CSE 613: Parallel Programming

Lecture 4 (Scheduling and Work Stealing)

(inspiration for some slides comes from lectures given by Charles Leiserson)

Rezaul A. Chowdhury

Department of Computer Science SUNY Stony Brook Spring 2012

Scheduler

A *runtime/online scheduler* maps tasks to processing elements dynamically at runtime.

The map is called a *schedule*.

An *offline scheduler* prepares the schedule prior to the actual execution of the program.

Greedy Scheduling

A strand / task is called *ready* provided all its parents (if any) have already been executed.

- executed task
- ready to be executed
- O not yet ready

A *greedy scheduler* tries to perform as much work as possible at every step.

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Greed Scheduling Theorem

Theorem [Graham'68, Brent'74]:

For any greedy scheduler,

$$T_p \leq \frac{T_1}{p} + T_\infty$$

Proof:

- T_p = #complete steps
 - + #incomplete steps
- Each complete step
 performs *p* work:

#complete steps $\leq \frac{T_1}{p}$

Each incomplete step reduces
 the span by 1:
 #incomplete steps $\leq T_{\infty}$

Optimality of the Greedy Scheduler

Corollary 1: For any greedy scheduler $T_p \leq 2T_p^*$, where T_p^* is the running time due to optimal scheduling on *p* processing elements.

Proof:

Work law:
$$T_p^* \ge \frac{T_1}{p}$$

Span law: $T_p^* \ge T_\infty$

:. From Graham-Brent Theorem:

$$T_p \le \frac{T_1}{p} + T_\infty \le T_p^* + T_p^* = 2T_p^*$$

Optimality of the Greedy Scheduler

Corollary 2: Any greedy scheduler achieves $S_p \approx p$ (i.e., nearly

linear speedup) provided $\frac{T_1}{T_{\infty}} \gg p$.

Proof:

Given,
$$rac{T_1}{T_\infty} \gg p \Rightarrow rac{T_1}{p} \gg T_\infty$$

.:. From Graham-Brent Theorem:

$$T_p \leq \frac{T_1}{p} + T_{\infty} \approx \frac{T_1}{p}$$
$$\Rightarrow \frac{T_1}{T_p} \approx p \Rightarrow S_p \approx p$$

Work-Sharing and Work-Stealing Schedulers Work-Sharing

- Whenever a processor generates new tasks it tries to distribute some of them to underutilized processors
- Easy to implement through centralized (global) task pool
- The centralized task pool creates scalability problems
- Distributed implementation is also possible (but see below)

Work-Stealing

- Whenever a processor runs out of tasks it tries steal tasks from other processors
- Distributed implementation
- Scalable
- Fewer task migrations compared to work-sharing (why?)

- A randomized distributed scheduler
- Time bounds
 - Provably: $T_p = \frac{T_1}{p} + O(T_\infty)$ (expected time) • Empirically: $T_p \approx \frac{T_1}{p} + T$
 - Empirically: $T_p \approx \frac{T_1}{p} + T_\infty$
- − Space bound: $\leq p \times \text{serial space bound}$
- Has provably good cache performance

- Each core maintains a work dqueue of ready threads
- A core manipulates the bottom of its dqueue like a stack
 - Pops ready threads for execution
 - Pushes new/spawned threads
- Whenever a core runs out of ready threads it *steals* one from the top of the dqueue of a *random* core

- Each core maintains a work dqueue of ready threads
- A core manipulates the bottom of its dqueue like a stack
 - Pops ready threads for execution
 - Pushes new/spawned threads
- Whenever a core runs out of ready threads it *steals* one from the top of the dqueue of a *random* core

- Each core maintains a work dqueue of ready threads
- A core manipulates the bottom of its dqueue like a stack
 - Pops ready threads for execution
 - Pushes new/spawned threads
- Whenever a core runs out of ready threads it *steals* one from the top of the dqueue of a *random* core

- Each core maintains a work dqueue of ready threads
- A core manipulates the bottom of its dqueue like a stack
 - Pops ready threads for execution
 - Pushes new/spawned threads
- Whenever a core runs out of ready threads it *steals* one from the top of the dqueue of a *random* core

- Each core maintains a work dqueue of ready threads
- A core manipulates the bottom of its dqueue like a stack
 - Pops ready threads for execution
 - Pushes new/spawned threads
- Whenever a core runs out of ready threads it *steals* one from the top of the dqueue of a *random* core

- Each core maintains a work dqueue of ready threads
- A core manipulates the bottom of its dqueue like a stack
 - Pops ready threads for execution
 - Pushes new/spawned threads
- Whenever a core runs out of ready threads it *steals* one from the top of the dqueue of a *random* core

- Each core maintains a work dqueue of ready threads
- A core manipulates the bottom of its dqueue like a stack
 - Pops ready threads for execution
 - Pushes new/spawned threads
- Whenever a core runs out of ready threads it *steals* one from the top of the dqueue of a *random* core

<u>Space Usage of Cilk++'s Scheduler</u> (Problem with Linear Stacks)

- C/C++ uses a *linear* (contiguous) *stack* to store function activation records (i.e., stack frames)
- When a function is called
 - The caller pushes the return address onto the stack
 - The callee allocates its local variables in the stack space
- The callee's stack frame lies directly above the caller's one
- But linear stacks do not work well for parallel programs (why?)

<u>Space Usage of Cilk++'s Scheduler</u> (Cactus Stack)

- Cilk++ uses a cactus stack
 - A heap allocated tree of stack frames
 - Not necessarily contiguous
- A cactus stack supports several views of the stack in parallel

Space Usage of Cilk++'s Scheduler

Theorem: Let S_1 be the stack space required by a serial execution of a Cilk++ program. Then the stack space used when run on p processing elements is, $S_p \leq pS_1$.

Proof:

- At any given time step, the spawn subtree can have at most *p* leaves
- For each such leaf, the stack
 space used by it and all its
 ancestors is at most S₁

