
>

F
8 > F

8
>

F



Shatter

SHATTER ( 8 )

1. if 8 D @ 8 then SHATTER ( @ 8 )

2. @ 8 ← 8

8
>

F
Q Q F > 8



Bound 0

Let R N, �, B � worst-case number of parent pointer assignments

− during any sequence of at most N COMPRESS operations

− on a forest of � nodes

− with maximum rank B
Bound 0: R N, �, B � �B.

Proof: Since there are at most B distinct ranks, and each new parent 

of a node has a higher rank than its previous parent, any node can 

change parents fewer than B times. 



Bound 1
Bound 1: R N, �, B � N � 2� log∗ B.

Proof: Let S be the forest, and T be the sequence of COMPRESS

operations performed on S.

Let R S, T be the number of parent pointer assignments by T in S.

Let G be an arbitrary rank. We partition S into two subforests: 

SU containing all nodes with rank � G, and 

S� containing all nodes with rank � G.

V
VW

VX

BC�6 � G
BC�6 � G

BC�6 � G
BC�6 � G



Bound 1
Bound 1: R N, �, B � N � 2� log∗ B.

Proof: Let G be an arbitrary rank. We partition S into two subforests: 

SU containing all nodes with rank � G, and 

S� containing all nodes with rank � G.

Let �� � #nodes in S�, and  �U � #nodes in SU
Let N� � #COMPRESS operations with at least one node in S�, and    

NU � N * N�

V
VW

VX

BC�6 � G
BC�6 � G

BC�6 � G
BC�6 � G



Bound 1
Bound 1: R N, �, B � N � 2� log∗ B.

Proof: The sequence T on S can be decomposed into 

− a sequence of COMPRESS operations in S�, and

− a sequence of COMPRESS and SHATTER operations in SU

Suppose, this decomposition partitions T into two subsequences

− T� in S�, and

− TU in SU



Bound 1
Bound 1: R N, �, B � N � 2� log∗ B.

Proof: We get the following recurrence:

R S, T � R S� , T� � R SU , TU � N� � �U

Cost on Left Side Corresponding Cost on Right Side

node ∈ S� gets new parent ∈ S� R S� , T�
node ∈ SU gets new parent ∈ SU R SU , TU
node ∈ SU gets new parent ∈ S�
( for the first time )

�U

node ∈ SU gets new parent ∈ S�
( again )

N�



Bound 1
Bound 1: R N, �, B � N � 2� log∗ B.

Proof: We get the following recurrence:

R S, T � R S� , T� � R SU , TU � N� � �U
Now �� � ∑ K

$[�\� � K
$],  and  B� � B * G E B.

Hence, using bound 0: R S� , T� � ��B� E KI
$]

Let G � log B. Then R S� , T� E �.
Hence,      R S, T � R SU , TU � N� � 2�

⇒ R S, T * N � R SU , TU * NU � 2�



Bound 1
Bound 1: R N, �, B � N � 2� log∗ B.

Proof:

We got R S, T * N � R SU , TU * NU � 2�
Let  R� N, �, B � R N, �, B * N
Then R� N, �, B � R� NU , �U , BU � 2�

⇒ R� N,�, B � R� N,�, log B � 2�
Solving, R� N, �, B � 2� log∗ B
Hence, R N, �, B � N � 2� log∗ B



Bound 2
Bound 2: R N, �, B � 2N � 3� log∗∗ B.

Proof: Similar to the proof of bound 1.

But we solve R S� , T� using bound 1, instead of bound 0!

We fix G � log∗ B ( instead of log B	for bound 1 )

Then using bound 1: R S� , T� � N� � 2�� log∗ B�
� N� � 2 K

$`ab∗ M	 log∗ B
� N� � 2�

Then from  R S, T � R S� , T� � R SU , TU � N� � �U, we get

R S, T � R SU , TU � 2N� � 3�U



Bound 2
Bound 2: R N, �, B � 2N � 3� log∗∗ B.

Proof: Our recurrence:

R S, T � R SU , TU � 2N� � 3�U
⇒ R S, T * 2N � R SU , TU * 2NU � 3�U

Let  R$ N, �, B � R N, �, B * 2N
Then R$ N, �, B � R$ NU , �U , BU � 3�

⇒ R$ N, �, B � R$ N,�, log∗ B � 3�
Solving, R$ N,�, B � 3� log∗∗ B
Hence, R N, �, B � 2N � 3� log∗∗ B



Bound c
Bound k: R N, �, B � 6N � �6 � 1 � log∗⋯∗01 B.

Observation: As we increase 6:

− the dependency on N increases

− the dependency on B decreases

When 6 � 5 B , we have log∗⋯∗01 B � 3 !
Bound �: R N, �, B � N5 B � 3�5 B � 1 �.



The � Bound

Bound �: R N, �, B � N5 B � 3�5 B � 1 �.

Observing that  B E �, we have:

Bound �: R N, �, B � N � 3� 5 � � 3� � Ο N � � 5 � .

Assuming  N � �, we have:

Bound �: R N, �, B � Ο N5 � .

