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Why Parallelism?



Unicore Performance Has Hit a Wall!

Some Reasons

― Lack of additional ILP 

( Instruction Level Hidden Parallelism )

― High power density

― Manufacturing issues

― Physical limits

― Memory speed



Unicore Performance: No Additional ILP

Exhausted all ideas to exploit hidden parallelism? 

― Multiple simultaneous instructions

― Dynamic instruction scheduling

― Branch prediction

― Out-of-order instructions

― Speculative execution

― Pipelining

― Non-blocking caches, etc.



Unicore Performance: High Power Density
― Dynamic power, Pd ∝ V 2 f C

― V = supply voltage

― f = clock frequency

― C = capacitance

― But V ∝ f

― Thus Pd ∝ f 3

Source: Patrick Gelsinger, Intel Developer Forum, Spring 2004 ( Simon Floyd )



Unicore Performance: High Power Density

― Changing  f by 20% changes performance by 13%

― So what happens if we overclock by 20%?

― And underclock by 20%?

Source: Andrew A. Chien, Vice President of Research, Intel Corporation
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Unicore Performance: Manufacturing Issues

― Frequency,  f ∝ 1 / s

― s = feature size ( transistor dimension )

― Transistors / unit area ∝ 1 / s2

― Typically, die size ∝ 1 / s

― So, what happens if feature size goes down by a factor of x?

― Raw computing power goes up by a factor of x4 !

― Typically most programs run faster by a factor of x3 

without any change!

Source: Kathy Yelick and Jim Demmel, UC Berkeley



Unicore Performance: Manufacturing Issues

As feature size decreases

― Manufacturing cost goes up
― Cost of a semiconductor fabrication plant doubles 

every 4 years ( Rock’s Law )

― Yield ( % of usable chips produced ) drops

Source: Kathy Yelick and Jim Demmel, UC Berkeley



Unicore Performance: Physical Limits

Execute the following loop on a serial machine in 1 second:

for ( i = 0; i < 1012; ++i )

z[ i ] = x[ i ] + y[ i ];

― We will have to access 3×1012 data items in one second

― Speed of light is, c ≈ 3×108 m/s

― So each data item must be within c / 3×1012 ≈ 0.1 mm 

from the CPU on the average

― All data must be put inside a 0.2 mm × 0.2 mm square

― Each data item ( ≥ 8 bytes ) can occupy only 1 Å2 space!

( size of a small atom! )

Source: Kathy Yelick and Jim Demmel, UC Berkeley



Unicore Performance: Memory Wall

Source: Rick Hetherington, Chief Technology Officer, Microelectronics, Sun Microsystems



Moore’s Law Reinterpreted

Source: Report of the 2011 Workshop on Exascale Programming Challenges



Cores / Processor ( General Purpose )

Source: Andrew A. Chien, Vice President of Research, Intel Corporation



No Free Lunch for Traditional Software

Source: Simon Floyd, Workstation Performance: Tomorrow's Possibilities (Viewpoint Column)



Insatiable Demand for Performance

Source: Patrick Gelsinger, Intel Developer Forum, 2008



Some Useful Classifications 

of Parallel Computers



Parallel Computer Memory Architecture
( Shared Memory )

― All processors access all memory 

as global address  space

― Changes in memory by one

processor are visible to all others

― Tow types:

― Uniform Memory Access

( UMA )

― Non-Uniform Memory

Access ( NUMA )

UMA

NUMA

Source: Blaise Barney, LLNL



Parallel Computer Memory Architecture
( Distributed Memory )

― Each processor has its own 

local memory ― no global 

address  space

― Changes in local memory by 

one processor have no effect

on memory of other processors

― Communication network to connect inter-processor memory

Source: Blaise Barney, LLNL



Parallel Computer Memory Architecture
( Hybrid Distributed-Shared Memory )

― The share-memory component

can be a cache-coherent SMP or

a Graphics Processing Unit (GPU)

