CSE 613: Parallel Programming

Department of Computer Science SUNY Stony Brook Spring 2012

"For over a decade prophets have voiced the contention that the organization of a single computer has reached its limits and that truly significant advances can be made only by interconnection of a multiplicity of computers."

— Gene Amdahl, 1967

Course Information

- **Lecture Time:** TuTh 2:20 pm 3:40 pm
- Location: Computer Science 2129, West Campus
- Instructor: Rezaul A. Chowdhury
- Office Hours: TuTh 12:00 pm 1:30 pm, 1421 Computer Science
- Email: rezaul@cs.stonybrook.edu
- **TA:** No idea!
- TA Office Hours: Same as above
- TA Email: Same as above
- Class Webpage:

http://www.cs.sunysb.edu/~rezaul/CSE613-S12.html

Prerequisites

Required: Background in algorithms analysis
 (e.g., CSE 373 or CSE 548)

- Required: Background in programming languages (C / C++)
- Helpful but Not Required: Background in computer architecture
- Please Note: This is not a course on
 - Programming languages
 - Computer architecture
- Main Emphasis: Parallel algorithms

Topics to be Covered

The following topics will be covered

- Analytical modeling of parallel programs
- Scheduling
- Programming using the message-passing paradigm and for shared address-space platforms
- Parallel algorithms for dense matrix operations, sorting, searching, graphs, computational geometry, and dynamic programming
- Concurrent data structures
- Transactional memory, etc.

Grading Policy

- Homeworks (three: lowest score 5%, others 10% each): 25%
- Exams (two: higher one 20%, lower one 10%): 30%
 - Midterm (in-class): March 27
 - Final (in-class): May 15
- Group project (one): 30%
 - Proposal (in-class): Feb 28
 - Progress report (in-class): April 10
 - Final presentation (in-class): May 8 10
- Scribe note (one lecture): 10%
- Class participation & attendance: 5%

Programming Environment

This course is supported by educational grants from

- Extreme Science and Engineering Discovery Environment
 (XSEDE): https://www.xsede.org
- Amazon Web Services (AWS): http://aws.amazon.com

We will use XSEDE for homeworks/projects involving

- Shared-memory parallelism
- Distributed-memory parallelism

AWS will be used for those involving (mainly for CSE590)

- GPGPUs
- MapReduce

Programming Environment

On XSEDE we have access to

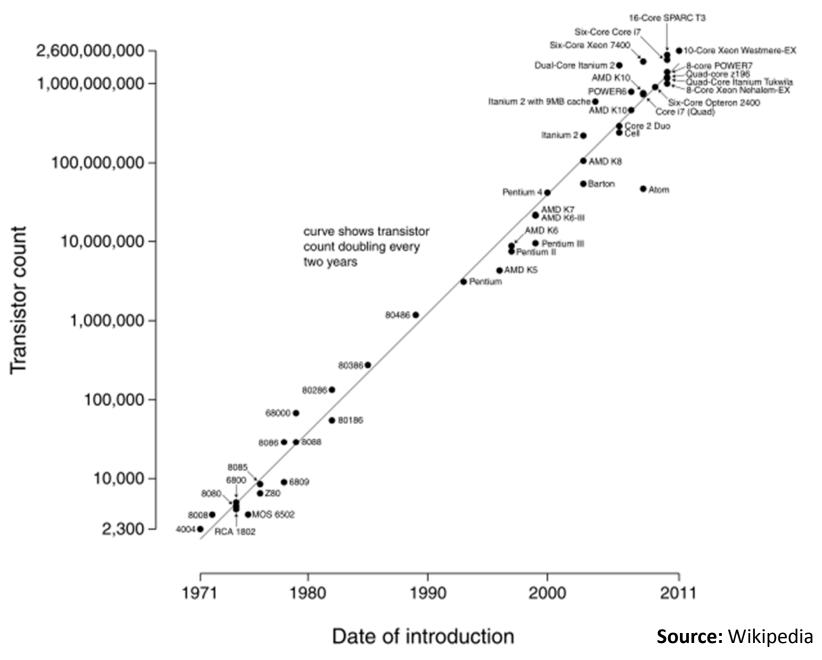
- Ranger: \approx 4,000 compute nodes with 16 cores/node
- Lonestar 4: \approx 2,000 compute nodes with 12 cores/node