So, amortized complexity of each operation is only Ο 5 � !



The Partial Sums

Data Structure



Semigroups

Semigroup 	e, ⊕	 : A set Π together with an associative binary 

operation ⊕:Π h Π → Π.

Examples: 

	j,NC8	
	 	kBlH, �CmGH	 , mno�,Cm	pq	

	6 h 6	NCkB�,HG,NCkB�8	Nlmk�rm�,Ck�n�	



Partial Semigroup Sums

Given � a semigroup 	Π,⊕	 , and

�� 	an array s 1…� with each entry s � ∈ Π
Goal: Preprocess s using as little space as possible so that for all 

1 � � � t � �, queries of the form s � ⊕ s � � 1 ⊕ ⋯⊕ s t
can be answered efficiently.

Space Complexity: #values from Π stored in the data structure

Query Complexity: #times the ⊕ operation is applied

uc . : #values from Π to be stored so that every partial sum query 

can be answered using at most 6 applictions of the ⊕ operation

c-op structure: A data structure with query complexity 6



Bound 0

Bound 0: ;� � � � log �.

Construction of a 1-op structure:

Split s into sv and sI of size 
K
$ each

Input array s of size �

Recurse: 1-op structure for sv, and

1-op structure for sI

Compute: all suffix-sums of sv, and

all prefix-sums of sI

Query: Either crosses s’s midpoint ( return suffix-sum ⊕ prefix-sum ),

or lies completely inside sv ( recurse ) or sI ( recurse )



Bound 0

Bound 0: ;� � � � log �.

Construction of a 1-op structure:

Split s into sv and sI of size 
K
$ each

Input array s of size �

Recurse: 1-op structure for sv, and

1-op structure for sI

Compute: all suffix-sums of sv, and

all prefix-sums of sI

Space: ;� � � � � 2;� K
$� � log �



Bound 1

Bound 1: ;& � � 3� log∗ �.

Construction of a 3-op structure:

Split s into 
K

wxy K subarrays of 

size � log � each

Compute: all suffix- and prefix- sums

within each subarray

Build: 1-op structure for 
K

wxy K subarray sums

Recurse: 3-op structure for each subarray

Query: Either completely inside a subarray ( recurse ),

or crosses subarray boundaries  ( return 

suffix-sum ⊕ answer from 1-op structure ⊕ prefix-sum )



Bound 1

Bound 1: ;& � � 3� log∗ �.

Construction of a 3-op structure:

Split s into 
K

wxy K subarrays of 

size � log � each

Compute: all suffix- and prefix- sums

within each subarray

Build: 1-op structure for 
K

wxy K subarray sums

Recurse: 3-op structure for each subarray

Space: ;& � � 2� � ;� K
wxy K � K

wxy K ;& log �
� 3� � K

wxy K ;& log � � 3� log∗ �



Bound 1

Bound 1: ;& � � 3� log∗ �.

Construction of a 3-op structure:

Split s into 
K

wxy K subarrays of 

size � log � each

Compute: all suffix- and prefix- sums

within each subarray

Build: 1-op structure for 
K

wxy K subarray sums

Recurse: 3-op structure for each subarray

Space: ;& � � 2� � ;� K
wxy K � K

wxy K ;& log �
� 3� � K

wxy K ;& log � � 3� log∗ �



Bound c
Bound c: ;$Lz� � � 26 � 1 � log∗⋯∗01 � � 26 � 1 � log ∗ L �.

Compute: all suffix- and prefix- sums

within each subarray

Build: �26 * 1 -op structure for

�/ log ∗�L
� � subarray sums

Recurse: �26 � 1 -op structure for each 

subarray

Query: Either completely inside a subarray ( recurse ),

or crosses subarray boundaries  ( return suffix-sum 

⊕ answer from �26 * 1 -op structure ⊕ prefix-sum )

Construction of a �|c � } -op structure:

Split s into �/ log ∗�L
� � subarrays of 

size � log ∗�L
� � each



Bound c
Bound c: ;$Lz� � � 26 � 1 � log∗⋯∗01 � � 26 � 1 � log ∗ L �.

Compute: all suffix- and prefix- sums

within each subarray

Build: �26 * 1 -op structure for

�/ log ∗�L
� � subarray sums

Recurse: �26 � 1 -op structure for each 

subarray

Space: ;$Lz� � � 2� � ;$L
� K
wxy ∗�124 K � K

wxy ∗�124 K ;$Lz� log ∗�L
� �
� 26 � 1 � � K

wxy ∗ 124 K ;$Lz� log ∗ L
� � � 26 � 1 � log ∗ L �

Construction of a �|c � } -op structure:

Split s into �/ log ∗�L
� � subarrays of 

size � log ∗�L
� � each



The � Bound

Putting 6 � 5 � , we have:

Bound �: ;$~ K z� � � 3 25 � � 1 � � Ο �5 � .

Bound c: ;$Lz� � � 26 � 1 � log∗⋯∗01 �.

Linear Space: Use the 5-bound to show that the space complexity 

of the data structure can be reduced to Ο � while still supporting 

range queries in Ο 5 � time.