― The distributed-memory

component is the networking of

multiple SMP/GPU machines

― Most common architecture

for the largest and fastest

computers in the world today

Source: Blaise Barney, LLNL



Analyzing Parallel Algorithms



Speedup

Speedup, �� � ����

Let  �� = running time using � identical processing elements

Theoretically, �� 	 � ( why? )

Perfect or linear or ideal speedup if �� � �
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Parallel runtime, ��= Θ log 
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Theoretically, �� 	 �
But in practice superlinear speedup is sometimes observed, 

that is, �� � � ( why? )

Reasons for superlinear speedup

― Cache effects

― Exploratory decomposition

Superlinear Speedup



Parallelism & Span Law

Parallelism, � � ����

We defined, �� = runtime on � identical processing elements

Parallelism is an upper bound on speedup, i.e., �� 	 � ( why? )

Then span, �� = runtime on an infinite number of identical 

processing elements

Span Law�� � ��



Work Law

The cost of solving ( or work performed for solving ) a problem:

On a Serial Computer: is given by ��
On a Parallel Computer: is given by ���

Work Law

�� � ���



Work Optimality

Let �� = runtime of the optimal or the fastest known serial algorithm

A parallel algorithm is cost-optimal or work-optimal provided��� � Θ ��
Our algorithm for adding 
 numbers using 
 identical processing 

elements is clearly not work optimal.



Suppose we use � processing elements.

First each processing element locally

adds its 
�� numbers in time Θ

�� .

Then � processing elements adds these � partial sums in time Θ log � .

Thus �� � Θ
�� � log � , and �� � Θ 
 .

So the algorithm is work-optimal provided 
 � Ω � log � .

Adding n Numbers Work-Optimality

Source: Grama et al., 
“Introduction to Parallel Computing”, 2nd Edition

We reduce the number of processing 

elements which in turn increases the

granularity of the subproblem assigned

to each processing element.



Scaling Laws



Scaling of Parallel Algorithms
( Amdahl’s Law )

Suppose only a fraction f of a computation can be parallelized.

Then parallel running time, �� � 1 � � �� � � ���
Speedup, �� � ���� 	 �� �!� � � ��!�  "� 	 ��!�



Scaling of Parallel Algorithms
( Amdahl’s Law )

Suppose only a fraction f of a computation can be parallelized.

Speedup, �� � ���� 	 ��!�  "� 	 ��!�

Source: Wikipedia



Scaling of Parallel Algorithms
( Gustafson-Barsis’ Law )

Suppose only a fraction f of a computation was parallelized.

Then serial running time, �� � 1 � � �� � ����
Speedup, �� � ���� � �!� �� ������ � 1 � � � 1 �



Suppose only a fraction f of a computation was parallelized.

Speedup, �� � ��� 	 ���� � �!� �� ������ � 1 � � � 1 �

Source: Wikipedia
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Greedy Scheduling Theorem



Nested Parallelism
int comb ( int n, int r ) 
{

if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = comb( n – 1, r - 1 );
y = comb( n – 1, r );

return ( x + y );
}

int comb ( int n, int r ) 
{

if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = spawn comb( n – 1, r - 1 );
y = comb( n – 1, r );

sync;

return ( x + y );
}

Grant permission to execute 

the called ( spawned ) function 

in parallel with the caller.Control cannot pass this point 

until all spawned children have 

returned.

Serial Code

Parallel Code



Loop Parallelism

in-place

transpose

for ( int i = 1; i < n; ++i )
for ( int j = 0; j < i; ++j )

{
double t = A[ i ][ j ];
A[ i ][ j ] = A[ j ][ i ]; 
A[ j ][ i ] = t;

}

Serial Code

parallel for ( int i = 1; i < n; ++i )
for ( int j = 0; j < i; ++j )

{
double t = A[ i ][ j ];
A[ i ][ j ] = A[ j ][ i ]; 
A[ j ][ i ] = t;

}

Parallel Code

Allows all iterations of the loop 

to be executed in parallel.
Can be converted to spawns and syncs 

using recursive divide-and-conquer.



