CSE 613: Parallel Programming

Lectures 3 & 4
( Analytical Modeling of Parallel Algorithms )

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Fall 2013



Parallel Execution Time & Overhead

Executiom Time —< =°;

£

P — ?_:

£ A £

- © 8

i ]

P2 [ 59 .
. | o2 O
E © &
P g 5 s
©
IJI-G - é 8 &

50

—_— o +

P7 a S

©

@]

—

+—

£

M Essential/Excess Computation L Inte rprocessor Communication
[ 1dting
Parallel running time on p processing elements,

TP = tend - tstart/

where, t = starting time of the processing element
that starts first
t,,, = termination time of the processing element

en
that finishes last

start



Parallel Execution Time & Overhead

Execution Time < %0

£

70 ] — §_

2f  o— _~ E

© O

/2 | — j - O
Q < c
P23 | c=°
. E O X
P cSed
©
5 8 Q g,

P 55

— o +

P7 v S

o

o

—

=

£

M Essential/Excess Computation L Inte rprocessor Communication

[ 1dting
Sources of overhead ( w.r.t. serial execution )

— Interprocess interaction
— Interact and communicate data ( e.g., intermediate results )
— Idling
— Due to load imbalance, synchronization, presence of serial
computation, etc.

— Excess computation

— Fastest serial algorithm may be difficult/impossible to parallelize



Parallel Execution Time & Overhead

Execution Time < %0
£
70 ] §_
i  o— > &
© O
/2 | — j - O
Q T c
3 | c=°
E o X
P g 6_0 E
©
5 = 5 S &
O C
P 50
— o +
P7 a S
o
o
—
=
£

M Essential/Excess Computation L Inte rprocessor Communication

[ 1dting

Overhead function or total parallel overhead,
To = pT,-T,

where, p = number of processing elements
T = time spent doing useful work
( often execution time of the fastest serial algorithm )



Speedup

Let T, = running time using p identical processing elements

Speedup, S, = ;—1

p

Theoretically, S, <p (why?)

Perfect or linear or ideal speedup if S, = p



Speedup

Consider adding n numbers

using n identical processing

elements.

Serial runtime, T; = O(n)

Parallel runtime, T,,= ©®(logn)

Speedup, S,,= T— =

n

Speedup not ideal.

(s

logn

)

I 9 (th 11 12 13

@@@@@@@@@@@@@@@_é

(a) Initial data distribution and the first communication step

I

1 1l
E 'Ea'. EII:I

@@@@@@@@@@@@ ) © O O6

(b} Second communication step

11 15

2

@@@@@@@@@@@@@@@@

ic) Third communication step

“Introduction to Parallel Computing”, 2" Edition

E..

@@@@@@@@

oLl

ONCRONECNCNON®)

(d) Fourth communication step

Source: Grama et al.,

El:u

oRoNoRoReRoRcRoRoRoRcRoRe RN NS

() Accumulation of the sum at processing element O after the final communicatior



Superlinear Speedup

Theoretically, §, < p

But in practice superlinear speedup is sometimes observed,
thatis, S, > p (why?)

Reasons for superlinear speedup
— Cache effects

— Exploratory decomposition



Superlinear Speedup
( Cache Effects )

Let cache access latency = 2 ns ,= DRAM ":::::::.
DRAM access latency = 100 ns o il T
| cache | | cache |
Suppose we want solve a problem
instance that executes k FLOPs. % %
CPU CPU
With 1 Core: Suppose cache hit rate is 80%. < core

If the computation performs 1 FLOP/memory access, then each
FLOP will take 2 x 0.8 + 100 x 0.2 = 21.6 ns to execute.

With 2 Cores: Cache hit rate will improve. ( why? )
Suppose cache hit rate is now 90%.
Then each FLOP will take 2 x 0.9 + 100 x 0.1 = 11.8 ns to execute.

Since now each core will execute only k / 2 FLOPs,

kx21.6
~ l
(K/Z)x1L8 3.66 > 2!

Speedup, S,=



Superlinear Speedup

( Due to Exploratory Decomposition )

Consider searching an array of 2n unordered elements for a specific

element x.

Suppose x is located at array location k> n and k is odd.

Serial runtime, T; = k

Parallel running time with n
processing elements, T,, = 1

Speedup, S,, = ;—1 =k>n

n

Speedup is superlinear!

Al1] A2l AB] ... ... ... Alkl A[2n]
X
sequential search
Al1] A[2] A[B] ... ... ... Alkl L A[2n]
X
\ \ ) \ ; \ )
Y Y
P, P, e Pl e e e P,

parallel search



Parallelism & Span Law

We defined, T}, = runtime on p identical processing elements

Then span, T, = runtime on an infinite number of identical
processing elements

. T
Parallelism, P = —&

o0

Parallelism is an upper bound on speedup, i.e., S, < P (why?)

