CSE 548: Analysis of Algorithms

Lectures 7 & 8 (Divide-and-Conquer Algorithms: Akra-Bazzi Recurrences)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Fall 2012

Akra-Bazzi Recurrences

Consider the following recurrence:

$$T(x) = \begin{cases} \Theta(1), & \text{if } 1 \le x \le x_0, \\ \sum_{i=1}^k a_i T(b_i x) + g(x), & \text{if } x > x_0; \end{cases}$$

where,

- 1. $k \ge 1$ is an integer constant
- 2. $a_i > 0$ is a constant for $1 \le i \le k$
- 3. $b_i \in (0,1)$ is a constant for $1 \le i \le k$
- 4. $x \ge 1$ is a real number
- 5. $x_0 \ge \max\left\{\frac{1}{b_i}, \frac{1}{1-b_i}\right\}$ is a constant for $1 \le i \le k$
- 6. g(x) is a nonnegative function that satisfies a polynomial-growth condition (to be specified soon)

Polynomial-Growth Condition

We say that g(x) satisfies the polynomial-growth condition if there exist positive constants c_1 and c_2 such that for all $x \ge 1$, for all $1 \le i \le k$, and for all $u \in [b_i x, x]$,

$$c_1 g(x) \le g(u) \le c_2 g(x),$$

where x, k, b_i and g(x) are as defined in the previous slide.

The Akra-Bazzi Solution

Consider the recurrence given in the previous two slides under the conditions specified there:

$$T(x) = \begin{cases} \Theta(1), & \text{if } 1 \le x \le x_0, \\ \sum_{i=1}^k a_i T(b_i x) + g(x), & \text{if } x > x_0. \end{cases}$$

Let p be the unique real number for which $\sum_{i=1}^k a_i b_i^p = 1$. Then

$$T(x) = \Theta\left(x^p \left(1 + \int_1^x \frac{g(u)}{u^{p+1}} du\right)\right)$$

Examples of Akra-Bazzi Recurrences

Example 1:
$$T(x) = 2T\left(\frac{x}{4}\right) + 3T\left(\frac{x}{6}\right) + \Theta(x \log x)$$

Then
$$p = 1$$
 and $T(x) = \Theta\left(x\left(1 + \int_1^x \frac{u \log u}{u^2} du\right)\right) = \Theta(x \log^2 x)$

Example 2:
$$T(x) = 2T\left(\frac{x}{2}\right) + \frac{8}{9}T\left(\frac{3x}{4}\right) + \Theta\left(\frac{x^2}{\log x}\right)$$

Then
$$p = 2$$
 and $T(x) = \Theta\left(x^2\left(1 + \int_1^x \frac{u^2/\log u}{u^3} du\right)\right) = \Theta\left(\frac{x^2}{\log\log x}\right)$

Example 3:
$$T(x) = T\left(\frac{x}{2}\right) + \Theta(\log x)$$

Then
$$p = 0$$
 and $T(x) = \Theta\left(1 + \int_1^x \frac{\log u}{u} du\right) = \Theta(\log^2 x)$

Example 4:
$$T(x) = \frac{1}{2}T\left(\frac{x}{2}\right) + \Theta\left(\frac{1}{x}\right)$$

Then
$$p = -1$$
 and $T(x) = \Theta\left(\frac{1}{x}\left(1 + \int_{1}^{x} \frac{1}{u} du\right)\right) = \Theta\left(\frac{\log x}{x}\right)$

A Helping Lemma

Lemma: If g(x) is a nonnegative function that satisfies the polynomial-growth condition, then there exist positive constants c_3 and c_4 such that for $1 \le i \le k$ and all $x \ge 1$,

$$c_3 g(x) \le x^p \int_{b_i x}^x \frac{g(u)}{u^{p+1}} du \le c_4 g(x).$$

Proof:

$$b_i x \leq u \leq x$$

$$\Rightarrow \frac{1}{\max\{(b_{i}x)^{p+1}, x^{p+1}\}} \leq \frac{1}{u^{p+1}} \leq \frac{1}{\min\{(b_{i}x)^{p+1}, x^{p+1}\}}$$

