CSE 548: Analysis of Algorithms

Lectures 22 \& 23
(Analyzing Parallel Algorithms)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2012

Why Parallelism?

Unicore Performance Has Hit a Wall!

Some Reasons

- Lack of additional ILP
(Instruction Level Hidden Parallelism)
- High power density
- Manufacturing issues
- Physical limits
- Memory speed

Unicore Performance: No Additional ILP

Exhausted all ideas to exploit hidden parallelism?

- Multiple simultaneous instructions
- Dynamic instruction scheduling
- Branch prediction
- Out-of-order instructions
- Speculative execution
- Pipelining
- Non-blocking caches, etc.

Unicore Performance: High Power Density

- Dynamic power, $P_{d} \propto V^{2} f C$
- $V=$ supply voltage
- $f=$ clock frequency
- C = capacitance
- But $V \propto f$
- Thus $P_{d} \propto f^{3}$

Source: Patrick Gelsinger, Intel Developer Forum, Spring 2004 (Simon Floyd)

Unicore Performance: High Power Density

- Changing f by 20\% changes performance by 13\%
- So what happens if we overclock by 20% ?
- And underclock by 20\%?

Unicore Performance: High Power Density

- Changing f by 20% changes performance by 13%
- So what happens if we overclock by 20% ?
- And underclock by 20\%?

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Unicore Performance: High Power Density

- Changing f by 20% changes performance by 13%
- So what happens if we overclock by 20% ?
- And underclock by 20\%?

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Unicore Performance: Manufacturing Issues

- Frequency, $f \propto 1 / s$
- $s=$ feature size (transistor dimension)
- Transistors / unit area $\propto 1 / s^{2}$
- Typically, die size $\propto 1 / s$
- So, what happens if feature size goes down by a factor of x ?
- Raw computing power goes up by a factor of x^{4} !
- Typically most programs run faster by a factor of x^{3} without any change!

Unicore Performance: Manufacturing Issues

As feature size decreases

- Manufacturing cost goes up
- Cost of a semiconductor fabrication plant doubles every 4 years (Rock's Law)
- Yield (\% of usable chips produced) drops

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Physical Limits

Execute the following loop on a serial machine in 1 second:

$$
\begin{aligned}
& \text { for }\left(i=0 ; i<10^{12} ;++i\right) \\
& \quad z[i]=x[i]+y[i] ;
\end{aligned}
$$

- We will have to access 3×10^{12} data items in one second
- Speed of light is, $c \approx 3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- So each data item must be within $c / 3 \times 10^{12} \approx 0.1 \mathrm{~mm}$ from the CPU on the average
- All data must be put inside a $0.2 \mathrm{~mm} \times 0.2 \mathrm{~mm}$ square
- Each data item (≥ 8 bytes) can occupy only $1 \AA^{2}$ space! (size of a small atom!)

Unicore Performance: Memory Wall

Source: Rick Hetherington, Chief Technology Officer, Microelectronics, Sun Microsystems

Moore's Law Reinterpreted

Source: Report of the 2011 Workshop on Exascale Programming Challenges

Cores / Processor (General Purpose)

No Free Lunch for Traditional Software

Source: Simon Floyd, Workstation Performance: Tomorrow's Possibilities (Viewpoint Column)

Insatiable Demand for Performance

Weather Prediction

Genomics Research

Oil Exploration

Financial Analysis

Design Simulation

Medical Imaging

Some Useful Classifications of Parallel Computers

Parallel Computer Memory Architecture (Shared Memory)

- All processors access all memory as global address space
- Changes in memory by one processor are visible to all others
- Tow types:

- Uniform Memory Access (UMA)
- Non-Uniform Memory Access (NUMA)

NUMA

Parallel Computer Memory Architecture (Distributed Memory)

- Each processor has its own local memory - no global address space
- Changes in local memory by one processor have no effect

Source: Blaise Barney, LLNL

- Communication network to connect inter-processor memory

Parallel Computer Memory Architecture (Hybrid Distributed-Shared Memory)

- The share-memory component can be a cache-coherent SMP or a Graphics Processing Unit (GPU)
- The distributed-memory
 component is the networking of multiple SMP/GPU machines
- Most common architecture for the largest and fastest computers in the world today

Analyzing Parallel Algorithms

Speedup

Let T_{p} = running time using p identical processing elements

Speedup, $S_{p}=\frac{T_{1}}{T_{p}}$

Theoretically, $S_{p} \leq p$ (why?)

Perfect or linear or ideal speedup if $S_{p}=p$

Speedup

Consider adding n numbers using n identical processing elements.