int comb ( int n, int r ) 
{
if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = spawn comb( n – 1, r - 1 );
y = comb( n – 1, r );

sync;

return ( x + y );
}

Parallel Execution Model



( 4, 2 )1

int comb ( int n, int r ) 
{
if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = spawn comb( n – 1, r - 1 );
y = comb( n – 1, r );
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return ( x + y );
}

Parallel Execution Model



( 4, 2 )

( 3, 1 )

2
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Parallel Execution Model



( 4, 2 )

( 3, 1 ) ( 3, 2 )

( 2, 0 )

3
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int comb ( int n, int r ) 
{
if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = spawn comb( n – 1, r - 1 );
y = comb( n – 1, r );

sync;

return ( x + y );
}

Parallel Execution Model



Computation DAG

strand

return edge

spawn edge continue edge

call edge

― A parallel instruction stream is represented by a DAG G = ( V, E ).

― Each vertex v ∈ V is a strand which is a sequence of instructions 

without a spawn, call, return or exception.

― Each edge e ∈ E is a spawn, call, continue or return edge.



( 4, 2 )

( 3, 1 ) ( 3, 2 )

( 2, 1 ) ( 2, 1 )( 2, 0 ) ( 2, 2 )

( 1, 0 ) ( 1, 1 ) ( 1, 0 ) ( 1, 1 )

Parallelism in comb( 4, 2 )

span: T
∞

= 9work: T1 = 21

parallelism = T1 / T
∞

= 21 / 9 ≈ 2.33

Only marginal performance 

gains with more than 2 cores!



Scheduler

A runtime/online scheduler

maps tasks to processing 

elements dynamically at 

runtime.

The map is called a schedule.

An offline scheduler prepares

the schedule prior to the

actual execution of the 

program.



Greedy Scheduling

A strand / task is called

ready provided all its parents

( if any ) have already been

executed.

A greedy scheduler tries to 

perform as much work as

possible at every step.

executed task

ready to be executed

not yet ready



A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready: 

execute any p of them

( complete step )

― if < p tasks are ready:

execute all of them

( incomplete step )

p = 3
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Greedy Scheduling Theorem

Theorem [ Graham’68, Brent’74 ]:

For any greedy scheduler,

��≤��� � �∞
Proof:��= #complete steps

+ #incomplete steps

― Each complete step 

performs p work: 

#complete steps ≤
���

― Each incomplete step reduces 

the span by 1:

#incomplete steps ≤	�∞

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

9

10

11

12



Optimality of the Greedy Scheduler

Corollary 1: For any greedy scheduler �� 	 2� 	�∗ ,  where � 	�∗ is the 

running time due to optimal scheduling on p processing elements.

Proof:

Work law: � 	�∗ � ���
Span law: � 	�∗ � �∞
∴ From Graham-Brent Theorem: 

	��≤ ��� � �∞ 	 � 	�∗ + � 	�∗ � 2� 	�∗



Optimality of the Greedy Scheduler

Corollary 2: Any greedy scheduler achieves 	��	≈	� ( i.e., nearly 

linear speedup ) provided parallelism, � � ���∞ ≫ �.

Proof:

Given, � � ���∞ ≫ �	⇒ ��� ≫ �∞
∴ From Graham-Brent Theorem: 