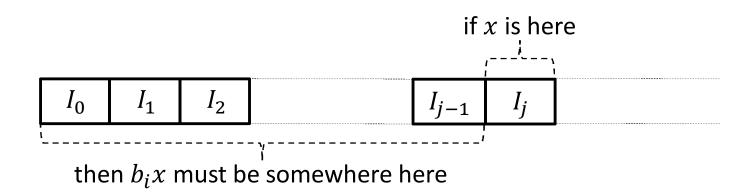
$$\Rightarrow \frac{x^{p}c_{1}g(x)}{\max\{(b_{i}x)^{p+1}, x^{p+1}\}} \int_{b_{i}x}^{x} du \leq x^{p} \int_{b_{i}x}^{x} \frac{g(u)}{u^{p+1}} du \leq \frac{x^{p}c_{2}g(x)}{\min\{(b_{i}x)^{p+1}, x^{p+1}\}} \int_{b_{i}x}^{x} du$$

$$\Rightarrow \frac{(1-b_{i})c_{1}}{\max\{1, b_{i}^{p+1}\}} g(x) \leq x^{p} \int_{b_{i}x}^{x} \frac{g(u)}{u^{p+1}} du \leq \frac{(1-b_{i})c_{2}}{\min\{1, b_{i}^{p+1}\}} g(x)$$

$$\Rightarrow c_{3}g(x) \leq x^{p} \int_{a_{i}}^{x} \frac{g(u)}{u^{p+1}} du \leq c_{4}g(x)$$

Partitioning the Domain of x

Let $I_0 = [1, x_0]$ and $I_j = [x_0 + j - 1, x_0 + j]$ for $j \ge 1$.

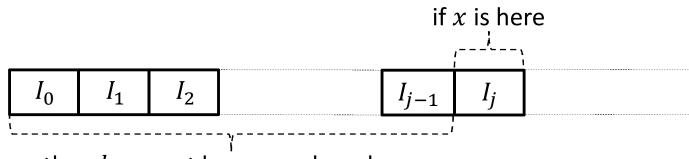


That allows us to use induction in the proof of:

$$T(x) = \begin{cases} \Theta(1), & \text{if } 1 \le x \le x_0, \\ \sum_{i=1}^k a_i T(b_i x) + g(x), & \text{if } x > x_0. \end{cases}$$

Partitioning the Domain of x

Let $I_0 = [1, x_0]$ and $I_j = [x_0 + j - 1, x_0 + j]$ for $j \ge 1$.



then $b_i x$ must be somewhere here

Proof:

$$x_0 + j - 1 < x \le x_0 + j$$

$$\Rightarrow b_i(x_0 + j - 1) < b_i x \le b_i(x_0 + j)$$

$$\Rightarrow b_i x_0 < b_i x \le b_i x_0 + j$$

$$\Rightarrow 1 < b_i x \le x_0 + j - (1 - b_i)x_0$$

$$\Rightarrow 1 < b_i x \le x_0 + j - 1$$

Derivation of the Akra-Bazzi Solution

Lower Bound: There exists a constant $c_5 > 0$ such that for all $x > x_0$,

$$T(x) \ge c_5 x^p \left(1 + \int_1^x \frac{g(u)}{u^{p+1}} du \right).$$

Proof: By induction on the interval I_i containing x.

Base case (j=0) follows since $T(x)=\Theta(1)$ when $x\in I_0=[1,x_0]$.

Induction:
$$T(x) = \sum_{i=1}^{k} a_i T(b_i x) + g(x) \ge \sum_{i=1}^{k} a_i c_5(b_i x)^p \left(1 + \int_1^{b_i x} \frac{g(u)}{u^{p+1}} du\right) + g(x)$$

$$= c_5 x^p \sum_{i=1}^k a_i b_i^p \left(1 + \int_1^x \frac{g(u)}{u^{p+1}} du - \int_{b_i x}^x \frac{g(u)}{u^{p+1}} du \right) + g(x)$$

$$\geq c_5 x^p \left(1 + \int_1^x \frac{g(u)}{u^{p+1}} du - \frac{c_4}{x^p} g(x) \right) \sum_{i=1}^k a_i b_i^p + g(x)$$

$$= c_5 x^p \left(1 + \int_1^x \frac{g(u)}{u^{p+1}} du \right) + (1 - c_4 c_5) g(x) \ge c_5 x^p \left(1 + \int_1^x \frac{g(u)}{u^{p+1}} du \right)$$
(assuming $c_4 c_5 \le 1$)

Derivation of the Akra-Bazzi Solution

Upper Bound: There exists a constant $c_6 > 0$ such that for all $x > x_0$,

$$T(x) \le c_6 x^p \left(1 + \int_1^x \frac{g(u)}{u^{p+1}} du \right).$$

Proof: Similar to the lower bound proof.