(a) Initial data distribution and the first communication step

Serial runtime, $T=\Theta(n)$
(b) Second communication step

Parallel runtime, $T_{n}=\Theta(\log n)$
Speedup, $S_{n}=\frac{T_{1}}{T_{n}}=\Theta\left(\frac{n}{\log n}\right)$
(c) Third communication step

Speedup not ideal.

$$
\begin{aligned}
& \text { (d) Fourth communication step }
\end{aligned}
$$

(e) Accumulation of the sum at processing element 0 after the final communicatior

Superlinear Speedup

Theoretically, $S_{p} \leq p$

But in practice superlinear speedup is sometimes observed, that is, $S_{p}>p$ (why?)

Reasons for superlinear speedup

- Cache effects
- Exploratory decomposition

Parallelism \& Span Law

We defined, T_{p} = runtime on p identical processing elements
Then span, $T_{\infty}=$ runtime on an infinite number of identical processing elements

Parallelism, $P=\frac{T_{1}}{T_{\infty}}$
Parallelism is an upper bound on speedup, i.e., $S_{p} \leq P \quad$ (why?)

Span Law

$$
T_{p} \geq T_{\infty}
$$

Work Law

The cost of solving (or work performed for solving) a problem:

On a Serial Computer: is given by T_{1}

On a Parallel Computer: is given by $p T_{p}$

Work Law

$$
T_{p} \geq \frac{T_{1}}{p}
$$

Work Optimality

Let $T_{S}=$ runtime of the optimal or the fastest known serial algorithm

A parallel algorithm is cost-optimal or work-optimal provided

$$
p T_{p}=\Theta\left(T_{S}\right)
$$

Our algorithm for adding n numbers using n identical processing elements is clearly not work optimal.

Adding n Numbers Work-Optimality

We reduce the number of processing elements which in turn increases the granularity of the subproblem assigned to each processing element.

Suppose we use p processing elements.
First each processing element locally adds its $\frac{n}{p}$ numbers in time $\Theta\left(\frac{n}{p}\right)$.

(a)

(c)

(b)

(d)

Source: Grama et al.,
"Introduction to Parallel Computing", 2 ${ }^{\text {nd }}$ Edition

Then p processing elements adds these p partial sums in time $\Theta(\log p)$.
Thus $T_{p}=\Theta\left(\frac{n}{p}+\log p\right)$, and $T_{s}=\Theta(n)$.
So the algorithm is work-optimal provided $n=\Omega(p \log p)$.

Scaling Laws

Scaling of Parallel Algorithms (Amdahl's Law)

Suppose only a fraction f of a computation can be parallelized.
Then parallel running time, $T_{p} \geq(1-f) T_{1}+f \frac{T_{1}}{p}$
Speedup, $S_{p}=\frac{T_{1}}{T_{p}} \leq \frac{p}{f+(1-f) p}=\frac{1}{(1-f)+\frac{f}{p}} \leq \frac{1}{1-f}$

Scaling of Parallel Algorithms (Amdahl's Law)

Suppose only a fraction f of a computation can be parallelized.
Speedup, $S_{p}=\frac{T_{1}}{T_{p}} \leq \frac{1}{(1-f)+\frac{f}{p}} \leq \frac{1}{1-f}$

Source: Wikipedia

Scaling of Parallel Algorithms (Gustafson-Barsis' Law)

Suppose only a fraction f of a computation was parallelized.
Then serial running time, $T_{1}=(1-f) T_{p}+p f T_{p}$
Speedup, $S_{p}=\frac{T_{1}}{T_{p}}=\frac{(1-f) T_{p}+p f T_{p}}{T_{p}}=1+(p-1) f$

Scaling of Parallel Algorithms (Gustafson-Barsis' Law)

Suppose only a fraction f of a computation was parallelized.
Speedup, $S_{p}=\frac{T}{T_{p}} \leq \frac{T_{1}}{T_{p}}=\frac{(1-f) T_{p}+p f T_{p}}{T_{p}}=1+(p-1) f$

Source: Wikipedia

Greedy Scheduling Theorem

Nested Parallelism

Loop Parallelism

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right) \xrightarrow[\text { transpose }]{\text { in-place }}\left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{n 1} \\
a_{12} & a_{22} & \ldots & a_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{n n}
\end{array}\right)
$$

Parallel Code

Parallel Execution Model

```
int comb ( int n, int r )
{
    if (r > n ) return 0;
    if (r == 0 || r == n ) return 1;
    int x, y;
    x = spawn comb( n - 1,r r 1 );
    y = comb(n - 1,r );
    sync;
    return ( x + y );
}
```


Parallel Execution Model

```
int comb ( int n, int r )
{
        if ( r > n ) return 0;
    if (r == 0 || r == n ) return 1;
    int x, y;
    x = spawn comb( n - 1, r - 1 );
    y = comb( n - 1, r );
    sync;
    return ( x + y );
}
```


Parallel Execution Model

```
int comb ( int n, int r )
{
    if (r>n ) return 0;
    if (r == 0 || r == n ) return 1;
    int x, Y;
    x = spawn comb( n - 1,r - 1);
    y = comb (n - 1,r );
    sync;
    return ( x + y );
}
```


Parallel Execution Model

```
int comb ( int n, int r )
{
        if ( r > n ) return 0;
    if (r == 0 || r == n ) return 1;
    int x, y;
    x = spawn comb( n - 1, r - 1 );
    y = comb( n - 1, r );
    sync;
    return ( x + y );
}
```


Parallel Execution Model

```
int comb ( int n, int r )
if ( r > n ) return 0;
    if (r == 0 || r == n ) return 1;
    int x, y;
    x = spawn comb( n - 1, r - 1 );
    y = comb( n - 1, r );
    sync;
    return ( x + y );
}
```


Parallel Execution Model

```
int comb ( int n, int r )
if (r > n ) return 0;
    if (r == 0 || r == n ) return 1;
    int x, y;
    x = spawn comb( n - 1, r - 1 );
    y = comb( n - 1, r );
    sync;
    return ( x + y );
}
```


Parallel Execution Model

```
int comb ( int n, int r )
    if (r r n ) return 0;
    if (r == 0 || r == n ) return 1;
    int x, y;
    x = spawn comb( n - 1, r - 1 );
    y = comb( n - 1, r );
    sync;
    return ( x + y );
}
```


Parallel Execution Model

```
int comb ( int n, int r )
    if (r r n ) return 0;
    if (r == 0 || r == n ) return 1;
    int x, y;
    x = spawn comb( n - 1, r - 1 );
    y = comb( n - 1, r );
    sync;
    return ( x + y );
}
```


Parallel Execution Model

```
int comb ( int n, int r )
    if (r > n ) return 0;
    if (r == 0 || r == n ) return 1;
    int x, y;
    x = spawn comb( n - 1, r - 1);
    y = comb( n - 1, r );
    sync;
    return ( x + y );
}
```


Parallel Execution Model

```
int comb ( int n, int r )
    if (r r n ) return 0;
    if (r == 0 || r == n ) return 1;
    int x, y;
    x = spawn comb( n - 1, r - 1 );
    y = comb( n - 1, r );
    sync;
    return ( x + y );
}
```


Computation DAG

- A parallel instruction stream is represented by a DAG $G=(V, E)$.
- Each vertex $v \in V$ is a strand which is a sequence of instructions without a spawn, call, return or exception.
- Each edge $e \in E$ is a spawn, call, continue or return edge.

Parallelism in comb(4, 2)

Scheduler

A runtime/online scheduler maps tasks to processing elements dynamically at runtime.

The map is called a schedule.

An offline scheduler prepares the schedule prior to the actual execution of the program.

Greedy Scheduling

A strand / task is called ready provided all its parents (if any) have already been executed.

〇 executed task
ready to be executed
not yet ready

A greedy scheduler tries to perform as much work as possible at every step.

A Centralized Greedy Scheduler

Let $p=$ number of cores
At every step:

- if $\geq p$ tasks are ready: execute any p of them (complete step)
- if $<p$ tasks are ready: execute all of them (incomplete step)

A Centralized Greedy Scheduler

Let $p=$ number of cores
At every step:

- if $\geq p$ tasks are ready: execute any p of them (complete step)
- if $<p$ tasks are ready: execute all of them (incomplete step)

A Centralized Greedy Scheduler

Let $p=$ number of cores
At every step:

- if $\geq p$ tasks are ready: execute any p of them (complete step)
- if $<p$ tasks are ready: execute all of them (incomplete step)

A Centralized Greedy Scheduler

Let $p=$ number of cores
At every step:

- if $\geq p$ tasks are ready: execute any p of them (complete step)
- if $<p$ tasks are ready: execute all of them (incomplete step)

A Centralized Greedy Scheduler

Let $p=$ number of cores
At every step:

- if $\geq p$ tasks are ready: execute any p of them (complete step)
- if $<p$ tasks are ready: execute all of them (incomplete step)

A Centralized Greedy Scheduler

Let $p=$ number of cores
At every step:

- if $\geq p$ tasks are ready: execute any p of them (complete step)
- if $<p$ tasks are ready: execute all of them (incomplete step)

A Centralized Greedy Scheduler

Let $p=$ number of cores
At every step:

- if $\geq p$ tasks are ready: execute any p of them (complete step)
- if $<p$ tasks are ready: execute all of them (incomplete step)

A Centralized Greedy Scheduler

Let $p=$ number of cores
At every step:

- if $\geq p$ tasks are ready: execute any p of them (complete step)
- if $<p$ tasks are ready: execute all of them (incomplete step)

A Centralized Greedy Scheduler

Let $p=$ number of cores
At every step:

- if $\geq p$ tasks are ready: execute any p of them (complete step)
- if $<p$ tasks are ready: execute all of them (incomplete step)

A Centralized Greedy Scheduler

Let $p=$ number of cores
At every step:

- if $\geq p$ tasks are ready: execute any p of them (complete step)
- if $<p$ tasks are ready: execute all of them (incomplete step)

A Centralized Greedy Scheduler

Let $p=$ number of cores
At every step:

- if $\geq p$ tasks are ready: execute any p of them (complete step)
- if $<p$ tasks are ready: execute all of them (incomplete step)

A Centralized Greedy Scheduler

Let $p=$ number of cores
At every step:

- if $\geq p$ tasks are ready: execute any p of them (complete step)
- if $<p$ tasks are ready: execute all of them (incomplete step)

A Centralized Greedy Scheduler

Let $p=$ number of cores
At every step:

- if $\geq p$ tasks are ready: execute any p of them (complete step)
- if $<p$ tasks are ready: execute all of them (incomplete step)

Greedy Scheduling Theorem

Theorem [Graham'68, Brent'74]:
For any greedy scheduler,

$$
T_{p} \leq \frac{T_{1}}{p}+T_{\infty}
$$

Proof:

$$
\begin{aligned}
& T_{p}=\text { \#complete steps } \\
& \\
& + \text { \#incomplete steps }
\end{aligned}
$$

- Each complete step performs p work: \#complete steps $\leq \frac{T_{1}}{p}$
- Each incomplete step reduces the span by 1 : $\#$ incomplete steps $\leq T_{\infty}$

Optimality of the Greedy Scheduler

Corollary 1: For any greedy scheduler $T_{p} \leq 2 T_{p}^{*}$, where T_{p}^{*} is the running time due to optimal scheduling on p processing elements.

Proof:
Work law: $T_{p}^{*} \geq \frac{T_{1}}{p}$
Span law: $T_{p}^{*} \geq T_{\infty}$
\therefore From Graham-Brent Theorem:

$$
T_{p} \leq \frac{T_{1}}{p}+T_{\infty} \leq T_{p}^{*}+T_{p}^{*}=2 T_{p}^{*}
$$

Optimality of the Greedy Scheduler

Corollary 2: Any greedy scheduler achieves $S_{p} \approx p$ (i.e., nearly linear speedup) provided parallelism, $P=\frac{T_{1}}{T_{\infty}} \gg p$.

Proof:
Given, $P=\frac{T_{1}}{T_{\infty}} \gg p \Rightarrow \frac{T_{1}}{p} \gg T_{\infty}$
\therefore From Graham-Brent Theorem:

$$
\begin{aligned}
& T_{p} \leq \frac{T_{1}}{p}+T_{\infty} \approx \frac{T_{1}}{p} \\
\Rightarrow & \frac{T_{1}}{T_{p}} \approx p \Rightarrow S_{p} \approx p
\end{aligned}
$$

Parallel

Matrix Multiplication

Parallel Iterative MM

Iter-MM $(Z, X, Y) \quad\{X, Y, Z$ are $n \times n$ matrices, where n is a positive integer \}

1. for $i \leftarrow 1$ to $n d o$
2. $f o r j \leftarrow 1$ to n do
3. $\quad Z[i][j] \leftarrow 0$
4. for $k \leftarrow 1$ to n do
5. $\quad Z[i][j] \leftarrow Z[i][j]+X[i][k] \cdot Y[k][j]$

Par-Iter-MM ($Z, X, Y) \quad\{X, Y, Z$ are $n \times n$ matrices, where n is a positive integer \}

1. parallel for $i \leftarrow 1$ to $n d o$
2. parallel for $j \leftarrow 1$ to n do
3. $\quad Z[i][j] \leftarrow 0$
4. for $k \leftarrow 1$ to n do
5. $\quad Z[i][j] \leftarrow Z[i][j]+X[i][k] \cdot Y[k][j]$

Parallel Iterative MM

Par-Iter-MM $(Z, X, Y) \quad\{X, Y, Z$ are $n \times n$ matrices, where n is a positive integer \}

1. parallel for $i \leftarrow 1$ to n do
2. parallel for $j \leftarrow 1$ to n do
3. $Z[i][j] \leftarrow 0$
4. for $k \leftarrow 1$ to n do
5. $\quad Z[i][j] \leftarrow Z[i][j]+X[i][k] \cdot Y[k][j]$

Work: $T_{1}(n)=\Theta\left(n^{3}\right)$
Span: $\quad T_{\infty}(n)=\Theta(n)$
Parallel Running Time: $T_{p}(n)=\mathrm{O}\left(\frac{T_{1}(n)}{p}+T_{\infty}(n)\right)=\mathrm{O}\left(\frac{n^{3}}{p}+n\right)$
Parallelism: $\frac{T_{1}(n)}{T_{\infty}(n)}=\Theta\left(n^{2}\right)$

Parallel Recursive MM

Parallel Recursive MM

Par-Rec-MM (Z, X, Y) $\{X, Y, Z$ are $n \times n$ matrices, where $n=2^{k}$ for integer $\left.k \geq 0\right\}$

1. if $n=1$ then
2. $Z \leftarrow Z+X \cdot Y$
3. else
4. spawn Par-Rec-MM ($\left.Z_{11}, X_{11}, Y_{11}\right)$
5. spawn Par-Rec-MM $\left(Z_{12}, X_{11}, Y_{12}\right)$
6. spawn Par-Rec-MM $\left(Z_{21}, X_{21}, Y_{11}\right)$
7. Par-Rec-MM $\left(Z_{21}, X_{21}, Y_{12}\right)$
8. sync
9. spawn Par-Rec-MM $\left(Z_{11}, X_{12}, Y_{21}\right)$
10. spawn Par-Rec-MM $\left(Z_{12}, X_{12}, Y_{22}\right)$
11. spawn Par-Rec-MM $\left(Z_{21}, X_{22}, Y_{21}\right)$
12. Par-Rec-MM $\left(Z_{22}, X_{22}, Y_{22}\right)$
13. sync
14. endif

Parallel Recursive MM

Work:

Par-Rec-MM ($Z, X, Y) \quad\{X, Y, Z$ are $n \times n$ matrices, where $n=2^{k}$ for integer $\left.k \geq 0\right\}$

1. if $n=1$ then
2. $Z \leftarrow Z+X \cdot Y$
3. else
4. spawn Par-Rec-MM ($\left.Z_{11}, X_{11}, Y_{11}\right)$
5. spawn Par-Rec-MM $\left(Z_{12}, X_{11}, Y_{12}\right)$
6. spawn Par-Rec-MM $\left(Z_{21}, X_{21}, Y_{11}\right)$
7. Par-Rec-MM $\left(Z_{21}, X_{21}, Y_{12}\right)$
8. sync
9. spawn Par-Rec-MM $\left(Z_{11}, X_{12}, Y_{21}\right)$
10. spawn Par-Rec-MM $\left(Z_{12}, X_{12}, Y_{22}\right)$
11. spawn Par-Rec-MM $\left(Z_{21}, X_{22}, Y_{21}\right)$
12. $\operatorname{Par-Rec-MM}\left(Z_{22}, X_{22}, Y_{22}\right)$
13. sync
14. endif

$$
\begin{aligned}
T_{1}(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1 \\
8 T_{1}\left(\frac{n}{2}\right)+\Theta(1), & \text { otherwise } .
\end{array}\right. \\
& =\Theta\left(n^{3}\right)
\end{aligned}
$$

Span:

$$
\begin{aligned}
T_{\infty}(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1, \\
2 T_{\infty}\left(\frac{n}{2}\right)+\Theta(1), & \text { otherwise } .
\end{array}\right. \\
& =\Theta(n) \quad[\text { MT Case } 1]
\end{aligned}
$$

Parallelism: $\frac{T_{1}(n)}{T_{\infty}(n)}=\Theta\left(n^{2}\right)$
Additional Space:

$$
s_{\infty}(n)=\Theta(1)
$$

Recursive MM with More Parallelism

Recursive MM with More Parallelism

Par-Rec-MM2 $(Z, X, Y) \quad\{X, Y, Z$ are $n \times n$ matrices, where $n=2^{k}$ for integer $\left.k \geq 0\right\}$