<u>World's Most Powerful Supercomputers in June, 2008</u> (<u>www.top500.org</u>)

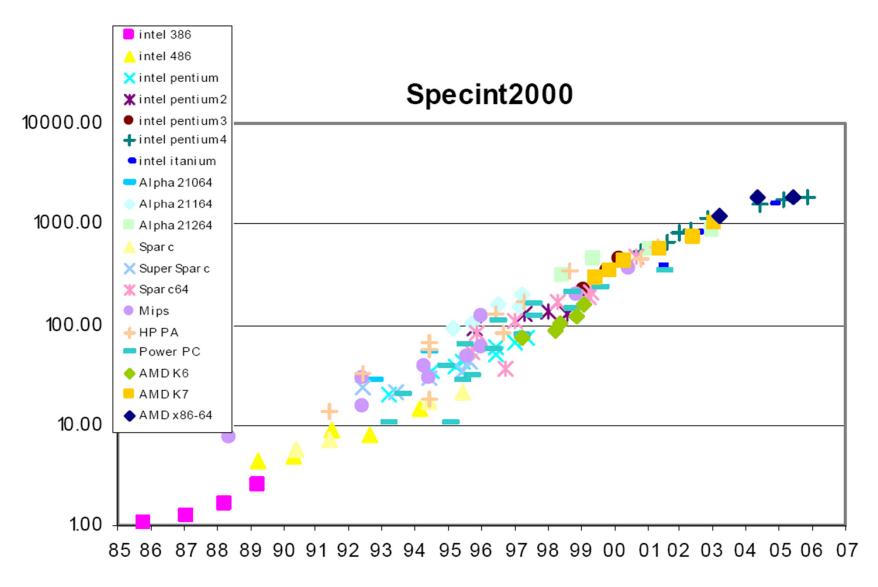
Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
1	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz , Voltaire Infiniband / 2008 IBM	122400	1026.00	1375.78	2345.50
2	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38	2329.60
3	Argonne National Laboratory United States	Blue Gene/P Solution / 2007 IBM	163840	450.30	557.06	1260.00
4	Texas Advanced Computing Center/Univ. of Texas United States	Ranger - SunBlade x6420, Opteron Quad 2Ghz, Infiniband / 2008 Sun Microsystems	62976	326.00	503.81	2000.00

<u>Textbooks</u>

Required


 A. Grama, G. Karypis, V. Kumar, and A. Gupta. *Introduction to Parallel Computing* (2nd Edition), Addison Wesley, 2003.

Recommended


- M. Herlihy and N. Shavit. *The Art of Multiprocessor Programming* (1st Edition), Morgan Kaufmann, 2008.
- F. Gebali. *Algorithms and Parallel Computing* (1st Edition), Wiley, 2011.
- T. Cormen, C. Leiserson, R. Rivest, and C. Stein. *Introduction to Algorithms* (3rd Edition), MIT Press, 2009. (chapter 27 on *Multithreaded Algorithms*)
- P. Pacheco. *Parallel Programming with MPI* (1st Edition), Morgan Kaufmann, 1996.

Why Parallelism?

Moore's Law

Unicore Performance

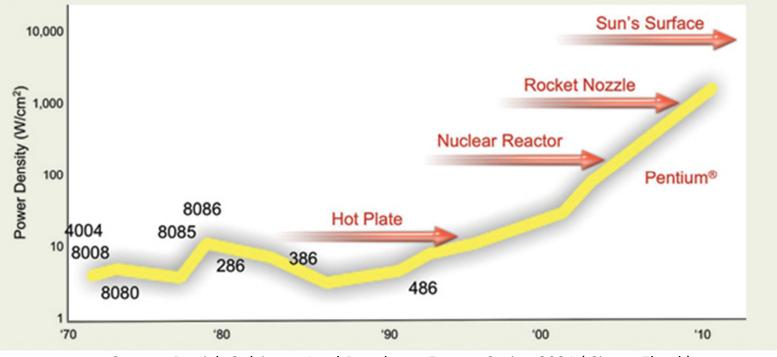
Source: Chung-Ta King, Department of Computer Science, National Tsing Hua University

Unicore Performance Has Hit a Wall!

Some Reasons

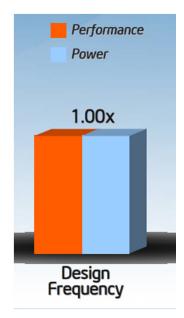
- Lack of additional ILP (Instruction Level Hidden Parallelism)
- High power density
- Manufacturing issues
- Physical limits
- Memory speed

Unicore Performance: No Additional ILP

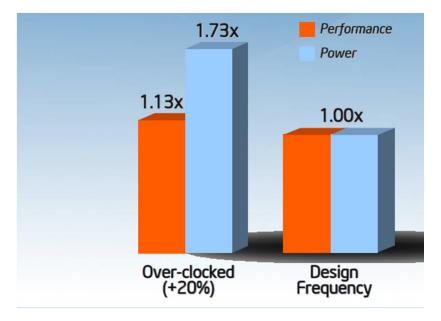

Exhausted all ideas to exploit hidden parallelism?

- Multiple simultaneous instructions
- Dynamic instruction scheduling
- Branch prediction
- Out-of-order instructions
- Speculative execution
- Pipelining
- Non-blocking caches, etc.

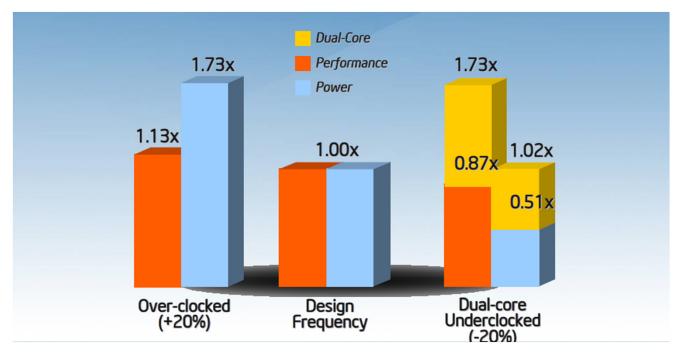
– Dynamic power, $P_d \propto V^2 f C$


- V = supply voltage
- f = clock frequency
- C = capacitance
- But $V \propto f$

- Thus $P_d \propto f^3$


Source: Patrick Gelsinger, Intel Developer Forum, Spring 2004 (Simon Floyd)

- Changing f by 20% changes performance by 13%
- So what happens if we overclock by 20%?
- And underclock by 20%?


Source: Andrew A. Chien, Vice President of Research, Intel Corporation

- Changing f by 20% changes performance by 13%
- So what happens if we overclock by 20%?
- And underclock by 20%?

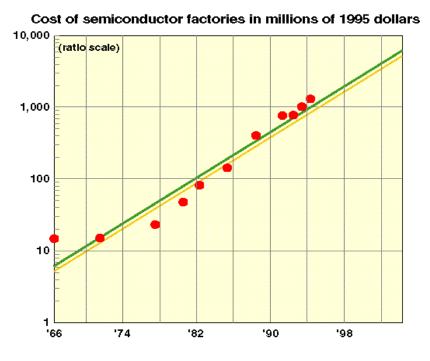
Source: Andrew A. Chien, Vice President of Research, Intel Corporation

- Changing f by 20% changes performance by 13%
- So what happens if we overclock by 20%?
- And underclock by 20%?

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Unicore Performance: Manufacturing Issues

- Frequency,
$$f \propto 1/s$$


- s = feature size (transistor dimension)

- Transistors / unit area \propto 1 / s^2
- Typically, die size $\propto 1/s$
- So, what happens if feature size goes down by a factor of x?
 - Raw computing power goes up by a factor of x^4 !
 - Typically most programs run faster by a factor of x³
 without any change!