	��≤��� � �∞	≈	 ���
⇒

��	�� ≈	�	⇒ 	��	≈	�



Parallel

Matrix Multiplication



Iter-MM ( Z, X, Y )              { X, Y, Z are n × n matrices,

where n is a positive integer }

1.  for i ← 1 to n do

3.            Z[ i ][ j ] ← 0

4.            for k ← 1 to n do

2.       for j ← 1 to n do

5.                 Z[ i ][ j ] ← Z[ i ][ j ] + X[ i ][ k ] ⋅ Y[ k ][ j ]

Parallel Iterative MM

Par-Iter-MM ( Z, X, Y )          { X, Y, Z are n × n matrices,

where n is a positive integer }

1.  parallel for i ← 1 to n do

3.            Z[ i ][ j ] ← 0

4.            for k ← 1 to n do

2.       parallel for j ← 1 to n do

5.                 Z[ i ][ j ] ← Z[ i ][ j ] + X[ i ][ k ] ⋅ Y[ k ][ j ]



Parallel Iterative MM

Par-Iter-MM ( Z, X, Y )          { X, Y, Z are n × n matrices,

where n is a positive integer }

1.  parallel for i ← 1 to n do

3.            Z[ i ][ j ] ← 0

4.            for k ← 1 to n do

2.       parallel for j ← 1 to n do

5.                 Z[ i ][ j ] ← Z[ i ][ j ] + X[ i ][ k ] ⋅ Y[ k ][ j ]

Parallelism: 
�� ��� � � Θ 
&

Work:   �� 
 � Θ 
'
Span:   �� 
 � Θ 

Parallel Running Time: �� 
 � Ο

�� �� � �� 
 � Ο
�(� � 




Parallel Recursive MM

Z

n

n

n/2

n/2 Z11

Z21

Z12

Z22

====

n

n

n/2

n/2 X11 Y11 + X12 Y21

X21 Y11 + X22 Y21

X11 Y12 + X12 Y22

X21 Y12 + X22 Y22

==== ××××

X Y

n

n

n/2

n/2 X11

X21

X12

X22

n

n

n/2

n/2 Y11

Y21

Y12

Y22



Parallel Recursive MM

Par-Rec-MM ( Z, X, Y )     { X, Y, Z are n × n matrices,

where n = 2k for integer k ≥ 0 }

1.  if n = 1 then

3.  else

4.      spawn Par-Rec-MM (  Z11,  X11,  Y11 )

2.      Z ← Z + X ⋅ Y

5.      spawn Par-Rec-MM (  Z12,  X11,  Y12 )

6.      spawn Par-Rec-MM (  Z21,  X21,  Y11 )

7.                Par-Rec-MM (  Z21,  X21,  Y12 )

9.      spawn Par-Rec-MM (  Z11,  X12,  Y21 )

10.      spawn Par-Rec-MM (  Z12,  X12,  Y22 )

11.      spawn Par-Rec-MM (  Z21,  X22,  Y21 )

12.                Par-Rec-MM (  Z22,  X22,  Y22 )

13.      sync

14.  endif

8.      sync



Parallel Recursive MM

Par-Rec-MM ( Z, X, Y )     { X, Y, Z are n × n matrices,

where n = 2k for integer k ≥ 0 }

1.  if n = 1 then

3.  else

4.      spawn Par-Rec-MM (  Z11,  X11,  Y11 )

2.      Z ← Z + X ⋅ Y

5.      spawn Par-Rec-MM (  Z12,  X11,  Y12 )

6.      spawn Par-Rec-MM (  Z21,  X21,  Y11 )

7.                Par-Rec-MM (  Z21,  X21,  Y12 )

9.      spawn Par-Rec-MM (  Z11,  X12,  Y21 )

10.      spawn Par-Rec-MM (  Z12,  X12,  Y22 )

11.      spawn Par-Rec-MM (  Z21,  X22,  Y21 )

12.                Par-Rec-MM (  Z22,  X22,  Y22 )

13.      sync

14.  endif

8.      sync

�� 
 � )Θ 1 , 																		+�	
 � 1,8�� 
2 � Θ 1 , 		-./012+30.
� 	Θ 
' [ MT Case 1 ]

�� 
 � )Θ 1 , 																						+�	
 � 1,2�� 
2 �Θ 1 , 				-./012+30.
� 	Θ 
 [ MT Case 1 ]

3� 
 � Θ 1
Parallelism: 

�� ��� � � Θ 
&
Additional Space:

Span:

Work:



Recursive MM with More Parallelism

Z

n

n

n/2

n/2 Z11

Z21

Z12

Z22

==== ++++

n

n

n/2

n/2 X11Y11

X21Y11

X11Y12

X21Y12

n

n

n/2

n/2 X12Y21

X22Y21

X12Y22

X22Y22

====

n

n

n/2

n/2 X11 Y11 + X12 Y21

X21 Y11 + X22 Y21

X11 Y12 + X12 Y22

X21 Y12 + X22 Y22



Par-Rec-MM2 ( Z, X, Y )      { X, Y, Z are n × n matrices,

where n = 2k for integer k ≥ 0 }

1.  if n = 1 then

3.  else          { T is a temporary n × n matrix }

4.      spawn Par-Rec-MM2 (  Z11,  X11,  Y11 )

2.      Z ← Z + X ⋅ Y

5.      spawn Par-Rec-MM2 (  Z12,  X11,  Y12 )

6.      spawn Par-Rec-MM2 (  Z21,  X21,  Y11 )

7.      spawn Par-Rec-MM2 (  Z21,  X21,  Y12 )

8.      spawn Par-Rec-MM2 (  T11,  X12,  Y21 )

9.      spawn Par-Rec-MM2 (  T12,  X12,  Y22 )

10.      spawn Par-Rec-MM2 (  T21,  X22,  Y21 )

11.                Par-Rec-MM2 (  T22,  X22,  Y22 )

12.      sync

13.      parallel for i ← 1 to n do

15.                Z[ i ][ j ] ← Z[ i ][ j ] + T[ i ][ j ]

14.          parallel for j ← 1 to n do

16.  endif

Recursive MM with More Parallelism



Par-Rec-MM2 ( Z, X, Y )      { X, Y, Z are n × n matrices,

where n = 2k for integer k ≥ 0 }

1.  if n = 1 then

3.  else          { T is a temporary n × n matrix }

4.      spawn Par-Rec-MM2 (  Z11,  X11,  Y11 )

2.      Z ← Z + X ⋅ Y

5.      spawn Par-Rec-MM2 (  Z12,  X11,  Y12 )

6.      spawn Par-Rec-MM2 (  Z21,  X21,  Y11 )

7.      spawn Par-Rec-MM2 (  Z21,  X21,  Y12 )

8.      spawn Par-Rec-MM2 (  T11,  X12,  Y21 )

9.      spawn Par-Rec-MM2 (  T12,  X12,  Y22 )

10.      spawn Par-Rec-MM2 (  T21,  X22,  Y21 )

11.                Par-Rec-MM2 (  T22,  X22,  Y22 )

12.      sync

13.      parallel for i ← 1 to n do

15.                Z[ i ][ j ] ← Z[ i ][ j ] + T[ i ][ j ]

14.          parallel for j ← 1 to n do

16.  endif
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Recursive MM with More Parallelism



Parallel Merge Sort



Merge-Sort ( A, p, r )         { sort the elements in A[ p … r ] }

1.  if p < r then

3.       Merge-Sort (  A,  p,  q )

4. Merge-Sort (  A,  q + 1,  r )

2.       q ←  ( p + r ) / 2 

5.       Merge (  A,  p,  q, r )

Parallel Merge Sort

Par-Merge-Sort ( A, p, r )    { sort the elements in A[ p … r ] }

1.  if p < r then

3.       spawn Merge-Sort (  A,  p,  q )

4. Merge-Sort (  A,  q + 1,  r )

2.       q ←  ( p + r ) / 2 

6.       Merge (  A,  p,  q, r )

5.       sync



Parallel Merge Sort

Par-Merge-Sort ( A, p, r )    { sort the elements in A[ p … r ] }

1.  if p < r then

3.       spawn Merge-Sort (  A,  p,  q )

4. Merge-Sort (  A,  q + 1,  r )

2.       q ←  ( p + r ) / 2 

6.       Merge (  A,  p,  q, r )

5.       sync
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Perform the following two steps in parallel.
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Step 4(a): Recursively merge � ��. . 7� � 1 with � �&. . 7& � 1 , 

and place the result into 5 �'. . 7' � 1
Perform the following two steps in parallel.

