
CSE 613: Parallel Programming

Lecture 19

(Optimizing Energy Consumption)

Rezaul A. Chowdhury
Department of Computer Science

SUNY Stony Brook

Spring 2012

Energy Consumption of Parallel Algorithms

We will try to analyze energy consumption of parallel algorithms on

shared memory multicore processors.

In particular, we will look at a methodology to evaluate how energy

consumption of a given parallel algorithm changes as the number of

cores and their frequency is varied.

This lecture is based on the results presented in the following paper:

Vijay Anand Korthikanti and Gul Agha, “Towards optimizing energy costs

of algorithms for shared memory architectures”, Proceedings of the 22nd

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),

pp. 157-165, 2010.

Energy Scalability under Iso-Performance

Question: Given a problem instance and a fixed performance

requirement, what is the number of cores that minimizes energy

consumption in executing a parallel algorithm on the problem

instance?

A problem instance is a problem for a fixed input value.

The performance of a parallel algorithm on a problem instance is

the time required for the completion of that problem instance.

Parallel Computation Model

P1 P2 Pp-1 Pp

B

C / B

Main Memory
C

a
ch

e
s

Processing Cores

Parallel External Memory (PEM) Model

Parallel Computation Model: Assumptions

― shared memory allows CREW (concurrent read, exclusive write)

― all active cores operate at the same frequency

― core frequencies can be varied using a frequency (voltage) probe

― cores switch to idle state if no computation left at them

― computation and cache access time of cores can be scaled by

scaling core frequencies

― shared memory access (read & write) cannot be scaled and thus

each takes constant time

Energy Model

Power consumption in a CMOS circuit (approximation):

� � �������	
 �������

�������	 � ���
�� ������� � ���

where �� = load capacitance,

� = supply voltage,

�� = leakage current,

and � = operational frequency.

Energy Model

Let � be the frequency of a core. Then

computation time, ����� �
# 	����������		�	���

�

Let ��	�� � = time for which a given core is active (not idle)

Then energy consumed by a core:

dynamic energy, !������	 � !� ∙ ����� ∙ �
#

leakage energy, !������ � !� ∙ ��	�� � ∙ �

where !� and !� are some hardware constants.

Energy Model: Assumptions

― idle cores do not consume energy

― a shared memory access (read & write) consume a

constant amount of energy

Methodology

Step 1: Find the critical path $% in the execution of &.

Step 2: Partition $% into

(1) memory accesses,

(2) synchronization breaks, and

(3) computation steps.

Step 3: Scale the computation steps of $% so that the parallel

performance of & matches the specified performance requirement.

We scale the computation time of & to the difference between:

(a) the required performance, and

(b) time for memory access and synchronization breaks in $%

Thus we get the reduced frequency � at which all cores should run.

Methodology

Step 4: Find the total number of computation cycles at all cores.

Step 5: Find the total number of memory accesses of &.

Step 6: Find the total active time of all cores at frequency � obtained

in step 3.

Step 7: Find expressions for energy consumption:

!	��� � !� ∙ # '()*+,-,.(/	'0'123 ∙ ��

!��� � !� ∙ #)2)(40	-''2323

!������ � !� ∙ ��	�� � ∙ �

where !� is the energy consumed for a single memory access.

Step 8: Analyze the equations above to obtain #cores required for

minimum energy consumption as a function of input size.

Example: Adding N Numbers

Initial State: 5 number occupy contiguous locations in shared main

memory, and all caches are empty.

Phase 1: Each core transfers
6

�
numbers from main memory to its

cache and sums them up in a series of steps.

In each step a core

(1) transfers a block of 7 numbers from main memory, and

(2) computes the sum of those 7 numbers and the result

obtained in the previous step

Phase 2: The sum of * partial sums from phase 1 is computed in

parallel in a tree like fashion in log * steps.

In step . ∈ 0, log * , only
�

�>
cores are active

(1) half of them write their partial sums to main memory, and

(2) the other half read them, and add them to their own sum

Example: Adding N Numbers using 4 Cores

Example: Adding N Numbers

Step 1: Critical path $% is the execution path of the core holding the

final sum.

Step 2: We partition $%, and find that there are

(1)
6

�?

 log * memory accesses,

(2) log *	synchronization breaks, and

(3)
6

�
@ 1
 log *	computation steps.

Step 3: The reduced frequency: � � B ∙

C

D
EFGHIJ �	 ∙K

L∙ME
C

DN
G� HIJ � ∙OP

where � = required execution time,

B = maximum frequency of a single core,

Q = number of cycles per addition, and

R	 = #cycles at frequency B for each shared memory access

Example: Adding N Numbers

Step 4: #comp. cycles =
6

�
@ 1 ⋅ *
 * @ 1 ⋅ Q � 5 @ 1 ⋅ Q

Step 5: #memory accesses =
6

?

 2 * @ 1

Step 6: ��	�� � �
OP

M

6

?

 2 * @ 1

K

�
⋅ 5 @ 1

Step 7: Expressions for energy consumption:

!	��� � !� ⋅ 5 @ 1 ⋅ Q ⋅ ��

!��� � !� ⋅
6

?

 2 * @ 1

!������ � !� ⋅
OP

M

6

?

 2 * @ 1

K

�
⋅ 5 @ 1 ⋅ �

Example: Adding N Numbers

Q � 2

!� � 1

R	 � 1000

!�

!�
�

1

10
⋅ B�

!�

!�
� 1000 ⋅ B�

Assumptions:

Performance Requirement: Running time of the sequential

algorithm at maximum frequency B:

� � ���U������� �
Q

B
⋅ 5 @ 1

R	

B
⋅
5

7

VWX @ VWY

Example: Parallel Prefix Sums

Q � 2

!� � 1

R	 � 1000

!�

!�
�

1

10
⋅ B�

!�

!�
� 1000 ⋅ B�

Assumptions:

Performance Requirement: Running time of the sequential

algorithm at maximum frequency B:

� � ���U������� �
Q

B
⋅ 5 @ 1

R	

B
⋅
5

7

VWX @ VWY

Example: Parallel Merge Sort

For the pipelined d-way mergesort algorithm (developed by Arge et

al., 2008, for the PEM model) considered in the paper:

― !	��� decreases as * increases, and

― !������ also decreases as * increases, but

― !��� is independent of *

So, energy consumed by the parallel algorithm to maintain the same

performance as the sequential algorithm decreases with increasing *

(under the assumption that * Z
6

?[
).

This observation can be generalized to a general class of parallel

algorithms with optimal computation cost and optimal I/O

complexity.

