
CSE 613: Parallel Programming

Lecture 21

(The Message Passing Interface)

Jesmin Jahan Tithi
Department of Computer Science

SUNY Stony Brook

Fall 2013

(Slides from Rezaul A. Chowdhury)

Principles of Message-Passing Programming

― One of the oldest and most

widely used approaches for

programming parallel computers

― Two key attributes

o Assumes a partitioned address space

o Supports only explicit parallelism

― Two immediate implications of partitioned address space

o Data must be explicitly partitioned and placed to appropriate

partitions

o Each interaction (read-only and read/write) requires

cooperation between two processes: process that has the

data, and the one that wants to access the data

Source: Blaise Barney, LLNL

Structure of Message-Passing Programs

Asynchronous

― All concurrent tasks execute asynchronously

― Most general (can implement any parallel algorithm)

― Can be difficult to reason about

― Can have non-deterministic behavior due to races

Loosly Synchronous

― A good compromise between synchronous and asynchronous

― Tasks or subset of tasks synchronize to interact

― Between the interactions tasks execute asynchronously

― Easy to reason about these programs

Structure of Message-Passing Programs

Source

Files

Processor 1

Source

Files

Processor p

Compile to suit

processor

Executables

Source

Files

Processor 1 Processor p

Compile to suit

processor

Executables

Multiple Program Multiple Data (MPMD) Single Program Multiple Data (SPMD)

― Ultimate flexibility in parallel

programming

― Unscalable

― Most message-passing programs

― Loosely synchronous or

completely asynchronous

The Building Blocks: Send & Receive Operations

send(&data, n, dest):

Send n items pointed to by &data to a processor with id dest

receive(&data, n, src):

Receive n items from a processor with id src to location pointed

to by &data

But wait! What P1 prints when P0 and P1 execute the following code?

Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition

Blocking Non-Buffered Send / Receive

Sending operation waits until the matching receive operation is

encountered at the receiving process, and data transfer is complete.

Blocking Non-Buffered Send / Receive

May lead to idling:

Blocking Non-Buffered Send / Receive

May lead to idling:

Blocking Non-Buffered Send / Receive

May lead to idling:

Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition

Blocking Non-Buffered Send / Receive

May lead to deadlocks:

― The send at P0 waits for the matching receive at P1

― The send at P1 waits for the matching receive at P0

S
o

u
rc

e
:

G
ra

m
a

e
t

a
l.

,

“I
n

tr
o

d
u

ct
io

n
 t

o
 P

a
ra

ll
e

l
C

o
m

p
u

ti
n

g
”,

2
n

d
E

d
it

io
n

Blocking Buffered Send / Receive

― Sending operation waits until data is copied into a pre-allocated

communication buffer at the sending process

― Data is first copied into a buffer at the receiving process as well,

from where data is copied to the target location by the receiver

S
o

u
rc

e
:

G
ra

m
a

e
t

a
l.

,

“I
n

tr
o

d
u

ct
io

n
 t

o
 P

a
ra

ll
e

l
C

o
m

p
u

ti
n

g
”,

2
n

d
E

d
it

io
n

Blocking Buffered Send / Receive

Finite buffers lead to delays:

― What happens if the sender’s buffer can only hold 10 items?

Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition

Blocking Buffered Send / Receive

May still lead to deadlocks:

― Blocks because the receive calls are always blocking in

order to ensure consistency

Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition

Non-Blocking Non-Buffered Send / Receive

― Sending operation posts a pending message and returns

― When the corresponding receive is posted data transfer starts

― When data transfer is complete the check-status operation

indicates that it is safe to touch the data

Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition

Non-Blocking Buffered Send / Receive

― Sending operation initiates a DMA (Direct Memory Access)

operation and returns immediately

― Data becomes safe as soon as the DMA operation completes

― The receiver initiates a transfer from sender’s buffer to receiver’s

target location

― Reduces the time during which the data is unsafe to touch

Possible Protocols for Send & Receive Operations

Source: Grama et al.,

“Introduction to Parallel Computing”,

2nd Edition

The Minimal Set of MPI Routines

― The MPI library contains over 125 routines

― But fully functional message-passing programs can be written

using only the following 6 MPI routines

― All 6 functions return MPI_SUCCESS upon successful completion,

otherwise return an implementation-defined error code

― All MPI routines, data-types and constants are prefixed by MPI_

― All of them are defined in mpi.h (for C/C++)

