
CSE590: Special Topics Course (Supercomputing), Spring 2012 Date: Feb 7

Homework #1
( Due: February 14 )

Gaussian(c, 1, n)

(The input c[1 . . . n, 1 . . . n] is an n× n matrix with all diagonal entries set to nonzero values.)

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. if (k ≤ n− 2) ∧ (k < i < n) ∧ (k < j) then c[i, j]← c[i, j]− c[i,k]
c[k,k]

× c[k, j]

Figure 1: The first phase of Gaussian elimination without pivoting.

Task 1. [ 50 Points ] Implement the first phase of Gaussian elimination without pivoting.

(a) [ 5 Points ] Try parallelizing the näıve version (with triply nested for loops as given in
Figure 1) using cilk for. Explain your findings.

(b) [ 15 Points ] Parallelize based on the divide-and-conquer framework given in the appendix,
and optimize your implementation as much as possible (e.g., optimize the base case size). For
simplicity use only values of n that are powers of 2.

(c) [ 15 Points ] Analyze the parallelism of the divide-and-conquer algorithm. (Hint: First
compute T1 and T∞ for function D. Use those to compute T1 and T∞ for B and C. Then
analyze A.)

(d) [ 5 Points ] Find the largest value of n (say, nmax) for which your implementation in part (b)
terminates in less than 15 minutes on a single core. For each n = 2k ≤ nmax (where k ≥ 4),
generate a Cilkview scalability plot.

(e) [ 5 Points ] For the same set of n values as in part (d) plot the speedup factors achieved by
the parallel implementation in part (b) w.r.t. the serial loop implementation as you vary the
number of cores. In order to fix the number of cores (or threads) used pass the command line
parameter -cilk set worker count=k to your program, where k is the number of threads to
use.

(f) [ 5 Points ] Use PAPI (http://icl.cs.utk.edu/papi/) to compare the number of L1 and
L2 cache misses incurred by the parallel implementation in part (b) when run on a single
core, and the serial loop implementation as you vary n. In order to load PAPI use “module
load papi/3.6.0” on Ranger, and “module load papi/4.1.2.1” on Loanstar.
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FW-APSP(c, 1, n)

(The input c[1 . . . n, 1 . . . n] is an n×n matrix with all diagonal entries set to zero and the remaining
entries set to positive values.)

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. c[i, j]← min {c[i, j], c[i, k] + c[k, j]}

Figure 2: Floyd-Warshall’s APSP (all-pairs shortest paths) with nonnegative edge weights.

Task 2. [ 30 Points ] Repeat Task 1 (without parts (a) and (c)) for Floyd-Warshall’s APSP
(Figure 2).

Simple-LJ(p, n)

(The input is an array p[1 . . . n] of n points in 3-space. The function returns a Lennard-Jones-like
potential value computed for those points.)

1. E ← 0

2. for i← 1 to n do

3. for j ← 1 to n do

4. if i 6= j then

5. d←
√

(p[i].x− p[j].x)2 + (p[i].y − p[j].y)2 + (p[i].z − p[j].z)2

6. E ← E +
(

1
d12
− 1

d6

)
7. return E

Figure 3: Simple Lennard-Jones Potential.

Task 3. [ 10 Points ] Parallelize the computation in Figure 3. Plot the speedup factors achieved
w.r.t. the single-core execution of the parallel version as well as the serial version as the number of
cores is varied. Use n = 10k, 2 ≤ k ≤ 5.

Task 4. [ 20 Points ] Implement parallel mergesort with and without parallel merge. Generate
Cilkview scalability plots for n = 10k, 3 ≤ k ≤ 7.
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APPENDIX: A Common Algorithmic Framework for Gaussian Elim-
ination without Pivoting and Floyd-Warshall’s APSP

G(c, n, f, ΣG)

(Input c[1 . . . n, 1 . . . n] is an n×n matrix, f(·, ·, ·, ·) is an arbitrary problem-specific function, and ΣG is a problem-specific
set of triplets such that c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k]) is executed in line 4 if 〈i, j, k〉 ∈ ΣG.)

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. if 〈i, j, k〉 ∈ ΣG then c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k])

Figure 4: Triply nested for loops typifying code fragment with structural similarity to the
computation in Gaussian elimination without pivoting.

Let c[1 . . . n, 1 . . . n] be an n × n matrix with entries chosen from an arbitrary set S, and let f :
S × S × S × S → S be an arbitrary function. In Figure 4, the algorithm G modifies c by applying
a given set of updates of the form c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k]), where i, j, k ∈ [1, n]; here
〈i, j, k〉 (1 ≤ i, j, k ≤ n) denotes an update of the form c[i, j] ← f(c[i, j], c[i, k], c[k, j], c[k, k]), and
we let ΣG denote the set of such updates that the algorithm needs to perform.

