CSE 548: Analysis of Algorithms

Lectures 9 \& 10 (Generating Functions)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Fall 2012

An Impossible Counting Problem

Suppose you went to a grocery store to buy some fruits. There are some constraints though:
A. The store has only two apples left: one red and one green. So you cannot take more than 2 apples.
B. All but 3 bananas are rotten. You do not like rotten bananas.
F. Figs are sold 6 per pack. You can take as many packs as you want.
m. Mangoes are sold in pairs. But you must not take more than a pair of pairs.
P. They sell 4 peaches per pack. Take as many packs as you want.

Now the question is: in how many ways can you buy n fruits from the store?

Generating Functions

Generating functions represent sequences by coding the terms of a sequence as coefficients of powers of a variable in a formal power series.

For example, one can represent a sequence $s_{0}, s_{1}, s_{2}, \ldots$ as:

$$
S(z)=s_{0}+s_{1} z+s_{2} z^{2}+s_{3} z^{3}+\cdots+s_{n} z^{n}+\ldots
$$

So s_{n} is the coefficient of z^{n} in $S(z)$.

An Impossible Counting Problem

A. The store has only two apples left: one red and one green. So you cannot take more than 2 apples.

$$
A(z)=1+2 z+z^{2}=(1+z)^{2}
$$

B. All but 3 bananas are rotten. You do not like rotten bananas.

$$
B(z)=1+z+z^{2}+z^{3}=\frac{1-z^{4}}{1-z}
$$

F. Figs are sold 6 per pack. You can take as many packs as you want.

$$
F(z)=1+z^{6}+z^{12}+z^{18}+\cdots=\frac{1}{1-z^{6}}
$$

M. Mangoes are sold in pairs. But you must not take more than a pair of pairs.

$$
M(z)=1+z^{2}+z^{4}=\frac{1-z^{6}}{1-z^{2}}
$$

P. They sell 4 peaches per pack. Take as many packs as you want.

$$
P(z)=1+z^{4}+z^{8}+z^{12}+\cdots=\frac{1}{1-z^{4}}
$$

An Impossible Counting Problem

Suppose you can choose n fruits in s_{n} different ways.
Then the generating function for s_{n} is:

$$
\begin{aligned}
S(z)=A(z) B(z) F(z) M(z) P(z) & =(1+z)^{2} \times \frac{1-z^{4}}{1-z} \times \frac{1}{1-z^{6}} \times \frac{1-z^{6}}{1-z^{2}} \times \frac{1}{1-z^{4}} \\
& =\frac{1+z}{(1-z)^{2}} \\
& =(1+z) \sum_{n=0}^{\infty}(n+1) z^{n} \\
& =\sum_{n=0}^{\infty}(2 n+1) z^{n}
\end{aligned}
$$

Equating the coefficients of z^{n} from both sides:

$$
s_{n}=2 n+1
$$

Fibonacci Numbers

Recurrence for Fibonacci numbers:

$$
\begin{aligned}
& \quad f_{n}=\left\{\begin{array}{cc}
0 & \text { if } n=0 \\
1 & \text { if } n=1 \\
f_{n-1}+f_{n-2} & \text { otherwise }
\end{array}\right. \\
& \Rightarrow f_{n}=f_{n-1}+f_{n-2}+[n=1]
\end{aligned}
$$

Generating function: $\quad F(z)=f_{0}+f_{1} z+f_{2} z^{2}+f_{3} z^{3}+\ldots$

$$
\begin{aligned}
F(z)=\sum_{n} f_{n} z^{n} & =\sum_{n} f_{n-1} z^{n}+\sum_{n} f_{n-2} z^{n}+\sum_{n}[n=1] z^{n} \\
& =\sum_{n} f_{n} z^{n+1}+\sum_{n} f_{n} z^{n+2}+z \\
& =z F(z)+z^{2} F(z)+z
\end{aligned}
$$

Fibonacci Numbers

$$
\begin{aligned}
F(z) & =z F(z)+z^{2} F(z)+z \\
\Rightarrow F(z) & =\frac{z}{1-z-z^{2}} \\
& =\frac{z}{(1-\varphi z)(1-\hat{\varphi} z)}, \text { where } \varphi=\frac{1+\sqrt{ } 5}{2} \& \hat{\varphi}=\frac{1-\sqrt{ } 5}{2} \\
& =\frac{1}{\sqrt{5}}\left(\frac{1}{1-\varphi z}-\frac{1}{1-\hat{\varphi} z}\right) \\
& =\frac{1}{\sqrt{5}} \sum_{n}\left(\phi^{n}-\hat{\phi}^{n}\right) z^{n}
\end{aligned}
$$

Equating the coefficients of z^{n} from both sides:

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Schröder Numbers

For positive integer n :

$$
s_{n}=\left\{\begin{array}{cc}
1 & \text { if } n \leq 2 \\
\left(6 s_{n-1}-s_{n-2}\right)-\frac{3}{n}\left(3 s_{n-1}-s_{n-2}\right) & \text { otherwise }
\end{array}\right.
$$

For $n \geq 2,2 s_{n}$ is the number of lattice paths in the Cartesian plane that start at $(1,1)$, end at (n, n), contain no points above the line $y=x$, and are composed only of steps $(0,1)$, $(1,0)$ and $(1,1)$.

