
CSE 548: Analysis of Algorithms

Lectures 4 & 5

(Divide-and-Conquer Algorithms:

Polynomial Multiplication

& the Fast Fourier Transform)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2012

Coefficient Representation of Polynomials

� � � �������	
�
�� �� � �	� � �� �⋯� ���	���	

� � is a polynomial of degree bound � represented as a vector � � ��, �	, ⋯ , ���	 of coefficients.

The degree of � � is � provided it is the largest integer such that �� is nonzero. Clearly, 0 � � � � � 1.

Evaluating � � 	at a given point:

Takes Θ � time using Horner’s rule:

� �� � �� � �	�� � � �� �⋯� ���	 �� ��	
� �� � �� �	 � �� � �⋯� �� ��� � �� ���	 ⋯

Then , where, for .

Coefficient Representation of Polynomials

� � � �������	
�
�

Adding Two Polynomials:

Adding two polynomials of degree bound � takes Θ � time.

�� � �� � ��

� � � � � � � �
� � � �������	

�
� � � � �������	
�
�where, and .

0 � � � � � 1

Then , where, for .

Coefficient Representation of Polynomials

� � � � ������	
�
�

Multiplying Two Polynomials:

The product of two polynomials of degree bound � is another

polynomial of degree bound 2� � 1.

�� � ��������
�
�

� � � � � � �
� � � �������	

�
� � � � �������	
�
�where, and .

0 � � � 2� � 2
The coefficient vector � � ��, �	, ⋯ , ��� , denoted by � � �	⊗	�,

is also called the convolution of vectors � � ��, �	,⋯ , ���	 and � � ��, �	, ⋯ , ���	 .

Clearly, straightforward evaluation of � takes Θ � 	time.

Then

Coefficient Representation of Polynomials

Multiplying Two Polynomials:

We can use Karatsuba’s algorithm (assume � to be a power of 2):

� � � � � � �� �	 � �	 � � � ! �	 � � � � � � �	 � � �� � � � �

� � � ����� � �����
��	
�
� � �����"���

��	
�
� � �	 � � ��� ���	

�
�
� � � ����� � �����

��	
�
� � �����"���

��	
�
� � �	 � � ��� ���	

�
�

But �	 � � � � � � �	 �� �	 � �� � �	 � �� � � �	 � �	 � � � � � �
3 recursive multiplications of polynomials of degree bound

� .
Similar recurrence as in Karatsuba’s integer multiplication

algorithm leading to a complexity of Ο �$%&! ' � Ο �	.() .

Point-Value Representation of Polynomials

If then

Adding Two Polynomials:

Suppose we have point-value representations of two polynomials

of degree bound � using the same set of � points.

� � � � � � � �

�: ��, +�, , �	, +	, , … , ���	, +��	,
�: ��, +�. , �	, +	. , … , ���	, +��	.

�: ��, +�, � +�. , �	, +	, � +	. , … , ���	, +��	, � +��	.
Thus polynomial addition takes Θ � time.

A point-value representation of a polynomial � � is a set of � point-

value pairs ��, +� , �	, +	 , … , ���	, +��	 such that all �� are

distinct and +� � � �� for 0 � � � � � 1.

A polynomial has many point-value representations.

Point-Value Representation of Polynomials

If then

Multiplying Two Polynomials:

Suppose we have extended (why?) point-value representations of

two polynomials of degree bound � using the same set of 2� points.

� � � � � � �

�: ��, +�, , �	, +	, , … , ���	, +��	,
�: ��, +�. , �	, +	. , … , ���	, +��	.

�: ��, +�,+�. , �	, +	,+	. , … , ���	, +��	, +��	.
Thus polynomial multiplication also takes only Θ � time!

(compare this with the Θ � time needed in the coefficient form)

Faster Polynomial Multiplication?
(in Coefficient Form)

� � � �� � �	� �⋯� ���	���	� � � �� � �	� �⋯� ���	���	 � � � �� � �	� �⋯� ���	���	

� �� , � ��� �	 , � �	⋮� ���	 , � ���	
� ��� �	⋮� ���	

ordinary

multiplication

Time Θ �

pointwise

multiplication

Time Θ �

e
va

lu
a

ti
o

n

T
im

e
?

in
te

rp
o

la
ti

o
n

T
im

e
?

