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Parallel Execution Time & Overhead
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M Essential/Excess Computation L Inte rprocessor Communication
[ 1dting
Parallel running time on p processing elements,

TP = tend - tstart/

where, t = starting time of the processing element
that starts first
t,,, = termination time of the processing element

en
that finishes last

start



Parallel Execution Time & Overhead
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[ 1dting
Sources of overhead ( w.r.t. serial execution )

— Interprocess interaction
— Interact and communicate data ( e.g., intermediate results )
— Idling
— Due to load imbalance, synchronization, presence of serial
computation, etc.

— Excess computation

— Fastest serial algorithm may be difficult/impossible to parallelize



Parallel Execution Time & Overhead
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[ 1dting

Overhead function or total parallel overhead,
To = pT,-T,

where, p = number of processing elements
T = time spent doing useful work
( often execution time of the fastest serial algorithm )



Speedup

Let T, = running time using p identical processing elements

Speedup, S, = ;—1

p

Theoretically, S, <p (why?)

Perfect or linear or ideal speedup if S, = p



Speedup

Consider adding n numbers

using n identical processing

elements.

Serial runtime, T; = O(n)

Parallel runtime, T,,= ©®(logn)

Speedup, S,,= T— =

n

Speedup not ideal.
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(a) Initial data distribution and the first communication step
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(b} Second communication step
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ic) Third communication step

“Introduction to Parallel Computing”, 2" Edition
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(d) Fourth communication step

Source: Grama et al.,
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() Accumulation of the sum at processing element O after the final communicatior



Superlinear Speedup

Theoretically, §, < p

But in practice superlinear speedup is sometimes observed,
thatis, S, > p (why?)

Reasons for superlinear speedup
— Cache effects

— Exploratory decomposition



Superlinear Speedup
( Cache Effects )

Let cache access latency = 2 ns ,= DRAM ":::::::.
DRAM access latency = 100 ns o il T
| cache | | cache |
Suppose we want solve a problem
instance that executes k FLOPs. % %
CPU CPU
With 1 Core: Suppose cache hit rate is 80%. < core

If the computation performs 1 FLOP/memory access, then each
FLOP will take 2 x 0.8 + 100 x 0.2 = 21.6 ns to execute.

With 2 Cores: Cache hit rate will improve. ( why? )
Suppose cache hit rate is now 90%.
Then each FLOP will take 2 x 0.9 + 100 x 0.1 = 11.8 ns to execute.

Since now each core will execute only k / 2 FLOPs,

kx21.6
~ l
(K/Z)x1L8 3.66 > 2!

Speedup, S,=



Superlinear Speedup

( Due to Exploratory Decomposition )

Consider searching an array of 2n unordered elements for a specific

element x.

Suppose x is located at array location k> n and k is odd.

Serial runtime, T; = k

Parallel running time with n
processing elements, T,, = 1

Speedup, S,, = ;—1 =k>n

n

Speedup is superlinear!

Al1] A2l AB] ... ... ... Alkl A[2n]
X
sequential search
Al1] A[2] A[B] ... ... ... Alkl L A[2n]
X
\ \ ) \ ; \ )
Y Y
P, P, e Pl e e e P,

parallel search



Parallelism & Span Law

We defined, T}, = runtime on p identical processing elements

Then span, T, = runtime on an infinite number of identical
processing elements

. T
Parallelism, P = —&

o0

Parallelism is an upper bound on speedup, i.e., S, < P (why?)

Span Law
Tp > To




Work Law

The cost of solving ( or work performed for solving ) a problem:

On a Serial Computer: is given by T

On a Parallel Computer: is given by pT,,

Work Law

T
T, > —
p




Work Optimality

Let T; = runtime of the optimal or the fastest known serial algorithm

A parallel algorithm is cost-optimal or work-optimal provided
pr — ®(Ts)

Our algorithm for adding n numbers using n identical processing
elements is clearly not work optimal.



Adding n Numbers Work-Optimality

We reduce the number of processing
elements which in turn increases the SRR e R N

granularity of the subproblem assigned @ @ & & 800 a
to each processing element. @ ®

. I':; Eiﬁ E|]:.5
Suppose we use p processing elements. ® 000 B 0060
First each processing element locally i 2

Source: Grama et al.,
“Introduction to Parallel Computing”, 24 Edition

adds its g numbers in time ® (g)

Then p processing elements adds these p partial sums in time ®(logp).
ThusT, = ® (E + logp) and T, = O(n).
p p ’ S

So the algorithm is work-optimal provided n = Q(p logp).



Scaling Laws



Scaling of Parallel Algorithms
( Amdahl’s Law )

1-)1y P [Ty

serial section parallelizable section

N AN

1 processing
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p processing
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Suppose only a fraction f of a computation can be parallelized.

Then parallel running time, T,, = (1 — f)T; + f%

Tl P 1
— < —
Ty = f+@=Pp  (1-p)+%

Speedup, S, = <

1
1-f



Scaling of Parallel Algorithms
( Amdahl’s Law )

Suppose only a fraction f of a computation can be parallelized.

ﬂ< 1 <L

To = (-p+L 7 1-f

Speedup, &, =

Amdahl’s Law
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Source: Wikipedia



Scaling of Parallel Algorithms
( Gustafson-Barsis’ Law )

T

serial section

L

7] 1 processing
2 element

p processing
elements

[

(1- )T, T rr,

T

Suppose only a fraction f of a computation was parallelized.

[

Then serial running time, Ty = (1 — )T, + pfT,

Speedup, Sp _ % _ (1-f)Tp+pfTp -1+ (p _ 1)f

P Tp




Suppose only a fractionfof a computation was parallelized.

Speedup, S, = —— < =1+ (p—-1)f

60

Scaling of Parallel Algorithms
( Gustafson-Barsis’ Law )
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Strong Scaling vs. Weak Scaling

“rean e
1 |k
Number of Processcrs (p) Number of Processors (p)
Strong Scaling
How T, ( or S, ) varies with p when the problem size is fixed.
Weak Scaling

How T, ( or S, ) varies with p when the problem size per

processing element is fixed.

Source: Martha Kim, Columbia University



Scalable Parallel Algorithms

s
Efficiency, E, = ?p = pTTl
p

Fixed problem size (W) ' Fixed number of processors (p)

Source: Grama et al.,
“Introduction to Parallel Computing”,
2nd Edition

I W

A parallel algorithm is called scalable if its efficiency can be
maintained at a fixed value by simultaneously increasing the number
of processing elements and the problem size.

Scalability reflects a parallel algorithm’s ability to utilize increasing
processing elements effectively.



Scalable Parallel Algorithms

In order to keep E,, fixed at a constant k, we need

I
E,=k=—7=k=T;, = kpT

For the algorithm that adds n numbers using p processing elements:
T, = d T,==+2l
1 =N and 1y ” + 2logp

So in order to keep E,, fixed at k, we must have:

n 2k
n=kp ;+210gp :nszplogp

n p=1 p=4 p=48 p=16 p=32
64 1.0 0.80 0.57 0.33 0.17
192 1.0 0.92 0.80 0.60 0.38
320 1.0 0.95 0.87 0.71 0.50
512 1.0 0.97 0.91 0.80 0.62

Fig: Efficiency for adding n numbers using p processing elements

Source: Grama et al., “Introduction to Parallel Computing”, 2" Edition