Schröder Numbers

We have:

$$
s_{1}=s_{2}=1
$$

and for $n>2: \quad n s_{n}-6 n s_{n-1}+9 s_{n-1}+n s_{n-2}-3 s_{n-2}=0$

$$
\Rightarrow 3\left(3 s_{n-1}-s_{n-2}\right)+n\left(s_{n-2}-6 s_{n-1}+s_{n}\right)=0
$$

Generating function: $\quad S(z)=s_{1} z+s_{2} z^{2}+s_{3} z^{3}+s_{4} z^{4}+\ldots$

$$
\Rightarrow S^{\prime}(z)=s_{1}+2 s_{2} z+3 s_{3} z^{2}+4 s_{4} z^{3}+\ldots
$$

$3 z S(z)-z^{2} S(z)+z^{3} S^{\prime}(z)-6 z^{2} S^{\prime}(z)+z S^{\prime}(z)$
$=s_{1} z-\left(3 s_{1}-2 s_{2}\right) z^{2}+\left(3\left(3 s_{2}-s_{1}\right)+3\left(s_{1}-6 s_{2}+s_{3}\right)\right) z^{3}$
$+\left(3\left(3 s_{3}-s_{2}\right)+4\left(s_{2}-6 s_{3}+s_{4}\right)\right) z^{4}+\cdots$
$+\left(3\left(3 s_{n-1}-s_{n-2}\right)+n\left(s_{n-2}-6 s_{n-1}+s_{n}\right)\right) z^{n}+\cdots$
$\Rightarrow 3 z S(z)-z^{2} S(z)+z^{3} S^{\prime}(z)-6 z^{2} S^{\prime}(z)+z S^{\prime}(z)$

$$
=s_{1} z-\left(3 s_{1}-2 s_{2}\right) z^{2}
$$

$\Rightarrow(3-z) S(z)+\left(z^{2}-6 z+1\right) S^{\prime}(z)+(z-1)=0$

Schröder Numbers

$$
\begin{aligned}
& (3-z) S(z)+\left(z^{2}-6 z+1\right) S^{\prime}(z)+(z-1)=0 \\
& \Rightarrow \frac{3-z}{\left(z^{2}-6 z+1\right)^{\frac{3}{2}}} S(z)+\frac{z^{2}-6 z+1}{\left(z^{2}-6 z+1\right)^{\frac{3}{2}}} S^{\prime}(z)+\frac{z-1}{\left(z^{2}-6 z+1\right)^{\frac{3}{2}}}=0 \\
& \Rightarrow \frac{3-z}{\left(z^{2}-6 z+1\right)^{\frac{3}{2}}} S(z)+\frac{1}{\left(z^{2}-6 z+1\right)^{\frac{1}{2}}} S^{\prime}(z)=\frac{1-z}{\left(z^{2}-6 z+1\right)^{\frac{3}{2}}} \\
& \Rightarrow \frac{d}{d z}\left(\frac{S(z)}{\left(z^{2}-6 z+1\right)^{\frac{1}{2}}}\right)=\frac{1-z}{\left(z^{2}-6 z+1\right)^{\frac{3}{2}}} \\
& \Rightarrow \int_{0}^{z} \frac{d}{d z}\left(\frac{S(z)}{\left(z^{2}-6 z+1\right)^{\frac{1}{2}}}\right) d z=\int_{0}^{z} \frac{1-z}{\left(z^{2}-6 z+1\right)^{\frac{3}{2}}} d z \\
& \Rightarrow \frac{S(z)}{\left(z^{2}-6 z+1\right)^{\frac{1}{2}}}=\left[\frac{z+1}{4\left(z^{2}-6 z+1\right)^{\frac{1}{2}}}\right]_{0}^{z} \\
& \Rightarrow S(z)=\frac{1}{4}\left(z+1-\sqrt{\left.z^{2}-6 z+1\right)}\right.
\end{aligned}
$$

Schröder Numbers

$$
\begin{aligned}
S(z) & =\frac{1}{4}\left(z+1-\sqrt{z^{2}-6 z+1}\right) \\
& =z+z^{2}+3 z^{3}+11 z^{4}+45 z^{5}+\cdots
\end{aligned}
$$

Equating the coefficients of z^{n} from both sides:

$$
s_{n}=\sum_{k=0}^{\infty} \frac{(n-1)_{k,-1}(n+2)_{k,+1}}{k!(k+1)!}
$$

where, $(a)_{k, l}=a(a+l)(a+2 l) \ldots(a+(k-1) l)$.