Step 4(b): Recursively merge � 7� � 1. . 1� with � 7& � 1. . 1& , 

and place the result into 5 7' � 1. . 1'



Parallel Merge

Par-Merge ( T, p1, r1, p2, r2, A, p3 )

2.  if n1 < n2 then

10.       spawn Par-Merge ( T, p1, q1-1, p2, q2-1, A, p3 )

6.       q1 ←  ( p1 + r1 ) / 2 

12.       sync

1.  n1 ← r1 – p1 + 1,   n2 ← r2 – p2 + 1

3.       p1 ↔ p2,  r1 ↔ r2, n1 ↔ n2

4.  if n1 = 0 then return

5.  else

7.       q2 ← Binary-Search (  T[ q1 ],  T,  p2, r2 )

8.       q3 ← p3 + ( q1 – p1 ) + ( q2 – p2 )

9.       A[ q3 ] ← T[ q1 ]

11.                 Par-Merge ( T, q1+1, r1, q2+1, r2, A, q3+1 )



Parallel Merge

Par-Merge ( T, p1, r1, p2, r2, A, p3 )

2.  if n1 < n2 then

10.       spawn Par-Merge ( T, p1, q1-1, p2, q2-1, A, p3 )

6.       q1 ←  ( p1 + r1 ) / 2 

12.       sync

1.  n1 ← r1 – p1 + 1,   n2 ← r2 – p2 + 1

3.       p1 ↔ p2,  r1 ↔ r2, n1 ↔ n2

4.  if n1 = 0 then return

5.  else

7.       q2 ← Binary-Search (  T[ q1 ],  T,  p2, r2 )

8.       q3 ← p3 + ( q1 – p1 ) + ( q2 – p2 )

9.       A[ q3 ] ← T[ q1 ]

11.                 Par-Merge ( T, q1+1, r1, q2+1, r2, A, q3+1 )

In the worst case, a recursive 

call in lines 9-10 merges half 

the elements of � ��. . 1� with 

all elements of � �&. . 1& .

We have,  
& 	 
�⇒	2
& 	 
� � 
& � 


Hence, #elements involved in 

such a call:


�2 � 
& 	 
�2 � 
&2 � 
&2 � 
� � 
&2 � 2
&4 	 
2 � 
4 � 3
4



Parallel Merge

Par-Merge ( T, p1, r1, p2, r2, A, p3 )

2.  if n1 < n2 then

10.       spawn Par-Merge ( T, p1, q1-1, p2, q2-1, A, p3 )

6.       q1 ←  ( p1 + r1 ) / 2 

12.       sync

1.  n1 ← r1 – p1 + 1,   n2 ← r2 – p2 + 1

3.       p1 ↔ p2,  r1 ↔ r2, n1 ↔ n2

4.  if n1 = 0 then return

5.  else

7.       q2 ← Binary-Search (  T[ q1 ],  T,  p2, r2 )

8.       q3 ← p3 + ( q1 – p1 ) + ( q2 – p2 )

9.       A[ q3 ] ← T[ q1 ]

11.                 Par-Merge ( T, q1+1, r1, q2+1, r2, A, q3+1 )
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recurrence, 
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Parallel Merge Sort with Parallel Merge

Par-Merge-Sort ( A, p, r )    { sort the elements in A[ p … r ] }

1.  if p < r then

3.       spawn Merge-Sort (  A,  p,  q )

4. Merge-Sort (  A,  q + 1,  r )

2.       q ←  ( p + r ) / 2 

6.       Par-Merge (  A,  p,  q, r )

5.       sync

�� 
 � )Θ 1 , 																		+�	
 � 1,2�� 
2 �Θ 
 , 		-./012+30.
� 	Θ 
 log
 [ MT Case 2 ]

�� 
 � )Θ 1 , 																										+�	
 � 1,�� 
2 �Θ log2
 , 				-./012+30.
� 	Θ log3
 [ MT Case 2 ]

Parallelism: 
�� ��� � � Θ

����& �

Span:

Work:


