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Abstract

We discuss the problem of attaching geometric objects at given sites on a sim-
ple curve in the plane such that none of the attachments intersect. We present a
polynomial time algorithm for the case when there are at most two choices for the
objects to be attached at every site. We then post several generalizations of this
problem, and summarize the different approaches suggested.

1 The Simple Version : Problem Statement and Algo-
rithm

1.1 Introduction
The motivation for this problem comes from protein folding, where one is given the
“backbone” of a protein (a simple curve) along with a set of “sites” on this backbone.
For every site, there is a (known) set of amino-acids that can be attached to the back-
bone at that site. Every site must have exactly one attachment on it. A (known) energy
functional allots an energy value for every possible configuration of amino-acids at-
tached at the given sites. This energy functional has three terms: the energy of the
underlying backbone, the energy from the interaction between the attached amino-
acids and the backbone, and the energy from the pairwise interaction between attached
amino-acids.

The goal is to find the configuration that minimizes this energy. The above problem
is known to be NP-Hard, and we relax the problem first to find a configuration of
attachments which

• Do not intersect the backbone.

• Do not intersect with each other.

1.2 Problem Statement
We formalize the simple version of the problem as follows. LetB be a simple polygonal
chain, denoted as (b1, b2, ..., b`), where bi are the vertices of this chain. We will refer
to B as the “backbone”. Let S = {si}ni=1 be a subset of the vertices of B, referred to as
“sites”. For every site si there is a set Si containing different polygonal chains that can
be attached to B at si (assume that the polygonal chains have a marked point, which
will coincide with si after the attachment). The input to the problem is (B,S, {Si}ni=1).
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The goal is to find one way of attaching the polygonal chains on sites such that no
two polygonal chains intersect, and no polygonal chain intersects with B. Formally,
the output is a configuration π with π(i) ∈ Si such that

• π(i) ∩ B = ∅ for all i.

• π(i) ∩ π(j) = ∅ for all pairs (i, j).

Conjecture 1. The above problem (call it Version 0) is NP-Hard if #Si > 2 for all i
(proof needed, reduction to 3-SAT ?).

We now present a polynomial time algorithm for the above problem when #Si ≤ 2.

1.3 Algorithm
In a linear scan, for every Si, one can determine which elements of Si intersect B and
discard those elements as they can never be in an allowed configuration. At the end of
this linear scan, #Si ≤ 2 for all i.

For a site si, denote the (at most) two allowed attachments as Si = {pi1, pi2}. Let
Xi be a binary variable which is 0 if π(i) = pi1 and 1 if π(i) = pi2. We will now use
2-SAT [1] to solve the problem of finding non-intersecting attachments.

For every pair of sites (si, sj), the ordered pair (Xi, Xj) takes at most four values
(00,01,10 and 11). Given one such value, one can find out whether the two attachments
at sites si and sj corresponding to Xi and Xj intersect or not. For every disallowed
configuration (Xi, Xj), form a clause, complementing the variables that are 1 in the
disallowed configuration, e.g. if Xi = 1 and Xj = 0 is disallowed (meaning that pi2

and pj1 intersect), form the clause Xi ∨ Xj . Then take the AND of all such clauses
over all pairs. Note that every pair (i, j) gives rise to at most 4 clauses, and therefore
the total number of clauses is bounded by 4

(
n
2

)
= O(n2).

We now have an instance of 2-SAT. It is easily seen that the instance is valid iff
there exists a valid configuration π(i). Moreover, the linear time algorithm for 2-SAT
([1], [3]) gives as output one such valid assignment, if it exists. Hence the algorithm
runs in time O(n2).

Corollary 2. The above problem is a slight generalization of what was discussed in
the seminar. Let B be a polygonal chain on a grid G (so all the edges and vertices of
the chain are contained in the set of edges and vertices of the grid). Let si be the set
of sites. For every site si which is not the start/end vertwx of B, there are at most 2
neighbors of si in G which do not lie on B. If the start (end) vertex of B is a site, choose
any 2 of the at most 3 available attachments. We will run the algorithm on all possible
9 such combinations.

Denote the neighbors as si1 and si2 and let pij := {the edge(si − sij)}. Let
Si := {pi1, pi2}. Thus the only two allowed attachments are just edges of length 1 at
the sites.

This problem will be denoted as the 2-D grid version of the above problem (Version
2) and is a special case of Version 1 discussed above.
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2 Generalizations
We now propose several generalizations of the above problem. We divide them into
two cases: one in which we have to choose from at most two given attachments per site
and the other in which there might be more than two attachments to choose from.

2.1 #Si ≤ 2

Version 3: Assume the same setting as in Version 1. If a configuration such that there
are no mutual pairwise intersections does not exist, one can ask to minimize the number
of intersections.

Conjecture 3. The above version is NP-Hard. The way we solve Version 1 shows
that this problem is related to MAX 2-SAT [1], which is known to be NP-Complete,
and there is currently a 0.940.. approximation, which is close to the best achievable.
One can (hopefully) use this approximation algorithm in a fairly straightforward way
to solve this version.Question: Can one do better ?

Version 4: Assume the same setting as Version 1. One is also given the set of
weights Wi = {wi1, wi2} which describes the preference between attachments pi1 and
pi2 at site i. One is then required to find an assignment which maximizes the total
weight (subject to all the attachments being non-intersecting). One can also remove
the non-intersecting requirement and allow at most k intersections and then be asked
for maximizing weight.

In the simple case when wi1 = 1 and wi2 = 0, the problem seems related to
weighted 2-SAT [1] which is known to be hard (it is NP-Complete), even to approxi-
mate (related to the vertex cover). One can also pose this problem as an Integer Pro-
gramming problem.

Conjecture 4. The above Version is NP-Complete. Methods from Integer program-
ming might help.

2.2 #Si > 2

Version 5: Assume the setting as in Version 2 (the grid version), but this time the
problem is in 3-D,i.e. B ⊂ R3. Now there could be 4 grid neighbors of every si that
do not lie on the backbone, and so 4 possible attachments at this site. It is not clear
that this problem can be reduced to 2-SAT, and therefore whether a polynomial time
algorithm exists.

Version 6: This is just the general version in R3. If the general version in R2 is
NP-Hard, this is clearly hard too.

Version 7: In this case B is a tree instead of a polygonal chain.

3 Related Literature
Apart from 2-SAT and Integer programming which clearly are related to the above
problem, map labeling algorithms might also be useful. In [2] and references therein,
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the authors consider the problem of putting rectangles/squares (representing the text)
next to points (representing landmarks) on a map in such a way that the rectangles do
not overlap.
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