Starting and Terminating the MPI Library

1. #include < mpi.h >

3. main(int argc, char *argv[])

4. {

2.

5. MPI_Init(&argc, &argv);

6. … … … // do some work

7. MPI_Finalize();

8. }

― Both MPI_Init and MPI_Finalize must be called by all processes

― Command line should be processed only after MPI_Init

― No MPI function may be called after MPI_Finalize

Communicators

― A communicator defines the scope of a communication operation

― Each process included in the communicator has a rank associated

with the communicator

― By default, all processes are included in a communicator called

MPI_COMM_WORLD, and each process is given a unique rank

between 0 and p – 1, where p is the number of processes

― Additional communicator can be created for groups of processes

― To get the size of a communicator:

int MPI_Comm_size(MPI_Comm comm, int *size)

― To get the rank of a process associated with a communicator:

int MPI_Comm_rank(MPI_Comm comm, int *rank)

Communicators

1. #include < mpi.h >

3. main(int argc, char *argv[])

4. {

2.

6. MPI_Init(&argc, &argv);

10. MPI_Finalize();

11. }

5. int p, myrank;

7. MPI_Comm_size(MPI_COMM_WORLD, &p);

8. MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

9. printf(“This is process %d out of %d!\n”, p, myrank);

MPI Standard Blocking Send Format

int MPI_Send(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm)

address of

send buffer

number of

items to send

datatype of

each item

rank of

destination process

message tag communicator

data parameters

envelope parameters

MPI Standard Blocking Receive Format

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

int src, int tag, MPI_Comm comm, MPI_Status *status)

address of

receive buffer

number of

items to receive

datatype of

each item

rank of

source process

message tag communicator

data parameters

envelope parameters

status after

operation

MPI Datatypes

MPI Datatype C Datatype

Blocking Send/Receive between Two Processes

1. #include < mpi.h >

3. main(int argc, char *argv[])

4. {

2.

7. MPI_Init(&argc, &argv);

16. MPI_Finalize();

17. }

5. int myrank, v = 121;

6. MPI_Status status;

8. MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

11. printf(“Process %d sent %d!\n”, p, myrank, v);

9. if (myrank == 0) {

10. MPI_Send(&v, 1, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD);

14. printf(“Process %d received %d!\n”, p, myrank, v);

12. } else if (myrank == 1) {

13. MPI_Recv(&v, 1, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD , &status);

15. }

Non-Blocking Send / Receive

int MPI_Isend(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *req)

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,

int src, int tag, MPI_Comm comm, MPI_Request *req)

The MPI_Request object is used as an argument to the following two

functions to identify the operation whose status we want to query or

to wait for its completion.

int MPI_Test(MPI_Request *req, int *flag, MPI_Status *status)

int MPI_Wait(MPI_Request *req, MPI_Status *status)

― Returns *flag = 1, if the operation associated with *req has

completed, otherwise returns *flag = 0

― Waits until the operation associated with *req completes

Non-Blocking Send and Blocking Receive

1. #include < mpi.h >

3. main(int argc, char *argv[])

4. {

2.