Many well-known problems can be solved using the construct in Figure 4, including all-pairs shortest
paths, LU decomposition, and Gaussian elimination without pivoting. Observe that for the first
phase of Gaussian elimination without pivoting given in Figure 1, f(x, u, v, w) = x − u

w × v and
ΣG = {〈i, j, k〉 : (1 ≤ k ≤ n − 2) ∧ (k < i < n) ∧ (k < j ≤ n)}. For Floyd-Warshall’s APSP in
Figure 2, f(x, u, v, w) = min{x, u + v} and ΣG = {〈i, j, k〉 : (1 ≤ i, j, k ≤ n)}
Figure 5 is a divide-and-conquer based parallel formulation of the iterative algorithm given in Figure
4. The parallel keyword in any step tells the scheduler that all function calls that follow can be
executed in parallel with an implicit sync at the end.

3



A( X, U, V, W )

(Each of X, U , V and W points to the same 2q × 2q square submatrix of c for some integer q ≥ 0. The initial call to A is A(c, c, c, c)
for an n× n input matrix c, where n is assumed to be a power of 2.)

1. if TXUV ∩ ΣG = ∅ then return {TXUV = { updates on X using (i, k) ∈ U and (k, j) ∈ V },

and ΣG is the set of updates performed by the iterative code in Figure 4}

2. if X is a 1× 1 matrix then X ← f( X, U, V, W ) {base case}

else {top-left, top-right, bottom-left & bottom-right quadrants of X are denoted by X11, X12, X21 & X22, respectively.}
3. A( X11, U11, V11, W11 )

4. parallel : B1( X12, U11, V12, W11 ), C1( X21, U21, V11, W11 )

5. D1( X22, U21, V12, W11 )

6. A( X22, U22, V22, W22 )

7. parallel : B2( X21, U22, V21, W22 ), C2( X12, U12, V22, W22 )

8. D4( X11, U12, V21, W22 )

Bl( X, U, V, W ) { l ∈ {1, 2} }
(X ≡ V ≡ c[i1..i2, j1..j2] and U ≡ W ≡ c[i1..i2, k1..k2], where
i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1 for some integer q ≥ 0,
[i1, i2] = [k1, k2] and [j1, j2] ∩ [k1, k2] = ∅.)

1. if TXUV ∩ ΣG = ∅ then return

2. if X is a 1× 1 matrix then X ← f( X, U, V, W )

else

3. parallel : Bl( X11, U11, V11, W11 )

Bl( X12, U11, V12, W11 )

4. parallel : Dl( X21, U21, V11, W11 )

Dl( X22, U21, V12, W11 )

5. parallel : Bl( X21, U22, V21, W22 )

Bl( X22, U22, V22, W22 )

6. parallel : Dl+2( X11, U12, V21, W22 )

Dl+2( X12, U12, V22, W22 )

Cl( X, U, V, W ) { l ∈ {1, 2} }
(X ≡ U ≡ c[i1..i2, j1..j2] and V ≡ W ≡ c[k1..k2, j1..j2], where
i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1 for some integer q ≥ 0,
[j1, j2] = [k1, k2] and [i1, i2] ∩ [k1, k2] = ∅.)

1. if TXUV ∩ ΣG = ∅ then return

2. if X is a 1× 1 matrix then X ← f( X, U, V, W )

else

3. parallel : Cl( X11, U11, V11, W11 )

Cl( X21, U21, V11, W11 )

4. parallel : D2l−1( X12, U11, V12, W11 )

D2l−1( X22, U21, V12, W11 )

5. parallel : Cl( X12, U12, V22, W22 )

Cl( X22, U22, V22, W22 )

6. parallel : D2l( X11, U12, V21, W22 )

D2l( X21, U22, V21, W22 )

Dl( X, U, V, W ) { l ∈ {1, 2, 3, 4} }
(X ≡ c[i1..i2, j1..j2], U ≡ c[i1..i2, k1..k2], V ≡ c[k1..k2, j1..j2] and W ≡ c[k1..k2, k1..k2], where i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1
for some integer q ≥ 0, [i1, i2] ∩ [k1, k2] = ∅, and [j1, j2] ∩ [k1, k2] = ∅.)

1. if TXUV ∩ ΣG = ∅ then return

2. if X is a 1× 1 matrix then X ← f( X, U, V, W )

else

3. parallel : Dl( X11, U11, V11, W11 ), Dl( X12, U11, V12, W11 ), Dl( X21, U21, V11, W11 ), Dl( X22, U21, V12, W11 )

4. parallel : Dl( X11, U12, V21, W22 ), Dl( X12, U12, V22, W22 ), Dl( X21, U21, V21, W22 ), Dl( X22, U22, V22, W22 )

Figure 5: Multithreaded implementation of the iterative code in Figure 4. Initial call is A( c, c, c, c )
on an n× n matrix c, where n is a power of 2.
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