Using Horner’s rule this approach takes Θ � time.

Coefficient Representation ⇒⇒⇒⇒ Point-Value Representation:

We select any set of � distinct points ��, �	, … , ���	 , and

evaluate � �� for 0 � � � � � 1.

This again takes Θ � time.

Point-Value Representation ⇒⇒⇒⇒ Coefficient Representation:

We can interpolate using Lagrange’s formula:

� � � � ∏ � � ���1�∏ �� � ���1� +���	
�
�

In both cases we need to do much better!

Faster Polynomial Multiplication?
(in Coefficient Form)

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

� ��� �	∙∙∙� ���	
�
1 �� �� ⋯ �� ��	1 �	 �	 ⋯ �	 ��	∙ ∙ ∙ ⋯ ∙∙ ∙ ∙ ⋯ ∙∙ ∙ ∙ ⋯ ∙1 ���	 ���	 ⋯ ���	 ��	

���	∙∙∙���	

� � � �� � �	� �⋯� ���	���	A polynomial of degree bound �:

A set of � distinct points: ��, �	, … , ���	
Compute point-value form: ��, � �� , �	, � �	 , … , ���	, � ���	
Using matrix notation:

We want to choose the set of points in a way that simplifies the

multiplication.

In the rest of the lecture on this topic we will assume:3 is a power of 2.

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

� ��� �	∙� �� ⁄ �		� �� ⁄ "�� �� ⁄ "	∙� �� ⁄ " � ⁄ �	

�

1 �� �� ⋯ �� ��	1 �	 �	 ⋯ �	 ��	∙ ∙ ∙ ⋯ ∙1 �� ⁄ �	 �� ⁄ �	 ⋯ �� ⁄ �	 ��		 	 	 	 	1 ��� ��� ⋯ ��� ��	1 ��	 ��	 ⋯ ��	 ��	∙ ∙ ∙ ⋯ ∙1 ��� ⁄ �	 ��� ⁄ �	 ⋯ ��� ⁄ �	 ��	

���	∙∙∙∙∙���	

Let’s choose �� ⁄ "� � ��� for 0 � � � � 2⁄ � 1. Then

�� ⁄ "� � � 5 �� �, 			67	� � 898�,� �� �, 	67	� � :;;.Observe that for 0 � � � � 2⁄ � 1:

Thus we have just split the original � < � matrix into two almost

similar
� < � matrices!

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

How and how much do we save?

where, and .

� � � ��=�= ���	
=
� � �=�=� ⁄ �	

=
� � � �="	�="	� ⁄ �	
=
�

										� � �= � =� ⁄ �	
=
� � � � �="	 � =� ⁄ �	

=
� � �>?>� � � ��@AA � ,
�>?>� � � � �=�=� ⁄ �	

=
� �@AA � � � �="	�=� ⁄ �	
=
�

Observe that for 0 � � � � 2⁄ � 1: � �� � �>?>� �� � ���@AA ��� �� ⁄ "� � � ��� � �>?>� �� � ���@AA ��
So in order to evaluate � �� for all 0 � � � � � 1, we need:� 2⁄ evaluations of �>?>� and � 2⁄ evaluations of �@AA� multiplications� 2⁄ additions and � 2⁄ subtractions

Thus we save about half the computation!

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

If we can recursively evaluate �>?>� and �@AA using the same

approach, we get the following recurrence relation for the running

time of the algorithm:

B � � CΘ 1 , 																		67	� � 1,2B �2 �Θ � , 			:DE8FG6H8.
� 	Θ � log�

Our trick was to evaluate � at � (positive) and �� (negative).

But inputs to �>?>� and �@AA are always of the form � (positive)!

How can we apply the same trick?

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

�>?>� ���>?>� �	∙∙∙�>?>� �� ⁄ �	
�
1 �� �� L ⋯ �� ��1 �	 �	 L ⋯ �	 ��∙ ∙ ∙ ⋯ ∙∙ ∙ ∙ ⋯ ∙∙ ∙ ∙ ⋯ ∙1 �� ⁄ �	 �� ⁄ �	 L ⋯ �� ⁄ �	 ��

����L∙∙���

Let us consider the evaluation of �>?>� �� for 0 � � � � 2⁄ � 1:

In order to apply the same trick on �>?>� we must set:�� L"�⁄ � � ��
for 0 � � � � 4⁄ � 1

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

In �>?>� we set: �� L"�⁄ � ��� for 0 � � � � 4⁄ � 1. Then

This means setting �� L"�⁄ � 6��, where 6 � �1 (imaginary)!

This also allows us to apply the same trick on �@AA .

�>?>� ���>?>� �	∙�>?>� �� L⁄ �		�>?>� �� L⁄ "��>?>� �� L⁄ "	∙�>?>� �� L⁄ " � L⁄ �	

�

1 �� �� ⋯ �� ��	
1 �	 �	 ⋯ �	 ��	∙ ∙ ∙ ⋯ ∙1 �� L⁄ �	 �� L⁄ �	 ⋯ �� L⁄ �	 ��		 	 	 	 	1 ��� ��� ⋯ ��� ��	
1 ��	 ��	 ⋯ ��	 ��	∙ ∙ ∙ ⋯ ∙1 ��� L⁄ �	 ��� ⁄ �	 ⋯ ��� L⁄ �	 ��	

����L∙∙∙∙���

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

We can apply the trick once if we set:�� "�⁄ � ��� for 0 � � � � 2⁄ � 1
We can apply the trick (recursively) 2 times if we also set:

�� !"�⁄ � � ��
for 0 � � � � 2⁄ � 1

We can apply the trick (recursively) 3 times if we also set:

�� N"�⁄ ! � � �� !
for 0 � � � � 2'⁄ � 1

We can apply the trick (recursively) � times if we also set:

�� O"�⁄ OPQ � � �� OPQ
for 0 � � � � 2�⁄ � 1

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

Consider the DRS primitive root of unity:

TR � 8!UVW � cos ZR � 6 ∙ sin ZR 6 � �1
�� "�⁄ � ��� 		⇒ �� Q"�⁄ � TQ ∙ ��Then

�� !"�⁄ � � ��
⇒ �� !"�⁄ � T! ∙ ��

�� N"�⁄ ! � � �� !
⇒ �� N"�⁄ � TN ∙ ��

�� O"�⁄ OPQ � � �� OPQ
⇒ �� O"�⁄ � TO ∙ ��

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

If � � 2� we would like to apply the trick � times recursively.

What values should we choose for ��, �	, … , ���	 ?
Example: For � � 2' we need to choose ��, �	, … , �^ .

Choose: �� � 1� � 3: �	 � TN ∙ ��� � 2: � � T! ∙ ���' � T! ∙ �	
� � 1: �L � TQ ∙ ���(� TQ ∙ �	�` � TQ ∙ ��^ � TQ ∙ �'

� Ta	� Ta� Ta'
� TaL� Ta(� Tà� Tâ

� Ta�

1�1

6

�6

Ta� � Taa
Ta	

Ta
Ta'

TaL

Ta(Tà
Tâ

complex bcd roots of unity

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

For a polynomial of degree bound � � 2�, we need to apply the

trick recursively at most log � � � times.

We choose �� � 1 � T�� and set �� � T�� for 1 � � � � � 1.

Then we compute the following product:

+�+	+∙∙+��	
�

� 1� T�� T�∙∙� T���	
�
1 1 1 ⋯ 11 T� T� ⋯ T� ��	1 T� T� ⋯ T� ��	∙ ∙ ∙ ⋯ ∙∙ ∙ ∙ ⋯ ∙1 T���	 T���	 ⋯ T���	 ��	

���	�∙∙���	
The vector + � +�, +	, ⋯ , +��	 is called the discrete Fourier

transform (DFT) of ��, �	, ⋯ , ���	 .

This method of computing DFT is called the fast Fourier transform

(FFT) method.

Coefficient Form ⇒⇒⇒⇒ Point-Value Form

Rec-FFT ((a0, a1, …, an - 1)) { n = 2k for integer k ≥ 0 }

1. if n = 1 then

3. ωn ← e2πi/n

5. yeven ← Rec-FFT ((a0, a2, …, an - 2))

2. return (a0)

7. for j ← 0 to n/2 − 1 do

8. yj ← yj
even + ω yj

odd

11. return y

4. ω ← 1

6. yodd ← Rec-FFT ((a1, a3, …, an - 1))

9. yn/2+j ← yj
even

− ω yj
odd

10. ω ← ω ωn

B � � CΘ 1 , 																		67	� � 1,2B �2 �Θ � , 			:DE8FG6H8.
� 	Θ � log�

Running time:

Faster Polynomial Multiplication?
(in Coefficient Form)

� � � �� � �	� �⋯� ���	���	� � � �� � �	� �⋯� ���	���	 � � � �� � �	� �⋯� ���	���	

� T�� , � T��� T�	 , � T�	⋮� T���	 , � T���	
� T��� T�	⋮� T���	

ordinary

multiplication

Time Θ �

pointwise

multiplication

Time Θ �

fo
rw

a
rd

 F
F

T

T
im

e
 Θ
�log

�

in
te

rp
o

la
ti

o
n

T
im

e
?

Point-Value Form ⇒⇒⇒⇒ Coefficient Form

Given: 1 1 1 ⋯ 11 T� T� ⋯ T� ��	1 T� T� ⋯ T� ��	∙ ∙ ∙ ⋯ ∙∙ ∙ ∙ ⋯ ∙1 T���	 T���	 ⋯ T���	 ��	
e f e,�A>gh@�A>	i,Rgjk

���	�∙∙���	,l

�
+�+	+∙∙+��	ml

⇒	n T� ∙ �l � +l
We want to solve: �l � n T� �	 ∙ +l
It turns out that: n T� �	 � 1�n 1T�
That means n T� �	 looks almost similar to n T� !

We want to show that ,

where o� is the � < � identity matrix.

Point-Value Form ⇒⇒⇒⇒ Coefficient Form

Show that: n T� �	 � 1�n 1T�
Let p T� � 1�n 1T� p T� n T� � o�
Observe that for 0 � �, � � � � 1, the �, � RS entries are: p T� �� � 1�T����n T� �� � T��� and

Then entry q, r of p T� n T� ,
p T� n T� st � � p T� s�

��	
�
� n T� �t � 1��T�� t�s��	

�
�

Point-Value Form ⇒⇒⇒⇒ Coefficient Form

p T� n T� st � 1��T�� t�s��	
�
�

CASE q � r:
p T� n T� st � 1��T����	

�
� � 1��1��	
�
� � 1� < � � 1

CASE q u r:
p T� n T� st � 1�� T�t�s ���	

�
� � 1� < T�t�s � � 1T�t�s � 1
																																										� 1� < T�� t�s � 1T�t�s � 1 � 1� < 1 t�s � 1T�t�s � 1 � 0
Hence p T� n T� � o�

Point-Value Form ⇒⇒⇒⇒ Coefficient Form

We need to compute the following matrix-vector product:

���	�∙∙���	,l

� 1� <

1 1 1 ⋯ 1
1 1T� 1T�

 ⋯ 1T�
��	

1 1T� 1T�
 ⋯ 1T�

��	
∙ ∙ ∙ ⋯ ∙∙ ∙ ∙ ⋯ ∙
1 1T���	 1T���	

 ⋯ 1T���	
��	

e f PQ

+�+	+∙∙+��	ml

This inverse problem is almost similar to the forward problem,

and can be solved in Θ � log � 	time using the same algorithm as

the forward FFT with only minor modifications!

Faster Polynomial Multiplication?
(in Coefficient Form)

� � � �� � �	� �⋯� ���	���	� � � �� � �	� �⋯� ���	���	 � � � �� � �	� �⋯� ���	���	

� T�� , � T��� T�	 , � T�	⋮� T���	 , � T���	
� T��� T�	⋮� T���	

ordinary

multiplication

Time Θ �

pointwise

multiplication

Time Θ �

fo
rw

a
rd

 F
F

T

T
im

e
 Θ
�log

�

in
ve

rs
e

 F
F

T

T
im

e
Θ
�log

�

Two polynomials of degree bound � given in the coefficient form

can be multiplied in Θ � log � time!

