
CSE613: Parallel Programming, Spring 2012 Date: March 27

In-Class Midterm
( 2:25 PM – 3:40 PM : 75 Minutes )

• This exam will account for either 10% or 20% of your overall grade depending on your relative
performance in the midterm and the final. The higher of the two scores (midterm and final)
will be worth 20% of your grade, and the lower one 10%.

• There are four (4) questions, worth 80 points in total. Please answer all of them in the spaces
provided.

• There are 14 pages including two (2) blank pages. Please use the blank pages if you need
additional space for your answers.

• Page 14 contains some useful bounds. No additional cheatsheets are allowed.

• Assume that the span of a parallel for loop with n iterations is Θ (log n) + k, where k is the
maximum span of one iteration.

Good Luck!

Question Score Maximum

1. Leftmost One 25

2. Prefix Sums 25

3. Balancing Resource Usage 25

4. Tighter Bound for the Greedy Scheduler 5

Total 80

Name:
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Question 1. [ 25 Points ] Leftmost One. We have already looked at the following problem in
the class under a different name.

Leftmost One

Input. A 0-1 bit array A[1 : n].

Output. Smallest k ∈ [1, n] such that A[k] = 1.

1(a) [ 6 Points ] Find the work and span of the following agorithm for solving the Leftmost
One probem.

Par-Leftmost-One(A)

1. n← |A|
2. array B[1 : n] {B[i] will be set to 1 if A[i] is the leftmost 1}
3. parallel for i← 1 to n do B[i]← A[i] {initially assume that each 1 is the leftmost 1}
4. parallel for i← 1 to n do

5. parallel for j ← 1 to i− 1 do {compare A[i] with all A[j], j < i}
6. if A[j] = 1 then B[i]← 0 {if A[j] = 1 for some j < i, then A[i] is not the leftmost 1}
7. k ← 0

8. parallel for i← 1 to n do {only for the leftmost A[i] = 1 we still have B[i] = 1}
9. if B[i] = 1 then k ← i

10. return k {return index of the leftmost 1}
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1(b) [ 10 Points ] Design an algorithm for solving the Leftmost One problem in Θ (n) work
and Θ (log n) depth (span) using the algorithm from part 1(a) as a subroutine. Provide
pseudocode, and analysis of work and span.

[Hint: Split A into
√
n segments.]
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1(c) [ 9 Points ] Given an array of n numbers each of which is an integer between 1 and n (not
necessarily distinct) design an algorithm for finding the minimum number (value only) in
Θ (n) work and Θ (log n) depth (span) using your algorithm from part 1(b) as a subroutine.
Provide pseudocode, and analysis of work and span.
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Use this page if you need additional space for your answers.
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Question 2. [ 25 Points ] Prefix Sums. Consider the following problem covered in the class.

Prefix Sums

Input. An array A[1 : n] of n elements with a binary associative operation ⊕.

Output. An array S[1 : n], where S[i] = A[1]⊕A[2]⊕ . . .⊕A[i] for i ∈ [1, n].

2(a) [ 8 Points ] The following algorithm solves Prefix Sums when called as Par-Prefix-
Sums(A, 1, n,⊕, S). Write down the recurrence relations for work and span of the algorithm,
and solve them.

Par-Prefix-Sums(A, q, r,⊕, S)
1. if q = r then S[q]← A[q]

2. else

3. m←
⌊
q+r
2

⌋
{split the array into two halves}

4. parallel : Par-Prefix-Sums(A, q,m,⊕, S) {find prefix sums for the left half}
Par-Prefix-Sums(A,m+ 1, r,⊕, S) {find prefix sums for the right half}

5. parallel for i← m+ 1 to r do

6. S[i]← S[i]⊕ S[m] {update right half with the sum of the left half}
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2(b) [ 10 Points ] Design a work-optimal algorithm for Prefix Sums using Par-Prefix-Sums
from part 2(a) as a subroutine. Provide pseudocode, and analysis of work and span.

[Hint: Contract array A.]
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2(c) [ 7 Points ] Design a work-optimal parallel algorithm to evaluate the following polynomial
of degree n− 1, where a0, a1, . . . , an−1 are given constants.

P (x) = a0 + a1x+ a2x
2 + . . .+ an−1x

n−1

Provide pseudocode, and analysis of work and span.

[Hint: Use your work-optimal parallel prefix algorithm from part 2(b).]
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Use this page if you need additional space for your answers.
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Question 3. [ 25 Points ] Balancing Resource Usage. Suppose we have 2 processors (X and
Y ), n jobs and n resources. Job i (1 ≤ i ≤ n) is specified as a vector 〈ai,1, ai,2, . . . , ai,n〉, where,

ai,j =

{
1, if job i uses resource j,
0, otherwise.

Each job must be assigned to either processor X or processor Y , and these assignment are given
by the vector 〈b1, b2, . . . , bn〉, where,

bi =

{
+1, if job i assigned to processor X,
−1, otherwise.

Our goal is to find a vector b that balances the workload between X and Y by minimizing the
maximum imbalance in the usage of any resource, that is, by minimizing ∆ = max1≤i≤n |ci|, where,

a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
. . . . . . . . . . . .
. . . . . . . . . . . .
an,1 an,2 . . . an,n



b1
b2
. . .
. . .
bn

 =


c1
c2
. . .
. . .
cn


Observe that each ci (=

∑n
j=1 ai,jbj) is the sum of n terms, each of which is either 0, +1 or −1.

Let

Xi = number of terms with value +1 in ci,

Yi = number of terms with value −1 in ci,

ki = number of 1’s among ai,1, ai,2, . . . , ai,n, and

β =
√

12n lnn.

Then clearly, Xi + Yi = ki, Xi − Yi = ci, and |ci| ≤ ki.
We will show that good load balancing (i.e., ∆ < β) can be achieved even if we choose the entries
of b independently and uniformly at random, that is, with Pr [bi = +1] = Pr [bi = −1] = 1

2 .

3(a) [ 6 Points ] Show that if |ci| ≤ β then ki
2

(
1− β

ki

)
≤ Xi ≤ ki

2

(
1 + β

ki

)
.
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3(b) [ 4 Points ] Show that E[Xi] = ki
2 .

3(c) [ 10 Points ] Clearly, ki ≤ β ⇒ |ci| ≤ β. Prove that even for ki > β, Pr [|ci| ≥ β] ≤ 2
n2 .
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3(d) [ 5 Points ] Show that w.h.p. ∆ ≤ β.
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Question 4. [ 5 Points ] Tighter Bound for the Greedy Scheduler. We proved in the
class that on an ideal parallel computer with p processing elements, a gready scheduler executes a
multithreaded computation with work T1 and span T∞ in time Tp ≤ T1

p + T∞. We came up with
this bound by showing that the number of complete steps (where all p processors have work to do)
is at most T1

p , and the number of incomplete steps (where some processors are idle, but at least one
has work to do) is at most T∞, and by observing that Tp ≤ #complete steps + #incompete steps.

4(a) [ 5 Points ] Argue that the bound above can be improved to Tp ≤ T1−T∞
p + T∞.
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Some Useful Bounds

Master Theorem. Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and let T (n) be
defined on the nonnegative integers by the recurrence

T (n) =

{
Θ (1) , if n ≤ 1,
aT
(
n
b

)
+ f(n), otherwise,

where, n
b is interpreted to mean either

⌊
n
b

⌋
or
⌈
n
b

⌉
. Then T (n) has the following bounds:

Case 1: If f(n) = O
(
nlogb a−ε

)
for some constant ε > 0, then T (n) = Θ

(
nlogb a

)
.

Case 2: If f(n) = Θ
(
nlogb a logk n

)
for some constant k ≥ 0, then T (n) = Θ

(
nlogb a logk+1 n

)
.

Case 3: If f(n) = Ω
(
nlogb a+ε

)
for some constant ε > 0, and af

(
n
b

)
≤ cf(n) for some

constant c < 1 and all sufficiently large n, then T (n) = Θ (f(n)).

Markov’s Inequality. Let X be a random variable that assumes only nonnegative values. Then
for all δ > 0, Pr [X ≥ δ] ≤ E[X]

δ .

Chebyshev’s Inequality. Let X be a random variable with a finite mean E[X] and a finite

variance V ar[X]. Then for any δ > 0, Pr [|X − E[X]| ≥ δ] ≤ V ar[X]
δ2

.

Chernoff Bounds. Let X1, . . . , Xn be independent Poisson trials, that is, each Xi is a 0-1 random

variable with Pr[Xi = 1] = pi for some pi. Let X =
n∑
i=1

Xi and µ = E[X]. Then the following

bounds hold.

(1) For any δ > 0, Pr [X ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ
.

(2) For 0 < δ < 1, Pr [X ≥ (1 + δ)µ] ≤ e−
µδ2

3 .

(3) For 0 < γ < µ, Pr [X ≥ µ+ γ] ≤ e−
γ2

3µ .

(4) For 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤
(

e−δ

(1−δ)(1−δ)

)µ
.

(5) For 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤ e−
µδ2

2 .

(6) For 0 < γ < µ, Pr [X ≤ µ− γ] ≤ e−
γ2

2µ .
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