
CSE 613: Parallel Programming

Lecture 4

( Scheduling and Work Stealing )
( inspiration for some slides comes from lectures given 

by Charles Leiserson )

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2012



Scheduler

A runtime/online scheduler

maps tasks to processing 

elements dynamically at 

runtime.

The map is called a schedule.

An offline scheduler prepares

the schedule prior to the

actual execution of the 

program.



Greedy Scheduling

A strand / task is called

ready provided all its parents

( if any ) have already been

executed.

A greedy scheduler tries to 

perform as much work as

possible at every step.

executed task

ready to be executed

not yet ready



A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready: 

execute any p of them

( complete step )

― if < p tasks are ready:

execute all of them

( incomplete step )

p = 3
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Greed Scheduling Theorem

Theorem [ Graham’68, Brent’74 ]:

For any greedy scheduler,

��≤
��

�
� �∞

Proof:

��= #complete steps

+ #incomplete steps

― Each complete step 

performs p work: 

#complete steps ≤
��

�

― Each incomplete step reduces 

the span by 1:

#incomplete steps ≤	�∞

p = 3
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Optimality of the Greedy Scheduler

Corollary 1: For any greedy scheduler �� 	 2� 	�
∗ ,  where � 	�

∗ is the 

running time due to optimal scheduling on p processing elements.

Proof:

Work law: � 	�
∗ �

��

�

Span law: � 	�
∗ � �∞

∴ From Graham-Brent Theorem: 

	��≤
��

�
� �∞ 	 � 	�

∗ + � 	�
∗  2� 	�

∗



Optimality of the Greedy Scheduler

Corollary 2: Any greedy scheduler achieves 	��	≈	� ( i.e., nearly 

linear speedup ) provided 
��

�∞
≫ �.

Proof:

Given,
��

�∞
≫ �	⇒

��

�
≫ �∞

∴ From Graham-Brent Theorem: 
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�
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	��
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Work-Sharing and Work-Stealing Schedulers

Work-Sharing

― Whenever a processor generates new tasks it tries to 

distribute some of them to underutilized processors

― Easy to implement through centralized ( global ) task pool

― The centralized task pool creates scalability problems

― Distributed implementation is also possible ( but see below )

Work-Stealing

― Whenever a processor runs out of tasks it tries steal tasks 

from other processors

― Distributed implementation

― Scalable

― Fewer task migrations compared to work-sharing ( why? )



Cilk++’s Work-Stealing Scheduler

― A randomized distributed scheduler

― Time bounds

o Provably:  �� 
��

�
�Ο �∞ ( expected time )

o Empirically: ��	≈	
��

�
� �∞

― Space bound: ≤ p × serial space bound

― Has provably good cache performance



― Each core maintains a work dqueue of ready threads

― A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution

o Pushes new/spawned threads

― Whenever a core runs out of ready threads it steals one 

from the top of the dqueue of a random core

P1 P2 P3 P4

Cilk++’s Work-Stealing Scheduler
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Space Usage of Cilk++’s Scheduler
( Problem with Linear Stacks )

― C/C++ uses a linear ( contiguous ) stack to store function 

activation records ( i.e., stack frames )

― When a function is called

o The caller pushes the return address onto the stack

o The callee allocates its local variables in the stack space

― The callee’s stack frame lies directly above the caller’s one

― But linear stacks do not work well for parallel programs ( why? )



E

E

C

A
ED

Space Usage of Cilk++’s Scheduler
( Cactus Stack )
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― Cilk++ uses a cactus stack

o A heap allocated tree of stack frames

o Not necessarily contiguous

― A cactus stack supports several views of the stack in parallel



Space Usage of Cilk++’s Scheduler

P1

P2

P3

S1

p = 3

Theorem: Let ��be the stack space required by a serial execution of 

a Cilk++ program. Then the stack space used when run on p

processing elements is,  �� 	 ���.

Proof:

― At any given time step, the 

spawn subtree can have at 

most p leaves

― For each such leaf, the stack 

space used by it and all its 

ancestors is at most ��


