
CSE 548: Analysis of Algorithms

Lectures 16, 17 & 18

(The � Technique)

Inspiration Comes from Lectures Given by

Jeff Erickson, Seth Pettie, Vijaya Ramachandran and Raimund Seidel

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2012

Iterated Functions

� � � � � � ��	� � 0
� � �
� � ��	� � 0

�∗ � � � 0 ��	� � 1
1 � �∗ � � ��	� � 1

� min � � 0: � � � …� � …
�	�����

� 1
� min � � 0: � � � � 1 ,

where

Example: If � � log, we have:

log�� 65536 � 65536
log�� 65536 � 16
log�$ 65536 � 4

log�& 65536 � 2
	log�(65536 � 1

∴ log∗ 65536 � 4

Iterated Functions

� � 																																				�∗ �
� * 1 � * 1
� * 2 �

2

�
2 log$ �

√� log log �
log � log∗ �

� * , �
,

�
, log- �

The Inverse Ackermann Function: � .
� � 																																				�∗ �
log � log∗ �
log∗ � log∗∗ �
log∗∗ � log∗∗∗ �

log∗⋯∗0123 � log∗⋯∗0124 �
log∗⋯∗0124 � log∗⋯∗01 �

� 3
� 3
� 3

� 3
� 3

5 � � min 6 � 1: log∗⋯∗01 � � 3

6 � 5 �
rows

Union-Find:

A Disjoint-Set Data Structure

Disjoint Set Operations

MAKE-SET(7): create a new set 8 containing only element 8.

Element 8 becomes the representative of the set.

FIND(7): returns a pointer to the representative of the set

containing 8
UNION(7, :): replace the dynamic sets ;< and ;= containing

8 and >, respectively, with the set ;< ∪ ;=

A disjoint-set data structure maintains a collection of disjoint

dynamic sets. Each set is identified by a representative which must

be a member of the set.

The collection is maintained under the following operations:

Union-Find Data Structure
with Union by Rank and Find with Path Compression

MAKE-SET (8)

1. @ 8 ← 8
2. BC�6 8 ← 0

UNION (8, >)

1. LINK (FIND (8), FIND (>))

LINK (8, >)

1. if BC�6 8 � BC�6 > then @ > ← 8
2. else 	@ 8 ← >
3. if BC�6 8 � BC�6 > then BC�6 > ← BC�6 > � 1

FIND (8)

1. if 8 D @ 8 then @ 8 ← FIND (@ 8)

2. return 	@ 8

Some Useful Properties of Rank

− If 8 is not a root then BC�6 8 E BC�6 @ 8
− Node ranks strictly increase along any simple path towards a root

− Once a node becomes a non-root its rank never changes

− If @ 8 changes from > to F then BC�6 F � BC�6 >
− If the root of 8’s tree changes from > to F then BC�6 F � BC�6 >
− If 8 is the root of a tree then G�FH 8 � 2IJKL <

− If there are only � nodes the highest possible rank is log$ �
− There are at most

K
$M nodes with rank B � 0

Some Useful Properties of Rank

− We will analyze the total running time of N′ MAKE-SET, UNION

and FIND operations of which exactly �	 � N′ are MAKE-SET

− But each UNION can be replaced with two FIND and one LINK

− Hence, we can simply analyze the total running time of N
MAKE-SET, LINK and FIND operations of which exactly �	 � N
are MAKE-SET and where NP � N � 3N′

Compress

COMPRESS (8, >) { > is an ancestor of 8 }

1. if 8 D > then @ 8 ← COMPRESS (@ 8 , >)

2. return 	@ 8

− We will analyze the total running time of N MAKE-SET, UNION

and FIND operations of which exactly �	 � N are MAKE-SET

− But FIND 8 is nothing but COMPRESS 8, > , where > is the root

of the tree containing 8
− Hence, we can analyze the total running time of N MAKE-SET,

LINK and COMPRESS operations of which exactly �	 � N are

MAKE-SET

Compress

COMPRESS (8, >) { > is an ancestor of 8 }

1. if 8 D > then @ 8 ← COMPRESS (@ 8 , >)

2. return 	@ 8

We can reorder the sequence of LINK and COMPRESS operations so

that all LINK’S are performed before all COMPRESS operations

without changing the number of parent pointer reassignments!

8
>
F 8 > F

8 > F

8
>

F
8 > F

8
>

F

Shatter

SHATTER (8)

1. if 8 D @ 8 then SHATTER (@ 8)

2. @ 8 ← 8

8
>

F
Q Q F > 8

Bound 0

Let R N, �, B � worst-case number of parent pointer assignments

− during any sequence of at most N COMPRESS operations

− on a forest of � nodes

− with maximum rank B
Bound 0: R N, �, B � �B.

