CSE 613: Parallel Programming

Lecture 2
 (Analytical Modeling of Parallel Programs)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2012

Parallel Execution Time \& Overhead

Serial running time $=\boldsymbol{T}$
Parallel running time on p processing elements,

$$
T_{P}=t_{\text {end }}-t_{\text {start }}
$$

where, $\boldsymbol{t}_{\text {start }}=$ starting time of the processing element that starts first
$\boldsymbol{t}_{\text {end }}=$ termination time of the processing element that finishes last

Parallel Execution Time \& Overhead

Sources of overhead (w.r.t. serial execution)

- Interprocess interaction
- Interact and communicate data (e.g., intermediate results)
- Idling
- Due to load imbalance, synchronization, presence of serial computation, etc.
- Excess computation
- Fastest serial algorithm may be difficult/impossible to parallelize
- Reuse of intermediate results may be difficult (e.g., FFT)

Parallel Execution Time \& Overhead

Overhead function or total parallel overhead,

$$
T_{o}=p T_{p}-T,
$$

where, $\boldsymbol{p}=$ number of processing elements
$\boldsymbol{T}=$ time spent doing useful work
(often execution time of the fastest serial algorithm)

Speedup

Speedup, $\boldsymbol{S}_{\boldsymbol{p}}=\frac{\boldsymbol{T}}{\boldsymbol{T}_{\boldsymbol{p}}}$
where, $\boldsymbol{T}=$ time to solve on a single processing element
(often the runtime of the fastest serial algorithm)
$\boldsymbol{T}_{\boldsymbol{p}}=$ time to solve in parallel on p identical processing

Theoretically, $\boldsymbol{S}_{\boldsymbol{p}} \leq \boldsymbol{p}$ (why?)

Perfect or linear or ideal speedup if $\boldsymbol{S}_{\boldsymbol{p}}=\boldsymbol{p}$

Speedup

Consider adding n numbers using n identical processing

(b) Second communication step

(d) Fourth communication step

Speedup not ideal. (why?)
Speedup, $S_{n}=\frac{T}{T_{n}}=\Theta\left(\frac{n}{\log n}\right)$ elements.

(e) Accumulation of the sum at processing element 0 after the final communicatior

Superlinear Speedup

Theoretically, $\boldsymbol{S}_{\boldsymbol{p}} \leq \boldsymbol{p}$

But in practice superlinear speedup is sometimes observed, that is, $\boldsymbol{S}_{\boldsymbol{p}}>\boldsymbol{p}$ (why?)

Reasons for superlinear speedup

- Cache effects
- Exploratory decomposition

Superlinear Speedup (Cache Effects)

Let cache access latency $=2 \mathrm{~ns}$
DRAM access latency $=100 \mathrm{~ns}$
Suppose we want solve a problem instance that executes k FLOPs.

With 1 Core: Suppose cache hit rate is 80%.

If the computation performs 1 FLOP/memory access, then each FLOP will take $2 \times 0.8+100 \times 0.2=21.6$ ns to execute.

With 2 Cores: Cache hit rate will improve. (why?)
Suppose cache hit rate is now 90%.
Then each FLOP will take $2 \times 0.9+100 \times 0.1=11.8 \mathrm{~ns}$ to execute.
Since now each core will execute only k / 2 FLOPs,

$$
\text { Speedup, } S_{n}=\frac{k \times 21.6}{(k / 2) \times 11.8} \approx 3.66>2!
$$

Superlinear Speedup (Due to Exploratory Decomposition)

Consider searching an array of $2 n$ unordered elements for a specific element x.

Suppose x is located at array location $k>n$ and k is odd.

Serial runtime, $T=k$
Parallel running time with n processing elements, $T_{n}=1$

Speedup, $S_{n}=\frac{T}{T_{n}}=k>n$
Speedup is superlinear!

Efficiency

Efficiency, $\boldsymbol{E}_{\boldsymbol{p}}=\frac{\boldsymbol{S}_{\boldsymbol{p}}}{\boldsymbol{p}}$
Efficiency is a measure of the fraction of time for which a processing element is usefully employed.

In an ideal parallel system, $S_{p}=p$ and $E_{p}=1$.
Consider again the example of adding n numbers using n identical processing elements.

Speedup, $S_{n}=\frac{T}{T_{n}}=\Theta\left(\frac{n}{\log n}\right)$
Efficiency, $E_{n}=\frac{S_{n}}{n}=\Theta\left(\frac{1}{\log n}\right)$

Cost or Work

The cost of solving (or work performed for solving) a problem:
On a Serial Computer: is the execution time T of the fastest known sequential algorithm for solving the problem.

On a Parallel Computer: is given by $p T_{p}$.
A parallel algorithm is cost-optimal or work-optimal provided

$$
p T_{p}=\Theta(T)
$$

For a work-optimal parallel algorithm: $E_{p}=\frac{S_{p}}{p}=\frac{T}{p T_{p}}=\Theta(1)$
Our algorithm for adding n numbers using n identical processing elements is clearly not cost optimal.

Adding n Numbers Work-Optimality

We reduce the number of processing elements which in turn increases the granularity of the subproblem assigned to each processing element.

Suppose we use p processing elements.
First each processing element locally

(c)

(d)

Source: Grama et al.,
"Introduction to Parallel Computing", $2^{\text {nd }}$ Edition adds its $\frac{n}{p}$ numbers in time $\Theta\left(\frac{n}{p}\right)$.
Then p processing elements adds these p partial sums in time $\Theta(\log p)$.
Thus $T_{p}=\Theta\left(\frac{n}{p}+\log p\right)$, and $E_{p}=\frac{S_{p}}{p}=\frac{T}{p T_{p}}=\frac{\Theta(n)}{\Theta(n+p \log p)}$.
So the algorithm is work-optimal, i.e., $E_{p}=\Theta(1)$, provided

$$
n=\Omega(p \log p)
$$

Scaling of Parallel Algorithms (Amdahl's Law)

Suppose only a fraction f of a computation can be parallelized.
Then parallel running time, $T_{p} \geq(1-f) T+f \frac{T}{p}$
Speedup, $S_{p}=\frac{T}{T_{p}} \leq \frac{p}{f+(1-f) p} \leq \frac{1}{1-f}$

Scaling of Parallel Algorithms (Amdahl's Law)

Suppose only a fraction f of a computation can be parallelized.
Speedup, $S_{p}=\frac{T}{T_{p}} \leq \frac{p}{f+(1-f) p} \leq \frac{1}{1-f}$

Source: Wikipedia

Scaling of Parallel Algorithms (Gustafson-Barsis' Law)

Suppose only a fraction f of a computation was parallelized.
Then serial running time, $T \leq T_{1}=(1-f) T_{p}+p f T_{p}$
Speedup, $S_{p}=\frac{T}{T_{p}} \leq \frac{T_{1}}{T_{p}}=\frac{(1-f) T_{p}+p f T_{p}}{T_{p}}=1+(p-1) f$

Scaling of Parallel Algorithms (Gustafson-Barsis' Law

Suppose only a fraction f of a computation was parallelized.
Speedup, $S_{p}=\frac{T}{T_{p}} \leq \frac{T_{1}}{T_{p}}=\frac{(1-f) T_{p}+p f T_{p}}{T_{p}}=1+(p-1) f$

Scalable Parallel Algorithms

A parallel algorithm is called scalable if its efficiency can be maintained at a fixed value by simultaneously increasing the number of processing elements and the problem size.

Scalability reflects a parallel algorithm's ability to utilize increasing processing elements effectively.

Efficiency, $E_{p}=\frac{S_{p}}{p}=\frac{T}{p T_{p}}=\frac{T}{T+T_{O}}=\frac{1}{1+\frac{T_{O}}{T}}$
Observe that if the problem size is fixed, T_{O} increases with p. (why?) So E_{p} drops as p increases.

On the other hand, for many algorithms T_{O} grows sublinearly w.r.t. T.
For such algorithms E_{p} can be kept fixed by increasing the problem size and p simultaneously.

Scalable Parallel Algorithms

p
Efficiency, $E_{p}=\frac{S_{p}}{p}=\frac{T}{p T_{p}}=\frac{T}{T+T_{O}}=\frac{1}{1+\frac{T_{O}}{T}}$
Observe that if the problem size is fixed, T_{O} increases with p. (why?)
So E_{p} drops as p increases.
On the other hand, for many algorithms T_{O} grows sublinearly w.r.t. T.
For such algorithms E_{p} can be kept fixed by increasing the problem size and p simultaneously.

Scalable Parallel Algorithms

In order to keep E_{p} fixed at a constant k, we need

$$
E_{p}=k \Rightarrow \frac{T}{p T_{p}}=k \Rightarrow T=k p T_{p}
$$

For the algorithm that adds n numbers using p processing elements:

$$
T=n \text { and } T_{p}=\frac{n}{p}+2 \log p
$$

So in order to keep E_{p} fixed at k, we must have:

$$
\begin{gathered}
n=k p\left(\frac{n}{p}+2 \log p\right) \Rightarrow n=\frac{2 k}{1-k} p \log p \\
\hline n \\
\hline 64 \\
\boldsymbol{p}=\mathbf{1} \\
1.0 \\
\boldsymbol{p}=\mathbf{4} \\
\mathbf{0 . 8 0} \\
192
\end{gathered} 1.0 \begin{array}{llll}
\boldsymbol{p = 8} & 0.57 & 0.33 & 0.17 \\
320 & 1.0 & 0.92 & \boldsymbol{0 . 8 0} \\
\hline 50 & 0.60 & 0.38 \\
\hline & 1.0 & 0.97 & 0.87 \\
\hline
\end{array}
$$

Fig: Efficiency for adding n numbers using p processing elements

The Isoefficiency Function

For a given problem, we define problem size W as the number of basic computation steps in the fastest sequential algorithm that solves the problem on a serial machine.

Thus $W=T$.
We have already seen, $E_{p}=\frac{1}{1+\frac{T_{O}}{T}}=\frac{1}{1+\frac{T_{O}(W, p)}{W}}$
Rearranging, $W=\frac{E_{p}}{1-E_{p}} T_{O}(W, p)=K T_{O}(W, p)$, where $K=\frac{E_{p}}{1-E_{p}}$
We have already seen how to obtain the isoefficiency function for adding n numbers using p processing elements.

Isoefficiency for Complex Overhead Functions

Suppose, $T_{O}=p^{3 / 2}+p^{3 / 4} W^{3 / 4}$.
We balance W against each term of T_{O}, and the component of T_{O} that requires W to grow at the highest rate w.r.t. p gives the overall asymptotic isoefficiency function for the algorithm.

Using only the 1st term, $W=K p^{3 / 2}$
Using only the 2nd term, $W=K^{4} p^{3}$
Hence, the overall isoefficiency function is $\Theta\left(p^{3}\right)$.