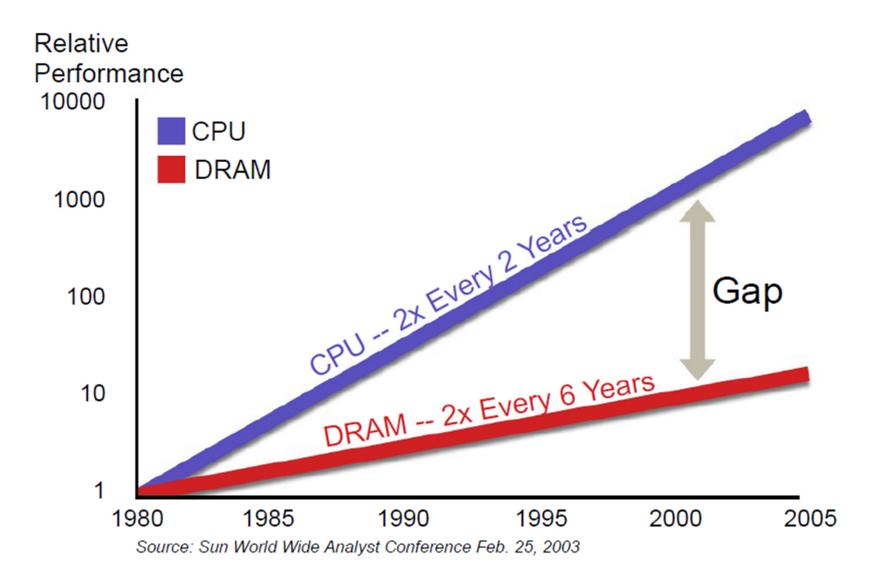
Unicore Performance: Manufacturing Issues

As feature size decreases

- Manufacturing cost goes up
 - Cost of a semiconductor fabrication plant doubles every 4 years (Rock's Law)
- Yield (% of usable chips produced) drops

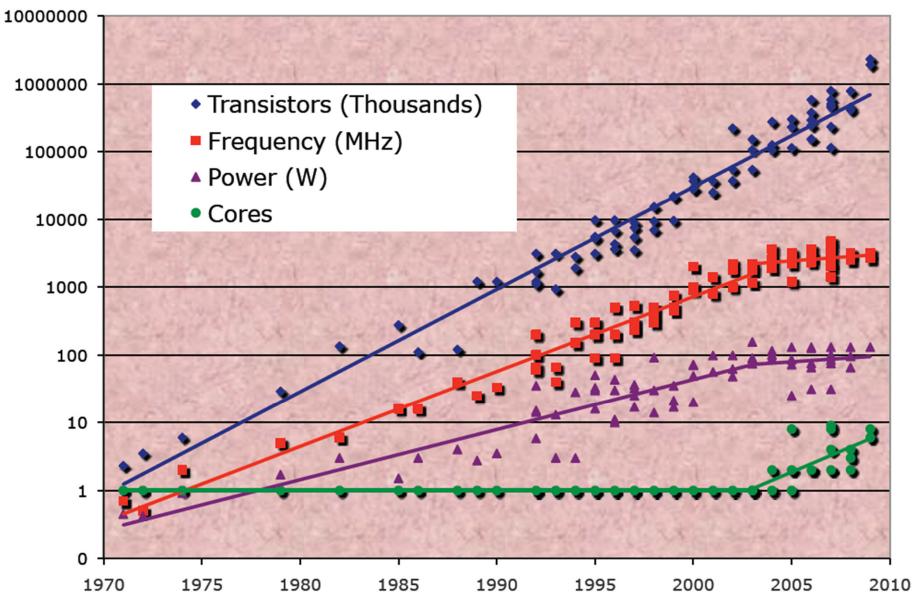
Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Physical Limits

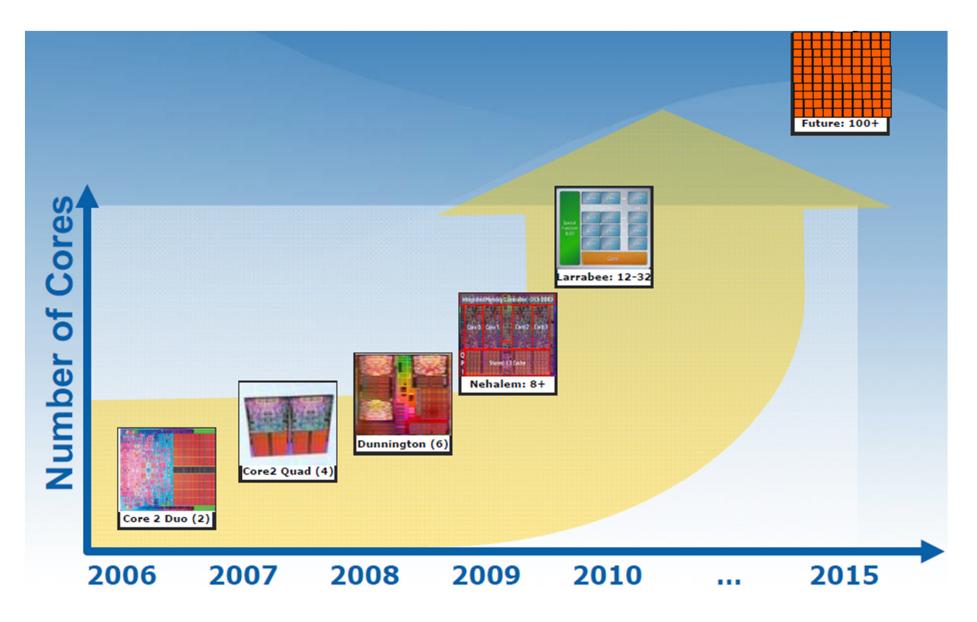

Execute the following loop on a serial machine in 1 second:

```
for ( i = 0; i < 10<sup>12</sup>; ++i )
z[i] = x[i] + y[i];
```

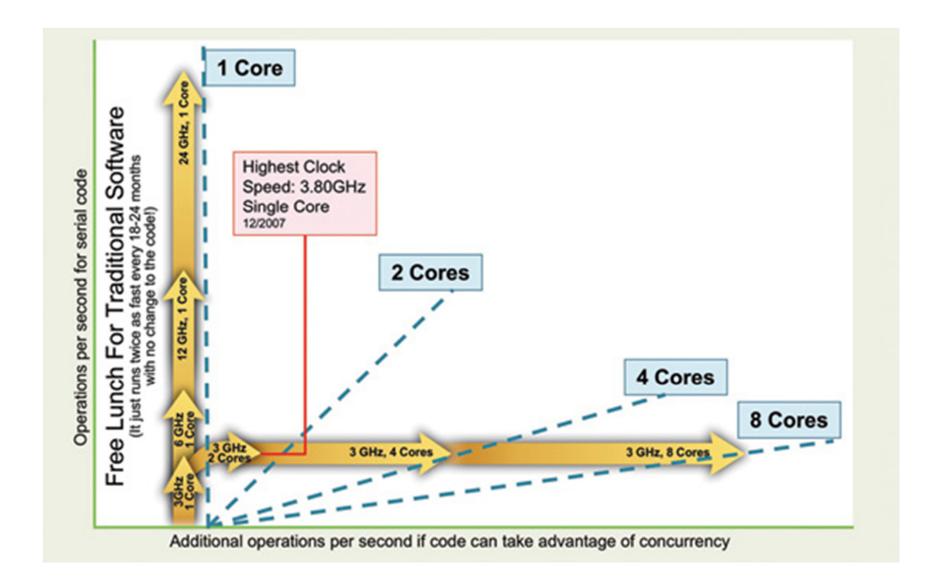
- We will have to access 3×10^{12} data items in one second
- Speed of light is, $c \approx 3 \times 10^8 \text{ m/s}$
- So each data item must be within c / $3 \times 10^{12} \approx 0.1$ mm from the CPU on the average
- All data must be put inside a 0.2 mm × 0.2 mm square
- Each data item (≥ 8 bytes) can occupy only 1 Å² space!
 (size of a small atom!)


Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Memory Wall


Source: Rick Hetherington, Chief Technology Officer, Microelectronics, Sun Microsystems

Moore's Law Reinterpreted


Source: Report of the 2011 Workshop on Exascale Programming Challenges

Cores / Processor (General Purpose)

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

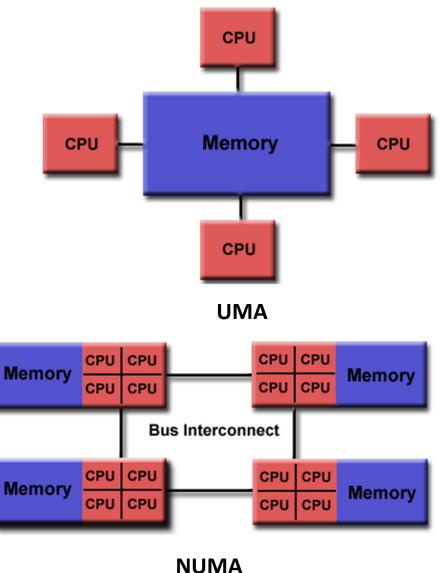
No Free Lunch for Traditional Software

Insatiable Demand for Performance

Source: Patrick Gelsinger, Intel Developer Forum, 2008

Numerical Weather Prediction

<u>Problem</u>: (temperature, pressure, ..., humidity, wind velocity) $\leftarrow f(longitude, latitude, height, time)$


Approach (very coarse resolution):

- Consider only modeling fluid flow in the atmosphere
- Divide the entire global atmosphere into cubic cells of size 1 mile × 1 mile × 1 mile each to a height of 10 miles $\approx 2 \times 10^9$ cells
- Simulate 7 days in 1 minute intervals
 ≈ 10^4 time-steps to simulate
- 200 floating point operations (flop) / cell / time-step $\approx 4 \times 10^{15}$ floating point operations in total
- To predict in 1 hour \approx 1 Tflop/s (Tera flop / sec)

Some Useful Classifications of Parallel Computers

Parallel Computer Memory Architecture (Shared Memory)

- All processors access all memory as global address space
- Changes in memory by one processor are visible to all others
- Tow types:
 - Uniform Memory Access
 (UMA)
 - Non-Uniform Memory
 Access (NUMA)

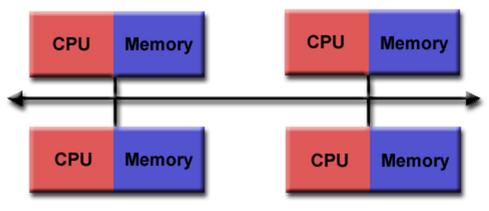
Source: Blaise Barney, LLNL

Parallel Computer Memory Architecture (Shared Memory)

Advantages

- User-friendly programming perspective to memory
- Fast data sharing

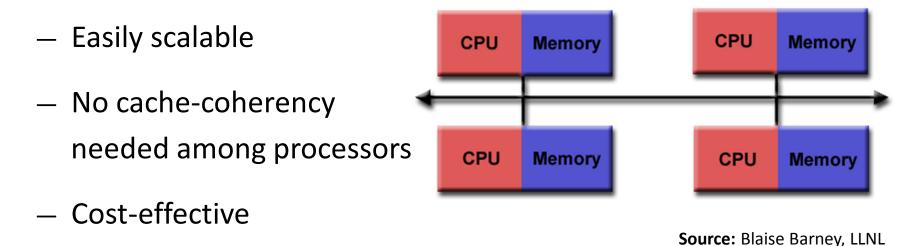
Disadvantages


- Difficult and expensive to scale
- Correct data access is user responsibility

Source: Blaise Barney, LLNL

Parallel Computer Memory Architecture (Distributed Memory)

- Each processor has its own
 local memory no global
 address space
- Changes in local memory by one processor have no effect on memory of other processors

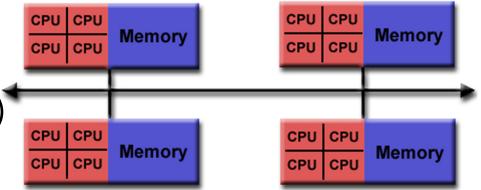


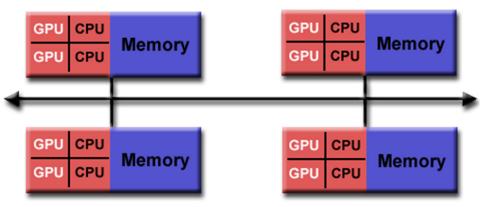
Source: Blaise Barney, LLNL

Communication network to connect inter-processor memory

Parallel Computer Memory Architecture (Distributed Memory)

Advantages




Disadvantages

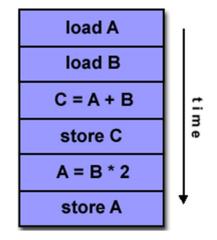
- Communication is user responsibility
- Non-uniform memory access
- May be difficult to map shared-memory data structures to this type of memory organization

<u>Parallel Computer Memory Architecture</u> (<u>Hybrid Distributed-Shared Memory</u>)