Proof: Since there are at most B distinct ranks, and each new parent

of a node has a higher rank than its previous parent, any node can

change parents fewer than B times.

Bound 1
Bound 1: R N, �, B � N � 2� log∗ B.

Proof: Let S be the forest, and T be the sequence of COMPRESS

operations performed on S.

Let R S, T be the number of parent pointer assignments by T in S.

Let G be an arbitrary rank. We partition S into two subforests:

SU containing all nodes with rank � G, and

S� containing all nodes with rank � G.

V
VW

VX

BC�6 � G
BC�6 � G

BC�6 � G
BC�6 � G

Bound 1
Bound 1: R N, �, B � N � 2� log∗ B.

Proof: Let G be an arbitrary rank. We partition S into two subforests:

SU containing all nodes with rank � G, and

S� containing all nodes with rank � G.

Let �� � #nodes in S�, and �U � #nodes in SU
Let N� � #COMPRESS operations with at least one node in S�, and

NU � N * N�

V
VW

VX

BC�6 � G
BC�6 � G

BC�6 � G
BC�6 � G

Bound 1
Bound 1: R N, �, B � N � 2� log∗ B.

Proof: The sequence T on S can be decomposed into

− a sequence of COMPRESS operations in S�, and

− a sequence of COMPRESS and SHATTER operations in SU

Suppose, this decomposition partitions T into two subsequences

− T� in S�, and

− TU in SU

Bound 1
Bound 1: R N, �, B � N � 2� log∗ B.

Proof: We get the following recurrence:

R S, T � R S� , T� � R SU , TU � N� � �U

Cost on Left Side Corresponding Cost on Right Side

node ∈ S� gets new parent ∈ S� R S� , T�
node ∈ SU gets new parent ∈ SU R SU , TU
node ∈ SU gets new parent ∈ S�
(for the first time)

�U

node ∈ SU gets new parent ∈ S�
(again)

N�

Bound 1
Bound 1: R N, �, B � N � 2� log∗ B.

Proof: We get the following recurrence:

R S, T � R S� , T� � R SU , TU � N� � �U
Now �� � ∑ K

$[�\� � K
$], and B� � B * G E B.

Hence, using bound 0: R S� , T� � ��B� E KI
$]

Let G � log B. Then R S� , T� E �.
Hence, R S, T � R SU , TU � N� � 2�

⇒ R S, T * N � R SU , TU * NU � 2�

Bound 1
Bound 1: R N, �, B � N � 2� log∗ B.

Proof:

We got R S, T * N � R SU , TU * NU � 2�
Let R� N, �, B � R N, �, B * N
Then R� N, �, B � R� NU , �U , BU � 2�

⇒ R� N,�, B � R� N,�, log B � 2�
Solving, R� N, �, B � 2� log∗ B
Hence, R N, �, B � N � 2� log∗ B

Bound 2
Bound 2: R N, �, B � 2N � 3� log∗∗ B.

Proof: Similar to the proof of bound 1.

But we solve R S� , T� using bound 1, instead of bound 0!

We fix G � log∗ B (instead of log B	for bound 1)

Then using bound 1: R S� , T� � N� � 2�� log∗ B�
� N� � 2 K

$`ab∗ M	 log∗ B
� N� � 2�

Then from R S, T � R S� , T� � R SU , TU � N� � �U, we get

R S, T � R SU , TU � 2N� � 3�U

Bound 2
Bound 2: R N, �, B � 2N � 3� log∗∗ B.

Proof: Our recurrence:

R S, T � R SU , TU � 2N� � 3�U
⇒ R S, T * 2N � R SU , TU * 2NU � 3�U

Let R$ N, �, B � R N, �, B * 2N
Then R$ N, �, B � R$ NU , �U , BU � 3�

⇒ R$ N, �, B � R$ N,�, log∗ B � 3�
Solving, R$ N,�, B � 3� log∗∗ B
Hence, R N, �, B � 2N � 3� log∗∗ B

Bound c
Bound k: R N, �, B � 6N � �6 � 1 � log∗⋯∗01 B.

Observation: As we increase 6:

− the dependency on N increases

− the dependency on B decreases

When 6 � 5 B , we have log∗⋯∗01 B � 3 !
Bound �: R N, �, B � N5 B � 3�5 B � 1 �.

The � Bound

Bound �: R N, �, B � N5 B � 3�5 B � 1 �.

Observing that B E �, we have:

Bound �: R N, �, B � N � 3� 5 � � 3� � Ο N � � 5 � .

Assuming N � �, we have:

Bound �: R N, �, B � Ο N5 � .

So, amortized complexity of each operation is only Ο 5 � !

The Partial Sums

Data Structure

Semigroups

Semigroup 	e, ⊕	 : A set Π together with an associative binary

operation ⊕:Π h Π → Π.

