
CSE 613: Parallel Programming

Lecture 4

(Scheduling and Work Stealing)
(inspiration for some slides comes from lectures given

by Charles Leiserson)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2012

Scheduler

A runtime/online scheduler

maps tasks to processing

elements dynamically at

runtime.

The map is called a schedule.

An offline scheduler prepares

the schedule prior to the

actual execution of the

program.

Greedy Scheduling

A strand / task is called

ready provided all its parents

(if any) have already been

executed.

A greedy scheduler tries to

perform as much work as

possible at every step.

executed task

ready to be executed

not yet ready

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

9

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

9

10

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

9

10

11

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if ≥ p tasks are ready:

execute any p of them

(complete step)

― if < p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

9

10

11

12

Greed Scheduling Theorem

Theorem [Graham’68, Brent’74]:

For any greedy scheduler,

��≤
��

�
� �∞

Proof:

��= #complete steps

+ #incomplete steps

― Each complete step

performs p work:

#complete steps ≤
��

�

― Each incomplete step reduces

the span by 1:

#incomplete steps ≤	�∞

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

9

10

11

12

Optimality of the Greedy Scheduler

Corollary 1: For any greedy scheduler �� 	 2� 	�
∗ , where � 	�

∗ is the

running time due to optimal scheduling on p processing elements.

Proof:

Work law: � 	�
∗ �

��

�

Span law: � 	�
∗ � �∞

∴ From Graham-Brent Theorem:

	��≤
��

�
� �∞ 	 � 	�

∗ + � 	�
∗ 2� 	�

∗

Optimality of the Greedy Scheduler

Corollary 2: Any greedy scheduler achieves 	��	≈	� (i.e., nearly

linear speedup) provided
��

�∞
≫ �.

Proof:

Given,
��

�∞
≫ �	⇒

��

�
≫ �∞

∴ From Graham-Brent Theorem:

	��≤
��

�
� �∞	≈	

��

�

⇒
��

	��
≈	�	⇒ 	��	≈	�

Work-Sharing and Work-Stealing Schedulers

Work-Sharing

― Whenever a processor generates new tasks it tries to

distribute some of them to underutilized processors

― Easy to implement through centralized (global) task pool

― The centralized task pool creates scalability problems

― Distributed implementation is also possible (but see below)

Work-Stealing

― Whenever a processor runs out of tasks it tries steal tasks

from other processors

― Distributed implementation

― Scalable

― Fewer task migrations compared to work-sharing (why?)

Cilk++’s Work-Stealing Scheduler

― A randomized distributed scheduler

― Time bounds

o Provably: ��
��

�
�Ο �∞ (expected time)

o Empirically: ��	≈	
��

�
� �∞

― Space bound: ≤ p × serial space bound

― Has provably good cache performance

― Each core maintains a work dqueue of ready threads

― A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution

o Pushes new/spawned threads

― Whenever a core runs out of ready threads it steals one

from the top of the dqueue of a random core

P1 P2 P3 P4

Cilk++’s Work-Stealing Scheduler

P1 P2 P3 P4

spawn spawn

― Each core maintains a work dqueue of ready threads

― A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution

o Pushes new/spawned threads

― Whenever a core runs out of ready threads it steals one

from the top of the dqueue of a random core

Cilk++’s Work-Stealing Scheduler

P1 P2 P3 P4

return return

― Each core maintains a work dqueue of ready threads

― A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution

o Pushes new/spawned threads

― Whenever a core runs out of ready threads it steals one

from the top of the dqueue of a random core

Cilk++’s Work-Stealing Scheduler

returnreturn

P1 P2 P3 P4

spawn

― Each core maintains a work dqueue of ready threads

― A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution

o Pushes new/spawned threads

― Whenever a core runs out of ready threads it steals one

from the top of the dqueue of a random core

Cilk++’s Work-Stealing Scheduler

P1 P2 P3 P4

steal

― Each core maintains a work dqueue of ready threads

― A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution

o Pushes new/spawned threads

― Whenever a core runs out of ready threads it steals one

from the top of the dqueue of a random core

Cilk++’s Work-Stealing Scheduler

P1 P2 P3 P4

steal

― Each core maintains a work dqueue of ready threads

― A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution

o Pushes new/spawned threads

― Whenever a core runs out of ready threads it steals one

from the top of the dqueue of a random core

Cilk++’s Work-Stealing Scheduler

P1 P2 P3 P4

spawn return

― Each core maintains a work dqueue of ready threads

― A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution

o Pushes new/spawned threads

― Whenever a core runs out of ready threads it steals one

from the top of the dqueue of a random core

Cilk++’s Work-Stealing Scheduler

Space Usage of Cilk++’s Scheduler
(Problem with Linear Stacks)

― C/C++ uses a linear (contiguous) stack to store function

activation records (i.e., stack frames)

― When a function is called

o The caller pushes the return address onto the stack

o The callee allocates its local variables in the stack space

― The callee’s stack frame lies directly above the caller’s one

― But linear stacks do not work well for parallel programs (why?)

E

E

C

A
ED

Space Usage of Cilk++’s Scheduler
(Cactus Stack)

A

B C

A

A

C

C

A

D

D

C

A

B

B

A

― Cilk++ uses a cactus stack

o A heap allocated tree of stack frames

o Not necessarily contiguous

― A cactus stack supports several views of the stack in parallel

Space Usage of Cilk++’s Scheduler

P1

P2

P3

S1

p = 3

Theorem: Let ��be the stack space required by a serial execution of

a Cilk++ program. Then the stack space used when run on p

processing elements is, �� 	 ���.

Proof:

― At any given time step, the

spawn subtree can have at

most p leaves

― For each such leaf, the stack

space used by it and all its

ancestors is at most ��

