CSE 548: Analysis of Algorithms

Lectures 22 & 23 (Analyzing Parallel Algorithms)

Rezaul A. Chowdhury

Department of Computer Science SUNY Stony Brook Fall 2012

Why Parallelism?

Unicore Performance Has Hit a Wall!

Some Reasons

- Lack of additional ILP
 (Instruction Level Hidden Parallelism)
- High power density
- Manufacturing issues
- Physical limits
- Memory speed

Unicore Performance: No Additional ILP

Exhausted all ideas to exploit hidden parallelism?

- Multiple simultaneous instructions
- Dynamic instruction scheduling
- Branch prediction
- Out-of-order instructions
- Speculative execution
- Pipelining
- Non-blocking caches, etc.

– Dynamic power, $P_d \propto V^2 f C$

– V = supply voltage

- f = clock frequency
- *C* = *capacitance*
- But $V \propto f$
- Thus $P_d \propto f^3$

Source: Patrick Gelsinger, Intel Developer Forum, Spring 2004 (Simon Floyd)

- Changing f by 20% changes performance by 13%
- So what happens if we overclock by 20%?
- And underclock by 20%?

- Changing *f* by 20% changes performance by 13%
- So what happens if we overclock by 20%?
- And underclock by 20%?

- Changing f by 20% changes performance by 13%
- So what happens if we overclock by 20%?
- And underclock by 20%?

Unicore Performance: Manufacturing Issues

- Frequency, $f \propto 1/s$

- s = feature size (transistor dimension)

- Transistors / unit area \propto 1 / s^2
- Typically, die size $\propto 1/s$
- So, what happens if feature size goes down by a factor of x?
 - Raw computing power goes up by a factor of x^4 !
 - Typically most programs run faster by a factor of x³
 without any change!

Unicore Performance: Manufacturing Issues

As feature size decreases

- Manufacturing cost goes up
 - Cost of a semiconductor fabrication plant doubles every 4 years (Rock's Law)
- Yield (% of usable chips produced) drops

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Physical Limits

Execute the following loop on a serial machine in 1 second:

for (i = 0; i < 10¹²; ++i)
z[i] = x[i] + y[i];

- We will have to access 3×10^{12} data items in one second
- Speed of light is, $c \approx 3 \times 10^8 \text{ m/s}$
- So each data item must be within c / $3 \times 10^{12} \approx 0.1$ mm from the CPU on the average
- All data must be put inside a 0.2 mm × 0.2 mm square
- Each data item (≥ 8 bytes) can occupy only 1 Å² space!
 (size of a small atom!)

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Memory Wall

Source: Rick Hetherington, Chief Technology Officer, Microelectronics, Sun Microsystems

Moore's Law Reinterpreted

Source: Report of the 2011 Workshop on Exascale Programming Challenges

Cores / Processor (General Purpose)

No Free Lunch for Traditional Software

Additional operations per second if code can take advantage of concurrency

Insatiable Demand for Performance

Source: Patrick Gelsinger, Intel Developer Forum, 2008

Some Useful Classifications of Parallel Computers

Parallel Computer Memory Architecture (Shared Memory)

- All processors access all memory as global address space
- Changes in memory by one processor are visible to all others
- Tow types:
 - Uniform Memory Access
 (UMA)
 - Non-Uniform Memory
 Access (NUMA)

Parallel Computer Memory Architecture (Distributed Memory)

- Each processor has its own
 local memory no global
 address space
- Changes in local memory by one processor have no effect on memory of other processors

Source: Blaise Barney, LLNL

Communication network to connect inter-processor memory

Parallel Computer Memory Architecture (Hybrid Distributed-Shared Memory)

- The share-memory component can be a cache-coherent SMP or a Graphics Processing Unit (GPU)
- The distributed-memory component is the networking of multiple SMP/GPU machines
- Most common architecture
 for the largest and fastest
 computers in the world today

Analyzing Parallel Algorithms

Speedup

Let T_p = running time using p identical processing elements

Speedup,
$$S_p = \frac{T_1}{T_p}$$

Theoretically, $S_p \leq p$ (why?)

Perfect or *linear* or *ideal* speedup if $S_p = p$

<u>Speedup</u>

Consider adding *n* numbers using *n* identical processing elements.

Serial runtime, $T = \Theta(n)$

Parallel runtime, $T_n = \Theta(\log n)$

Speedup, $S_n = \frac{T_1}{T_n} = \Theta\left(\frac{n}{\log n}\right)$

Speedup not ideal.

(e) Accumulation of the sum at processing element 0 after the final communication

Superlinear Speedup

Theoretically, $S_p \leq p$

But in practice superlinear speedup is sometimes observed, that is, $S_p > p$ (why?)

Reasons for superlinear speedup

- Cache effects
- Exploratory decomposition

Parallelism & Span Law

We defined, T_p = runtime on p identical processing elements

Then span, T_{∞} = runtime on an infinite number of identical processing elements

Parallelism, $P = \frac{T_1}{T_{\infty}}$

Parallelism is an upper bound on speedup, i.e., $S_p \leq P$ (why?)

Work Law

The cost of solving (or work performed for solving) a problem:

On a Serial Computer: is given by T_1

On a Parallel Computer: is given by pT_p

<u>\</u>	<u>Nork Law</u>	
	$T_p \ge \frac{T_1}{p}$	

Work Optimality

Let T_s = runtime of the optimal or the fastest known serial algorithm

A parallel algorithm is *cost-optimal* or *work-optimal* provided

$$pT_p = \Theta(T_s)$$

Our algorithm for adding *n* numbers using *n* identical processing elements is clearly not work optimal.

Adding n Numbers Work-Optimality

We reduce the number of processing elements which in turn increases the granularity of the subproblem assigned to each processing element.

Suppose we use p processing elements.

First each processing element locally adds its $\frac{n}{p}$ numbers in time $\Theta\left(\frac{n}{p}\right)$.

Then p processing elements adds these p partial sums in time $\Theta(\log p)$.

Thus
$$T_p = \Theta\left(\frac{n}{p} + \log p\right)$$
, and $T_s = \Theta(n)$.

So the algorithm is work-optimal provided $n = \Omega(p \log p)$.

Scaling Laws

<u>Scaling of Parallel Algorithms</u> (Amdahl's Law)

Suppose only a fraction f of a computation can be parallelized.

Then parallel running time, $T_p \ge (1-f)T_1 + f\frac{T_1}{p}$ Speedup, $S_p = \frac{T_1}{T_p} \le \frac{p}{f+(1-f)p} = \frac{1}{(1-f)+\frac{f}{p}} \le \frac{1}{1-f}$

<u>Scaling of Parallel Algorithms</u> (<u>Amdahl's Law</u>)

Suppose only a fraction f of a computation can be parallelized.

Speedup, $S_p = \frac{T_1}{T_p} \le \frac{1}{(1-f) + \frac{f}{p}} \le \frac{1}{1-f}$

<u>Scaling of Parallel Algorithms</u> (Gustafson-Barsis' Law)

Suppose only a fraction *f* of a computation was parallelized.

Then serial running time, $T_1 = (1 - f)T_p + pfT_p$

Speedup,
$$S_p = \frac{T_1}{T_p} = \frac{(1-f)T_p + pfT_p}{T_p} = 1 + (p-1)f$$

<u>Scaling of Parallel Algorithms</u> (Gustafson-Barsis' Law)

Suppose only a fraction *f* of a computation was parallelized.

Speedup,
$$S_p = \frac{T}{T_p} \le \frac{T_1}{T_p} = \frac{(1-f)T_p + pfT_p}{T_p} = 1 + (p-1)f$$

Source: Wikipedia

Greedy Scheduling Theorem

Nested Parallelism

Parallel Code

Parallel Code
```
int comb ( int n, int r )
{
    if ( r > n ) return 0;
    if ( r == 0 || r == n ) return 1;
    int x, y;
    x = spawn comb( n - 1, r - 1 );
    y = comb( n - 1, r );
    sync;
    return ( x + y );
}
```

```
int comb ( int n, int r )
{
    if ( r > n ) return 0;
    if ( r == 0 || r == n ) return 1;
    int x, y;
    x = spawn comb( n - 1, r - 1 );
    y = comb( n - 1, r );
    sync;
    return ( x + y );
}
```


Computation DAG

- A parallel instruction stream is represented by a DAG G = (V, E).
- Each vertex $v \in V$ is a strand which is a sequence of instructions without a spawn, call, return or exception.
- Each edge $e \in E$ is a *spawn, call, continue* or *return* edge.

Parallelism in comb(4, 2)

Scheduler

A *runtime/online scheduler* maps tasks to processing elements dynamically at runtime.

The map is called a *schedule*.

An *offline scheduler* prepares the schedule prior to the actual execution of the program.

Greedy Scheduling

A strand / task is called *ready* provided all its parents (if any) have already been executed.

executed task

- ready to be executed
- \bigcirc not yet ready

A *greedy scheduler* tries to perform as much work as possible at every step.

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Greedy Scheduling Theorem

Theorem [Graham'68, Brent'74]:

For any greedy scheduler,

$$T_p \le \frac{T_1}{p} + T_\infty$$

Proof:

- *T_p*= #complete steps + #incomplete steps
- Each complete step
 performs *p* work:

#complete steps $\leq \frac{T_1}{p}$

Each incomplete step reduces
 the span by 1:
 #incomplete steps $\leq T_{\infty}$

Optimality of the Greedy Scheduler

Corollary 1: For any greedy scheduler $T_p \leq 2T_p^*$, where T_p^* is the running time due to optimal scheduling on *p* processing elements.

Proof:

Work law:
$$T_p^* \ge \frac{T_1}{p}$$

Span law: $T_p^* \ge T_\infty$

... From Graham-Brent Theorem:

$$T_p \le \frac{T_1}{p} + T_\infty \le T_p^* + T_p^* = 2T_p^*$$

Optimality of the Greedy Scheduler

Corollary 2: Any greedy scheduler achieves $S_p \approx p$ (i.e., nearly linear speedup) provided parallelism, $P = \frac{T_1}{T_{\infty}} \gg p$.

Proof:

Given,
$$P = \frac{T_1}{T_{\infty}} \gg p \Rightarrow \frac{T_1}{p} \gg T_{\infty}$$

... From Graham-Brent Theorem:

$$T_p \leq \frac{T_1}{p} + T_{\infty} \approx \frac{T_1}{p}$$
$$\Rightarrow \frac{T_1}{T_p} \approx p \Rightarrow S_p \approx p$$

Parallel Matrix Multiplication

Parallel Iterative MM

Parallel Iterative MM

Par-Iter-MM (Z, X, Y){ $X, Y, Z \text{ are } n \times n \text{ matrices}, where n is a positive integer}$ }1. parallel for $i \leftarrow 1$ to n do2. parallel for $j \leftarrow 1$ to n do3. $Z[i][j] \leftarrow 0$ 4. for $k \leftarrow 1$ to n do5. $Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$

Work: $T_1(n) = \Theta(n^3)$

Span: $T_{\infty}(n) = \Theta(n)$

Parallel Running Time: $T_p(n) = O\left(\frac{T_1(n)}{p} + T_{\infty}(n)\right) = O\left(\frac{n^3}{p} + n\right)$

Parallelism: $\frac{T_1(n)}{T_{\infty}(n)} = \Theta(n^2)$

Parallel Recursive MM

Parallel Recursive MM

Par-Rec-MM (Z, X, Y) {X, Y, Z are $n \times n$ matrices, where $n = 2^k$ for integer $k \ge 0$ }	
1. if n = 1 then	
2. $Z \leftarrow Z + X \cdot Y$	
3. else	
4. spawn Par-Rec-MM (Z ₁₁ , X ₁₁ , Y ₁₁)	
5. spawn Par-Rec-MM (Z ₁₂ , X ₁₁ , Y ₁₂)	
6. spawn Par-Rec-MM (Z_{21}, X_{21}, Y_{11})	
7. Par-Rec-MM (Z_{21}, X_{21}, Y_{12})	
8. sync	
9. spawn Par-Rec-MM (Z ₁₁ , X ₁₂ , Y ₂₁)	
10. spawn Par-Rec-MM (Z_{12}, X_{12}, Y_{22})	
11. spawn Par-Rec-MM (Z_{21}, X_{22}, Y_{21})	
12. Par-Rec-MM (Z_{22}, X_{22}, Y_{22})	
13. sync	
14. endif	

Parallel Recursive MM

	Work:
Par-Rec-MM (Z, X, Y) { X, Y, Z are $n \times n$ matrices, where $n = 2^k$ for integer $k \ge 0$ } 1. if $n = 1$ then	$T_{1}(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 8T_{1}\left(\frac{n}{2}\right) + \Theta(1), & \text{otherwise.} \end{cases}$
2. $Z \leftarrow Z + X \cdot Y$ 3. else	$= \Theta(n^3)$ [MT Case 1]
4. spawn Par-Rec-MM (Z_{11} , X_{11} , Y_{11}) 5. spawn Par-Rec-MM (Z_{12} , X_{11} , Y_{12}) 6. spawn Par-Rec-MM (Z_{21} , X_{21} , Y_{11}) 7. Par-Rec-MM (Z_{21} , X_{21} , Y_{12}) 8. sync 9. spawn Par-Rec-MM (Z_{14} , X_{12} , Y_{24})	Span: $T_{\infty}(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 2T_{\infty}\left(\frac{n}{2}\right) + \Theta(1), & \text{otherwise.} \end{cases}$ $= \Theta(n) \qquad [MT Case 1]$
9.Spawn Par-Rec-MM (Z_{11} , X_{12} , T_{21})10.spawn Par-Rec-MM (Z_{12} , X_{12} , Y_{22})11.spawn Par-Rec-MM (Z_{21} , X_{22} , Y_{21})12.Par-Rec-MM (Z_{22} , X_{22} , Y_{22})13.sync14.endif	$= \Theta(n) \qquad [MI \text{ Case I}]$ Parallelism: $\frac{T_1(n)}{T_{\infty}(n)} = \Theta(n^2)$ Additional Space:
	$s_{\infty}(n) = \Theta(1)$
Recursive MM with More Parallelism

Recursive MM with More Parallelism

Par-Rec-MM2 (Z, X, Y) {X, Y, Z are $n \times n$ matrices, where $n = 2^k$ for integer $k \ge 0$ }		
1. if n = 1 then		
2. $Z \leftarrow Z + X \cdot Y$		
3. else { T is a temporary $n \times n$ matrix }		
4. spawn Par-Rec-MM2 (Z ₁₁ , X ₁₁ , Y ₁₁)		
5. spawn Par-Rec-MM2 (Z_{12} , X_{11} , Y_{12})		
6. spawn Par-Rec-MM2 (Z_{21}, X_{21}, Y_{11})		
7. spawn Par-Rec-MM2 (Z_{21}, X_{21}, Y_{12})		
8. spawn Par-Rec-MM2 (T_{11} , X_{12} , Y_{21})		
9. spawn Par-Rec-MM2 (T_{12} , X_{12} , Y_{22})		
10. spawn Par-Rec-MM2 (T_{21} , X_{22} , Y_{21})		
11. Par-Rec-MM2 (T_{22} , X_{22} , Y_{22})		
12. sync		
13. parallel for $i \leftarrow 1$ to n do		
14. parallel for $j \leftarrow 1$ to n do		
15. $Z[i][j] \leftarrow Z[i][j] + T[i][j]$		
16. endif		

Recursive MM with More Parallelism

	Work:
Par-Rec-MM2 (Z, X, Y) { X, Y, Z are $n \times n$ matrices, where $n = 2^k$ for integer $k \ge 0$ }	$T_1(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 8T_1\left(\frac{n}{2}\right) + \Theta(n^2), & \text{otherwise.} \end{cases}$
 if n = 1 then Z ← Z + X · Y else { T is a temporary n × n matrix } 	$= \Theta(n^3) \qquad [MT Case 1]$
4.spawn Par-Rec-MM2 (Z_{11}, X_{11}, Y_{11})5.spawn Par-Rec-MM2 (Z_{12}, X_{11}, Y_{12})6.spawn Par-Rec-MM2 (Z_{21}, X_{21}, Y_{11})7.spawn Par-Rec-MM2 (Z_{21}, X_{21}, Y_{12})8.spawn Par-Rec-MM2 (T_{11}, X_{12}, Y_{21})9.spawn Par-Rec-MM2 (T_{12}, X_{12}, Y_{22})10.spawn Par-Rec-MM2 (T_{21}, X_{22}, Y_{21})11.Par-Rec-MM2 (T_{22}, X_{22}, Y_{22})	Span: $T_{\infty}(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T_{\infty}\left(\frac{n}{2}\right) + \Theta(\log n), & \text{otherwise}, \end{cases}$ $= \Theta(\log^2 n) \qquad [\text{ MT Case 2 }]$ Parallelism: $\frac{T_1(n)}{2} = \Theta\left(\frac{n^3}{2}\right)$
12. sync 13. parallel for $i \leftarrow 1$ to n do 14. parallel for $j \leftarrow 1$ to n do	Additional Space:
15. Z[i][j] ← Z[i][j] + T[i][j] 16. endif	$s_{\infty}(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 8s_{\infty}\left(\frac{n}{2}\right) + \Theta(n^2), & \text{otherwise.} \end{cases}$

 $= \Theta(n^3)$ [MT Case 1]

Parallel Merge Sort

Parallel Merge Sort

Par-Merge-Sort (A, p, r) { sort the elements in A[p ... r] }

1. *if p* < *r then*

- 2. $q \leftarrow \lfloor (p+r) / 2 \rfloor$
- 3. spawn Merge-Sort (A, p, q)

4. Merge-Sort (A, q + 1, r)

5. *sync*

6. *Merge* (*A*, *p*, *q*, *r*)

Parallel Merge Sort

Par-Merge-Sort (A, p, r) { sort the elements in A[p ... r] } 1. if p < r then 2. $q \leftarrow \lfloor (p+r) / 2 \rfloor$ 3. spawn Merge-Sort (A, p, q)4. Merge-Sort (A, q+1, r)5. sync 6. Merge (A, p, q, r)

Work:
$$T_1(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 2T_1\left(\frac{n}{2}\right) + \Theta(n), & \text{otherwise.} \end{cases}$$

 $= \Theta(n \log n) \quad [\text{ MT Case 2 }]$
Span: $T_{\infty}(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T_{\infty}\left(\frac{n}{2}\right) + \Theta(n), & \text{otherwise.} \end{cases}$
 $= \Theta(n) \quad [\text{ MT Case 3 }]$
Parallelism: $\frac{T_1(n)}{T_{\infty}(n)} = \Theta(\log n)$

Step 1: Find $x = T[q_1]$, where q_1 is the midpoint of $T[p_1 \dots r_1]$

Step 2: Use binary search to find the index q_2 in subarray $T[p_2 ... r_2]$ so that the subarray would still be sorted if we insert x between $T[q_2 - 1]$ and $T[q_2]$

Step 3: Copy *x* to $A[q_3]$, where $q_3 = p_3 + (q_1 - p_1) + (q_2 - p_2)$

Perform the following two steps in parallel.

Step 4(a): Recursively merge $T[p_1 ... q_1 - 1]$ with $T[p_2 ... q_2 - 1]$, and place the result into $A[p_3 ... q_3 - 1]$

Parallel Merge $n_1 = r_1 - p_1 + 1$ $n_2 = r_2 - p_2 + 1$ $T[p_1..r_1]$ $T[p_2..r_2]$ subarrays to merge: $q_2 r_2$ q_1 r_1 p_1 p_2 T"Introduction to Algorithms" < x< xх $\geq x$. . . Source: Cormen et al., 3rd Edition suppose: $n_1 \ge n_2$ merge copy merge A $\leq x$ $\geq x$. . . х . . . r_3 p_3 q_3 $A[p_3..r_3]$ merged output: $n_3 = r_3 - p_3 + 1 = n_1 + n_2$

Perform the following two steps in parallel.

Step 4(a): Recursively merge $T[p_1 \dots q_1 - 1]$ with $T[p_2 \dots q_2 - 1]$, and place the result into $A[p_3 \dots q_3 - 1]$

Step 4(b): Recursively merge $T[q_1 + 1..r_1]$ with $T[q_2 + 1..r_2]$, and place the result into $A[q_3 + 1..r_3]$

Par-Merge (T, p ₁ , r ₁ , p ₂ , r ₂ , A, p ₃)			
1. $n_1 \leftarrow r_1 - p_1 + 1$, $n_2 \leftarrow r_2 - p_2 + 1$			
2. if n ₁ < n ₂ then			
3. $p_1 \leftrightarrow p_2, r_1 \leftrightarrow r_2, n_1 \leftrightarrow n_2$			
4. if $n_1 = 0$ then return			
5. else			
6. $q_1 \leftarrow \lfloor (p_1 + r_1) / 2 \rfloor$			
7. $q_2 \leftarrow Binary$ -Search ($T[q_1], T, p_2, r_2$)			
8. $q_3 \leftarrow p_3 + (q_1 - p_1) + (q_2 - p_2)$			
9. $A[q_3] \leftarrow T[q_1]$			
10. spawn Par-Merge (T, p_1, q_1 -1, p_2, q_2 -1, A, p_3)			
11. Par-Merge ($T, q_1+1, r_1, q_2+1, r_2, A, q_3+1$)			
12. sync			

Par-Merge (T, p ₁ , r ₁ , p ₂ , r ₂ , A, p ₃)		
1. $n_1 \leftarrow r_1 - p_1 + 1$, $n_2 \leftarrow r_2 - p_2 + 1$		
2. if $n_1 < n_2$ then		
3. $p_1 \leftrightarrow p_2, r_1 \leftrightarrow r_2, n_1 \leftrightarrow n_2$		
4. if $n_1 = 0$ then return		
5. else		
$6. \qquad q_1 \leftarrow \lfloor (p_1 + r_1) / 2 \rfloor$		
7. $q_2 \leftarrow Binary$ -Search ($T[q_1], T, p_2, r_2$)		
8. $q_3 \leftarrow p_3 + (q_1 - p_1) + (q_2 - p_2)$		
9. $A[q_3] \leftarrow T[q_1]$		
10. spawn Par-Merge $(T, p_1, q_1-1, p_2, q_2-1, A, p_3)$		
11. Par-Merge ($T, q_1+1, r_1, q_2+1, r_2, A, q_3+1$)		
12. sync		

We have,

 $n_2 \leq n_1 {\Rightarrow} 2n_2 \leq n_1 + n_2 = n$

In the worst case, a recursive call in lines 9-10 merges half the elements of $T[p_1..r_1]$ with all elements of $T[p_2..r_2]$.

Hence, #elements involved in such a call:

$$\left\lfloor \frac{n_1}{2} \right\rfloor + n_2 \le \frac{n_1}{2} + \frac{n_2}{2} + \frac{n_2}{2} = \frac{n_1 + n_2}{2} + \frac{2n_2}{4} \le \frac{n}{2} + \frac{n}{4} = \frac{3n}{4}$$

Par-N	Merge (T, p ₁ , r ₁ , p ₂ , r ₂ , A, p ₃)	Span:
1. r	$n_1 \leftarrow r_1 - p_1 + 1, n_2 \leftarrow r_2 - p_2 + 1$	$(\Theta(1), \qquad if n = 1,$
2. i	f n ₁ < n ₂ then	$T_{\infty}(n) = \begin{cases} (3n) \\ (3n) \end{cases}$
3.	$p_1 \leftrightarrow p_2, r_1 \leftrightarrow r_2, n_1 \leftrightarrow n_2$	$T_{\infty}(T) = \left(T_{\infty}\left(\frac{1}{4}\right) + \Theta(\log n), \text{ otherwise.}\right)$
4. i	f n ₁ = 0 then return	
5. e	else	$= \Theta(\log^2 n) \qquad [MT Case 2]$
6.	$q_1 \leftarrow \lfloor (p_1 + r_1) / 2 \rfloor$	
7.	$q_2 \leftarrow Binary$ -Search (T[q_1], T, p_2 , r_2)	Work:
8.	$q_3 \leftarrow p_3$ + (q_1 - p_1) + (q_2 - p_2)	Clearly, $T_1(n) = \Omega(n)$
9.	$A[q_3] \leftarrow T[q_1]$	
10.	spawn Par-Merge (T, p ₁ , q ₁ -1, p ₂ , q ₂ -1, A, p ₃)	We show below that, $T_1(n) = O(n)$
11.	Par-Merge (T, q ₁ +1, r ₁ , q ₂ +1, r ₂ , A, q ₃ +1)	For some $\alpha \in \begin{bmatrix} 1 & 3 \end{bmatrix}$ we have the following
12.	sync	For some $\alpha \in [-, -]$, we have the following
		recurrence,

$$T_1(n) = T_1(\alpha n) + T_1((1-\alpha)n) + O(\log n)$$

Assuming $T_1(n) \le c_1 n - c_2 \log n$ for positive constants c_1 and c_2 , and substituting on the right hand side of the above recurrence gives us: $T_1(n) \le c_1 n - c_2 \log n = O(n)$. Hence, $T_1(n) = \Theta(n)$.

Parallel Merge Sort with Parallel Merge

Par-Merge-Sort (A, p, r) { sort the elements in A[p ... r] } 1. if p < r then 2. $q \leftarrow \lfloor (p + r) / 2 \rfloor$ 3. spawn Merge-Sort (A, p, q)4. Merge-Sort (A, q + 1, r)5. sync 6. Par-Merge (A, p, q, r)

Work:
$$T_1(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 2T_1\left(\frac{n}{2}\right) + \Theta(n), & \text{otherwise.} \end{cases}$$

 $= \Theta(n \log n) \quad [\text{ MT Case 2 }]$
Span: $T_{\infty}(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T_{\infty}\left(\frac{n}{2}\right) + \Theta(\log^2 n), & \text{otherwise.} \end{cases}$
 $= \Theta(\log^3 n) \quad [\text{ MT Case 2 }]$
Parallelism: $\frac{T_1(n)}{T_{\infty}(n)} = \Theta\left(\frac{n}{\log^2 n}\right)$