Examples:

	j,NC8	
	 	kBlH, �CmGH	 , mno�,Cm	pq	

	6 h 6	NCkB�,HG,NCkB�8	Nlmk�rm�,Ck�n�	

Partial Semigroup Sums

Given � a semigroup 	Π,⊕	 , and

�� 	an array s 1…� with each entry s � ∈ Π
Goal: Preprocess s using as little space as possible so that for all

1 � � � t � �, queries of the form s � ⊕ s � � 1 ⊕ ⋯⊕ s t
can be answered efficiently.

Space Complexity: #values from Π stored in the data structure

Query Complexity: #times the ⊕ operation is applied

uc . : #values from Π to be stored so that every partial sum query

can be answered using at most 6 applictions of the ⊕ operation

c-op structure: A data structure with query complexity 6

Bound 0

Bound 0: ;� � � � log �.

Construction of a 1-op structure:

Split s into sv and sI of size
K
$ each

Input array s of size �

Recurse: 1-op structure for sv, and

1-op structure for sI

Compute: all suffix-sums of sv, and

all prefix-sums of sI

Query: Either crosses s’s midpoint (return suffix-sum ⊕ prefix-sum),

or lies completely inside sv (recurse) or sI (recurse)

Bound 0

Bound 0: ;� � � � log �.

Construction of a 1-op structure:

Split s into sv and sI of size
K
$ each

Input array s of size �

Recurse: 1-op structure for sv, and

1-op structure for sI

Compute: all suffix-sums of sv, and

all prefix-sums of sI

Space: ;� � � � � 2;� K
$� � log �

Bound 1

Bound 1: ;& � � 3� log∗ �.

Construction of a 3-op structure:

Split s into
K

wxy K subarrays of

size � log � each

Compute: all suffix- and prefix- sums

within each subarray

Build: 1-op structure for
K

wxy K subarray sums

Recurse: 3-op structure for each subarray

Query: Either completely inside a subarray (recurse),

or crosses subarray boundaries (return

suffix-sum ⊕ answer from 1-op structure ⊕ prefix-sum)

Bound 1

Bound 1: ;& � � 3� log∗ �.

Construction of a 3-op structure:

Split s into
K

wxy K subarrays of

size � log � each

Compute: all suffix- and prefix- sums

within each subarray

Build: 1-op structure for
K

wxy K subarray sums

Recurse: 3-op structure for each subarray

Space: ;& � � 2� � ;� K
wxy K � K

wxy K ;& log �
� 3� � K

wxy K ;& log � � 3� log∗ �

Bound 1

Bound 1: ;& � � 3� log∗ �.

Construction of a 3-op structure:

Split s into
K

wxy K subarrays of

size � log � each

Compute: all suffix- and prefix- sums

within each subarray

Build: 1-op structure for
K

wxy K subarray sums

Recurse: 3-op structure for each subarray

Space: ;& � � 2� � ;� K
wxy K � K

wxy K ;& log �
� 3� � K

wxy K ;& log � � 3� log∗ �

Bound c
Bound c: ;$Lz� � � 26 � 1 � log∗⋯∗01 � � 26 � 1 � log ∗ L �.

Compute: all suffix- and prefix- sums

within each subarray

Build: �26 * 1 -op structure for

�/ log ∗�L
� � subarray sums

Recurse: �26 � 1 -op structure for each

subarray

Query: Either completely inside a subarray (recurse),

or crosses subarray boundaries (return suffix-sum

⊕ answer from �26 * 1 -op structure ⊕ prefix-sum)

Construction of a �|c � } -op structure:

Split s into �/ log ∗�L
� � subarrays of

size � log ∗�L
� � each

Bound c
Bound c: ;$Lz� � � 26 � 1 � log∗⋯∗01 � � 26 � 1 � log ∗ L �.

Compute: all suffix- and prefix- sums

within each subarray

Build: �26 * 1 -op structure for

�/ log ∗�L
� � subarray sums

Recurse: �26 � 1 -op structure for each

subarray

Space: ;$Lz� � � 2� � ;$L
� K
wxy ∗�124 K � K

wxy ∗�124 K ;$Lz� log ∗�L
� �
� 26 � 1 � � K

wxy ∗ 124 K ;$Lz� log ∗ L
� � � 26 � 1 � log ∗ L �

Construction of a �|c � } -op structure:

Split s into �/ log ∗�L
� � subarrays of

size � log ∗�L
� � each

The � Bound

Putting 6 � 5 � , we have:

Bound �: ;$~ K z� � � 3 25 � � 1 � � Ο �5 � .

Bound c: ;$Lz� � � 26 � 1 � log∗⋯∗01 �.

Linear Space: Use the 5-bound to show that the space complexity

of the data structure can be reduced to Ο � while still supporting

range queries in Ο 5 � time.