1. if $n=1$ then
2. $Z \leftarrow Z+X \cdot Y$
3. else $\quad\{T$ is a temporary $n \times n$ matrix $\}$
4. spawn Par-Rec-MM2 $\left(Z_{11}, X_{11}, Y_{11}\right)$
5. spawn Par-Rec-MM2 $\left(Z_{12}, X_{11}, Y_{12}\right)$
6. spawn Par-Rec-MM2 $\left(Z_{21}, X_{21}, Y_{11}\right)$
7. spawn Par-Rec-MM2 $\left(Z_{21}, X_{21}, Y_{12}\right)$
8. spawn Par-Rec-MM2 ($\left.T_{11}, X_{12}, Y_{21}\right)$
9. spawn Par-Rec-MM2 ($\left.T_{12}, X_{12}, Y_{22}\right)$
10. spawn Par-Rec-MM2 ($\left.T_{21}, X_{22}, Y_{21}\right)$
11. Par-Rec-MM2 ($\left.T_{22}, X_{22}, Y_{22}\right)$
12. sync
13. parallel for $i \leftarrow 1$ to n do
14. parallel for $j \leftarrow 1$ to n do
15. $\quad Z[i][j] \leftarrow Z[i][j]+T[i][j]$
16. endif

Recursive MM with More Parallelism

Work:

$$
\begin{aligned}
T_{1}(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1 \\
8 T_{1}\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right), & \text { otherwise }
\end{array}\right. \\
& =\Theta\left(n^{3}\right) \quad[\text { MT Case 1] }
\end{aligned}
$$

Span:

$$
\begin{array}{rlr}
T_{\infty}(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1, \\
T_{\infty}\left(\frac{n}{2}\right)+\Theta(\log n), & \text { otherwise } .
\end{array}\right. \\
& =\Theta\left(\log ^{2} n\right) & {[\text { MT Case } 2]}
\end{array}
$$

Parallelism: $\frac{T_{1}(n)}{T_{\infty}(n)}=\Theta\left(\frac{n^{3}}{\log ^{2} n}\right)$
Additional Space:

$$
\begin{aligned}
s_{\infty}(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1, \\
8 s_{\infty}\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right), & \text { otherwise } .
\end{array}\right. \\
& =\Theta\left(n^{3}\right) \quad[\text { MT Case } 1]
\end{aligned}
$$

Parallel Merge Sort

Parallel Merge Sort

Merge-Sort $(A, p, r) \quad\{$ sort the elements in $A[p \ldots r]\}$

1. if $p<r$ then
2. $q \leftarrow\lfloor(p+r) / 2\rfloor$
3. Merge-Sort ($A, p, q)$
4. \quad Merge-Sort ($A, q+1, r)$
5. $\quad \operatorname{Merge}(A, p, q, r)$

Par-Merge-Sort $(A, p, r) \quad\{$ sort the elements in $A[p \ldots r]\}$

1. if $p<r$ then
2. $\quad q \leftarrow\lfloor(p+r) / 2\rfloor$
3. spawn Merge-Sort ($A, p, q)$
4. \quad Merge-Sort $(A, q+1, r)$
5. sync
6. Merge (A, p, q, r)

Parallel Merge Sort

Par-Merge-Sort (A, p, r) \{ sort the elements in $A[p \ldots r]\}$

1. if $p<r$ then
2. $q \leftarrow\lfloor(p+r) / 2\rfloor$
3. spawn Merge-Sort ($A, p, q)$
4. \quad Merge-Sort ($A, q+1, r)$
5. sync
6. Merge (A, p, q, r)

Work: $T_{1}(n)=\left\{\begin{array}{lr}\Theta(1), & \text { if } n=1, \\ 2 T_{1}\left(\frac{n}{2}\right)+\Theta(n), & \text { otherwise. }\end{array}\right.$

$$
=\Theta(n \log n) \quad[\text { MT Case } 2]
$$

Span: $T_{\infty}(n)=\left\{\begin{array}{lr}\Theta(1), & \text { if } n=1, \\ T_{\infty}\left(\frac{n}{2}\right)+\Theta(n), & \text { otherwise } .\end{array}\right.$
$=\Theta(n)$
[MT Case 3]
Parallelism: $\frac{T_{1}(n)}{T_{\infty}(n)}=\Theta(\log n)$

Parallel Merge

$$
n_{1}=r_{1}-p_{1}+1 \quad n_{2}=r_{2}-p_{2}+1
$$

subarrays to merge
$T\left[p_{1} . . r_{1}\right]$ $T\left[p_{2} . . r_{2}\right]$

p_{1}		q_{1}			r_{1}		p_{2}
$q_{2} r_{2}$							
\cdots	$\leq x$	x	$\geq x$	\cdots	$<x$	$\geq x$	\cdots

suppose: $n_{1} \geq n_{2}$
merge

| \cdots | $\leq x$ | x |
| :--- | :--- | :--- | :--- |
| | p_{3} | q_{3} |

$$
n_{3}=r_{3}-p_{3}+1=n_{1}+n_{2}
$$

Parallel Merge

Step 1: Find $x=T\left[q_{1}\right]$, where q_{1} is the midpoint of $T\left[p_{1} . . r_{1}\right]$

Parallel Merge

Step 2: Use binary search to find the index q_{2} in subarray $T\left[p_{2} . . r_{2}\right]$ so that the subarray would still be sorted if we insert x between $T\left[q_{2}-1\right]$ and $T\left[q_{2}\right]$

Parallel Merge

Step 3: Copy x to $A\left[q_{3}\right]$, where $q_{3}=p_{3}+\left(q_{1}-p_{1}\right)+\left(q_{2}-p_{2}\right)$

Parallel Merge

Perform the following two steps in parallel.
Step 4(a): Recursively merge $T\left[p_{1} . . q_{1}-1\right]$ with $T\left[p_{2} . . q_{2}-1\right]$, and place the result into $A\left[p_{3} . . q_{3}-1\right]$

Parallel Merge

Perform the following two steps in parallel.
Step 4(a): Recursively merge $T\left[p_{1} . . q_{1}-1\right]$ with $T\left[p_{2} . . q_{2}-1\right]$, and place the result into $A\left[p_{3} . . q_{3}-1\right]$
Step 4(b): Recursively merge $T\left[q_{1}+1 . . r_{1}\right]$ with $T\left[q_{2}+1 . . r_{2}\right]$, and place the result into $A\left[q_{3}+1 . . r_{3}\right]$

Parallel Merge

Par-Merge ($\left.T, p_{1}, r_{1}, p_{2}, r_{2}, A, p_{3}\right)$

1. $n_{1} \leftarrow r_{1}-p_{1}+1, \quad n_{2} \leftarrow r_{2}-p_{2}+1$
2. if $n_{1}<n_{2}$ then
3. $\quad p_{1} \leftrightarrow p_{2}, r_{1} \leftrightarrow r_{2}, \quad n_{1} \leftrightarrow n_{2}$
4. if $n_{1}=0$ then return
5. else
6. $\quad q_{1} \leftarrow\left\lfloor\left(p_{1}+r_{1}\right) / 2\right\rfloor$
7. $\quad q_{2} \leftarrow$ Binary-Search $\left(T\left[q_{1}\right], T, p_{2}, r_{2}\right)$
8. $\quad q_{3} \leftarrow p_{3}+\left(q_{1}-p_{1}\right)+\left(q_{2}-p_{2}\right)$
9. $A\left[q_{3}\right] \leftarrow T\left[q_{1}\right]$
10. spawn Par-Merge ($\left.T, p_{1}, q_{1}-1, p_{2}, q_{2}-1, A, p_{3}\right)$
11. \quad Par-Merge $\left(T, q_{1}+1, r_{1}, q_{2}+1, r_{2}, A, q_{3}+1\right)$
12. sync

Parallel Merge

Par-Merge ($T, p_{1}, r_{1}, p_{2}, r_{2}, A, p_{3}$)

1. $n_{1} \leftarrow r_{1}-p_{1}+1, \quad n_{2} \leftarrow r_{2}-p_{2}+1$
2. if $n_{1}<n_{2}$ then
3. $\quad p_{1} \leftrightarrow p_{2}, \quad r_{1} \leftrightarrow r_{2}, \quad n_{1} \leftrightarrow n_{2}$
4. if $n_{1}=0$ then return
5. else
6. $\quad q_{1} \leftarrow\left\lfloor\left(p_{1}+r_{1}\right) / 2\right\rfloor$
7. $\quad q_{2} \leftarrow$ Binary-Search $\left(T\left[q_{1}\right], T, p_{2}, r_{2}\right)$
8. $\quad q_{3} \leftarrow p_{3}+\left(q_{1}-p_{1}\right)+\left(q_{2}-p_{2}\right)$
9. $\quad A\left[q_{3}\right] \leftarrow T\left[q_{1}\right]$
10. spawn Par-Merge $\left(T, p_{1}, q_{1}-1, p_{2}, q_{2}-1, A, p_{3}\right)$
11. \quad Par-Merge $\left(T, q_{1}+1, r_{1}, q_{2}+1, r_{2}, A, q_{3}+1\right)$
12. sync

We have,

$$
n_{2} \leq n_{1} \Rightarrow 2 n_{2} \leq n_{1}+n_{2}=n
$$

In the worst case, a recursive call in lines 9-10 merges half the elements of $T\left[p_{1} . . r_{1}\right]$ with all elements of $T\left[p_{2} . . r_{2}\right]$.

Hence, \#elements involved in such a call:

$$
\left\lfloor\frac{n_{1}}{2}\right\rfloor+n_{2} \leq \frac{n_{1}}{2}+\frac{n_{2}}{2}+\frac{n_{2}}{2}=\frac{n_{1}+n_{2}}{2}+\frac{2 n_{2}}{4} \leq \frac{n}{2}+\frac{n}{4}=\frac{3 n}{4}
$$

Parallel Merge

Par-Merge ($T, p_{1}, r_{1}, p_{2}, r_{2}, A, p_{3}$)

1. $n_{1} \leftarrow r_{1}-p_{1}+1, \quad n_{2} \leftarrow r_{2}-p_{2}+1$
2. if $n_{1}<n_{2}$ then
3. $p_{1} \leftrightarrow p_{2}, r_{1} \leftrightarrow r_{2}, \quad n_{1} \leftrightarrow n_{2}$
4. if $n_{1}=0$ then return
5. else
6. $\quad q_{1} \leftarrow\left\lfloor\left(p_{1}+r_{1}\right) / 2\right\rfloor$
7. $\quad q_{2} \leftarrow$ Binary-Search $\left(T\left[q_{1}\right], T, p_{2}, r_{2}\right)$
8. $\quad q_{3} \leftarrow p_{3}+\left(q_{1}-p_{1}\right)+\left(q_{2}-p_{2}\right)$
9. $A\left[q_{3}\right] \leftarrow T\left[q_{1}\right]$
10. spawn Par-Merge ($\left.T, p_{1}, q_{1}-1, p_{2}, q_{2}-1, A, p_{3}\right)$
11. \quad Par-Merge $\left(T, q_{1}+1, r_{1}, q_{2}+1, r_{2}, A, q_{3}+1\right)$
12. sync

Span:

$$
\begin{aligned}
T_{\infty}(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1 \\
T_{\infty}\left(\frac{3 n}{4}\right)+\Theta(\log n), & \text { otherwise } .
\end{array}\right. \\
& =\Theta\left(\log ^{2} n\right)
\end{aligned}
$$

Work:

Clearly, $T_{1}(n)=\Omega(n)$
We show below that, $T_{1}(n)=O(n)$
For some $\alpha \in\left[\frac{1}{4}, \frac{3}{4}\right]$, we have the following recurrence,

$$
T_{1}(n)=T_{1}(\alpha n)+T_{1}((1-\alpha) n)+\mathrm{O}(\log n)
$$

Assuming $T_{1}(n) \leq c_{1} n-c_{2} \log n$ for positive constants c_{1} and c_{2}, and substituting on the right hand side of the above recurrence gives us: $T_{1}(n) \leq c_{1} n-c_{2} \log n=\mathrm{O}(n)$. Hence, $T_{1}(n)=\Theta(n)$.

Parallel Merge Sort with Parallel Merge

Par-Merge-Sort (A, p, r) \{ sort the elements in $A[p \ldots r]\}$

1. if $p<r$ then
2. $q \leftarrow\lfloor(p+r) / 2\rfloor$
3. spawn Merge-Sort (A, p, q)
4. \quad Merge-Sort $(A, q+1, r)$
5. sync
6. Par-Merge ($A, p, q, r)$

Work: $T_{1}(n)=\left\{\begin{array}{lr}\Theta(1), & \text { if } n=1, \\ 2 T_{1}\left(\frac{n}{2}\right)+\Theta(n), & \text { otherwise. }\end{array}\right.$

$$
=\Theta(n \log n) \quad[\text { MT Case } 2]
$$

Span: $T_{\infty}(n)=\left\{\begin{array}{lr}\Theta(1), & \text { if } n=1, \\ T_{\infty}\left(\frac{n}{2}\right)+\Theta\left(\log ^{2} n\right), & \text { otherwise. }\end{array}\right.$

$$
=\Theta\left(\log ^{3} n\right) \quad[\text { MT Case } 2]
$$

Parallelism: $\frac{T_{1}(n)}{T_{\infty}(n)}=\Theta\left(\frac{n}{\log ^{2} n}\right)$