Span Law
Tp > To




Work Law

The cost of solving ( or work performed for solving ) a problem:

On a Serial Computer: is given by T

On a Parallel Computer: is given by pT,,

Work Law

T
T, > —
p




Work Optimality

Let T; = runtime of the optimal or the fastest known serial algorithm

A parallel algorithm is cost-optimal or work-optimal provided
pr — ®(Ts)

Our algorithm for adding n numbers using n identical processing
elements is clearly not work optimal.



Adding n Numbers Work-Optimality

We reduce the number of processing
elements which in turn increases the SRR e R N

granularity of the subproblem assigned @ @ & & 800 a
to each processing element. @ ®

. I':; Eiﬁ E|]:.5
Suppose we use p processing elements. ® 000 B 0060
First each processing element locally i 2

Source: Grama et al.,
“Introduction to Parallel Computing”, 24 Edition

adds its g numbers in time ® (g)

Then p processing elements adds these p partial sums in time ®(logp).
ThusT, = ® (E + logp) and T, = O(n).
p p ’ S

So the algorithm is work-optimal provided n = Q(p logp).



Scaling Laws



Scaling of Parallel Algorithms
( Amdahl’s Law )

1-)1y P [Ty

serial section parallelizable section

N AN

1 processing
element

p processing
elements

fTi/p

[~

I

Suppose only a fraction f of a computation can be parallelized.

Then parallel running time, T,, = (1 — f)T; + f%

Tl P 1
— < —
Ty = f+@=Pp  (1-p)+%

Speedup, S, = <

1
1-f



Scaling of Parallel Algorithms
( Amdahl’s Law )

Suppose only a fraction f of a computation can be parallelized.

ﬂ< 1 <L

To = (-p+L 7 1-f

Speedup, &, =

Amdahl’s Law
20.00 ]
/
18.00 //
/ Parallel Portion
16.00 4 —=50%
/ —75%
14.00 —=90%
/ ——95%
12.00 /
a /
Z
3 10.00 7
8.00 //
6.00 //
4.00 /// —
L1
//
2.00 ———
0.00
e e e b g g 2 oY S8 S 2 8 on
— o~ n o o o Al m ~ n
- ~N < o] 2 m S
Number of Processors

Source: Wikipedia



Scaling of Parallel Algorithms
( Gustafson-Barsis’ Law )

T

serial section

L

7] 1 processing
2 element

p processing
elements

[

(1- )T, T rr,

T

Suppose only a fraction f of a computation was parallelized.

[

Then serial running time, Ty = (1 — )T, + pfT,

Speedup, Sp _ % _ (1-f)Tp+pfTp -1+ (p _ 1)f

P Tp




Suppose only a fractionfof a computation was parallelized.

Speedup, S, = —— < =1+ (p—-1)f

60

Scaling of Parallel Algorithms
( Gustafson-Barsis’ Law )

7& __(1 ]37b+pf7b

Tp Tp Tp

I I

I f=Q€ﬁ” f=0. f=0

| |

L 206

F=0.5
F=0.4
£=0.3

f=0.2

“fe01

0 20 40 60 S0 100
Number of Processors

Source: Wikipedia

20




Strong Scaling vs. Weak Scaling

“rean e
1 |k
Number of Processcrs (p) Number of Processors (p)
Strong Scaling
How T, ( or S, ) varies with p when the problem size is fixed.
Weak Scaling

How T, ( or S, ) varies with p when the problem size per

processing element is fixed.

Source: Martha Kim, Columbia University



Scalable Parallel Algorithms

s
Efficiency, E, = ?p = pTTl
p

Fixed problem size (W) ' Fixed number of processors (p)

Source: Grama et al.,
“Introduction to Parallel Computing”,
2nd Edition

I W

A parallel algorithm is called scalable if its efficiency can be
maintained at a fixed value by simultaneously increasing the number
of processing elements and the problem size.

Scalability reflects a parallel algorithm’s ability to utilize increasing
processing elements effectively.



Scalable Parallel Algorithms

In order to keep E,, fixed at a constant k, we need

I
E,=k=—7=k=T;, = kpT

For the algorithm that adds n numbers using p processing elements:
T, = d T,==+2l
1 =N and 1y ” + 2logp

So in order to keep E,, fixed at k, we must have:

n 2k
n=kp ;+210gp :nszplogp

n p=1 p=4 p=48 p=16 p=32
64 1.0 0.80 0.57 0.33 0.17
192 1.0 0.92 0.80 0.60 0.38
320 1.0 0.95 0.87 0.71 0.50
512 1.0 0.97 0.91 0.80 0.62

Fig: Efficiency for adding n numbers using p processing elements

Source: Grama et al., “Introduction to Parallel Computing”, 2" Edition