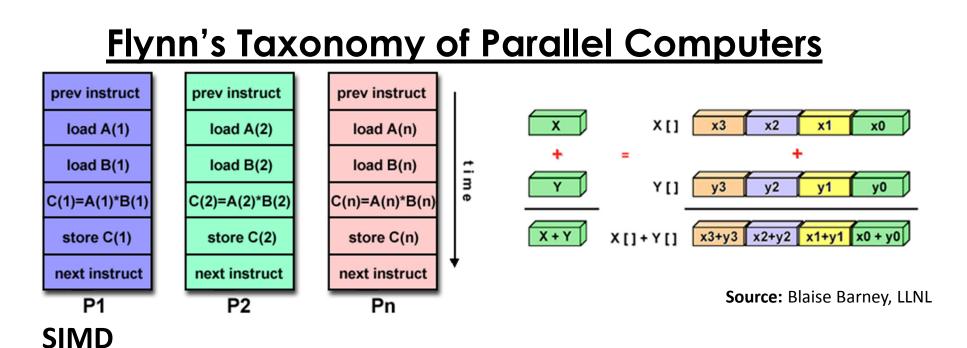
- The share-memory component can be a cache-coherent SMP or a Graphics Processing Unit (GPU)
- The distributed-memory component is the networking of multiple SMP/GPU machines
- Most common architecture
 for the largest and fastest
 computers in the world today

Flynn's Taxonomy of Parallel Computers

Flynn's classical taxonomy (1966):


Classification of multi-processor computer architectures along two independent dimensions of *instruction* and *data*.

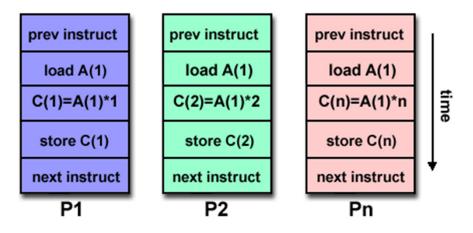
	Single Data (SD)	Multiple Data (MD)
Single Instruction (SI)	SISD	SIMD
Multiple Instruction (MI)	MISD	MIMD


Flynn's Taxonomy of Parallel Computers

SISD

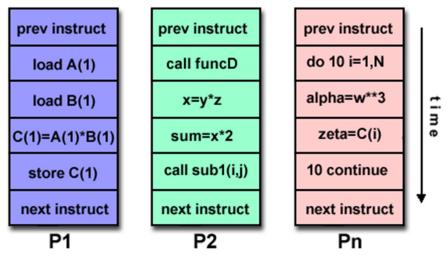
- A serial (non-parallel) computer
- The oldest and the most common type of computers
- Example: Uniprocessor unicore machines

Source: Blaise Barney, LLNL



- A type of parallel computer
- All PU's run the same instruction at any given clock cycle
- Each PU can act on a different data item
- Synchronous (lockstep) execution
- Two types: processor arrays and vector pipelines
- Example: GPUs (Graphics Processing Units)

Flynn's Taxonomy of Parallel Computers


MISD

- A type of parallel computer
- Very few ever existed

MIMD

- A type of parallel computer
- Synchronous /asynchronous
 execution
- Examples: most modern
 supercomputers, parallel
 computing clusters,
 multicore PCs

Parallel Algorithms Warm-up

"The way the processor industry is going, is to add more and more cores, but nobody knows how to program those things. I mean, two, yeah; four, not really; eight, forget it."

— Steve Jobs, NY Times interview, June 10 2008

Parallel Algorithms Warm-up (1)

Consider the following loop:

for i = 1 to n do $C[i] \leftarrow A[i] \times B[i]$

- Suppose you have an infinite number of processors/cores
- Ignore all overheads due to scheduling, memory accesses, communication, etc.
- Suppose each operation takes a constant amount of time
- How long will this loop take to complete execution?

- O(1) time

Parallel Algorithms Warm-up (2)

Now consider the following loop:

 $c \leftarrow 0$
for i = 1 to n do
 $c \leftarrow c + A[i] \times B[i]$

— How long will this loop take to complete execution?

 $-O(\log n)$ time

Parallel Algorithms Warm-up (3)

Now consider quicksort:

QSort(A) $if |A| \le 1 return A$ $else \ p \leftarrow A[rand(|A|)]$ $return QSort(\{x \in A: x < p\})$ $\#\{p\}\#$ $QSort(\{x \in A: x > p\})$

— Assuming that A is split in the middle everytime, and the two recursive calls can be made in parallel, how long will this algorithm take?

 $- O(\log^2 n)$ time!