8. MPI_Init(&argc, &argv);

15. MPI_Finalize();

16. }

5. int myrank, v = 121;

6. MPI_Status status;

9. MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

13. MPI_Wait(&req, &status);

10. if (myrank == 0) {

11. MPI_Isend(&v, 1, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD, &req);

14. } else if (myrank == 1) MPI_Recv(&v, 1, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD , &status);

7. MPI_Request req;

12. compute(); /* but do not modify v */

Non-Blocking Send/Receive
1. #include < mpi.h >

2. main(int argc, char *argv[])

3. {

7. MPI_Init(&argc, &argv);

18. MPI_Finalize();

19. }

4. int myrank, v = 121;

5. MPI_Status status;

8. MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

12. MPI_Wait(&req, &status);

9. if (myrank == 0) {

10. MPI_Isend(&v, 1, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD, &req);

13. } else if (myrank == 1) {

6. MPI_Request req;

11. compute(); /* but do not modify v */

16. MPI_Wait(&req, &status);

14. MPI_Irecv(&v, 1, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD, &req);

17. }

15. compute(); /* but do not read or modify v */

MPI Collective Communication & Computation
Operations

Synchronization

― Barrier

Data Movement

― Broadcast

― Scatter

― Gather

― All-to-all

Global Computation

― Reduce

― Scan

These routines must be

called by all processes in

the communication group

Barrier Synchronization

int MPI_Barrier(MPI_Comm comm)

Returns only after all processes in the communication group

have called this function

Broadcast

Sends the data stored in the

buffer buf of process src to all

the other processes in the

group

int MPI_Bcast(void *buf,

int count,

MPI_Datatype datatype,

int src,

MPI_Comm comm)

S
o

u
rc

e
:

W
il

k
in

so
n

 &
 A

ll
e

n
.,

“P
a

ra
ll

e
l

P
ro

g
ra

m
m

in
g

”,

2
n

d
E

d
it

io
n

Scatter

The src process sends a

different part of sendbuf to

each process, including itself.

Process i receives sendcount

contiguous elements starting

from i × sendcount.

The received data are stored

in recvbuf.

int MPI_Scatter(void *sendbuf,

int sendcount,

MPI_Datatype sendtype,

void *recvbuf,

int recvcount,

MPI_Datatype recvtype,

int src,

MPI_Comm comm)

S
o

u
rc

e
:

W
il

k
in

so
n

 &
 A

ll
e

n
.,

“P
a

ra
ll

e
l

P
ro

g
ra

m
m

in
g

”,

2
n

d
E

d
it

io
n

Gather

The opposite of scatter.

Every process, including dest

sends data stored in sendbuf

to dest.

Data from process i occupy

sendcount contiguous

locations of recvbuf starting

from i × sendcount.

int MPI_Gather(void *sendbuf,

int sendcount,

MPI_Datatype sendtype,

void *recvbuf,

int recvcount,

MPI_Datatype recvtype,

int dest,

MPI_Comm comm)

S
o

u
rc

e
:

W
il

k
in

so
n

 &
 A

ll
e

n
.,

“P
a

ra
ll

e
l

P
ro

g
ra

m
m

in
g

”,

2
n

d
E

d
it

io
n

Reduce

Combines the elements stored

in sendbuf of each process

using the operation op, and

stores the combined values in

recvbuf of the process with

rank dest.

int MPI_Reduce(void *sendbuf,

void *recvbuf,

int count,

MPI_Datatype datatype,

MPI_Op op,

int dest,

MPI_Comm comm)

S
o

u
rc

e
:

W
il

k
in

so
n

 &
 A

ll
e

n
.,

“P
a

ra
ll

e
l

P
ro

g
ra

m
m

in
g

”,

2
n

d
E

d
it

io
n

Reduce

MPI_Reduce(vals, sums, 4, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD)

Predefined Reduction Operations

Scan / Prefix

Performs a prefix reduction of

the data stored in sendbuf at

each process and returns the

results in recvbuf of the

process with rank dest.

int MPI_Scan(void *sendbuf,

void *recvbuf,

int count,

MPI_Datatype datatype,

MPI_Op op,

MPI_Comm comm)

MPI_Scan(vals, sums, 4, MPI_INT, MPI_SUM, MPI_COMM_WORLD)

