CSE 548: Analysis of Algorithms

Lecture 12 (Amortized Analysis)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2014

A Binary Counter

counter value	counter	#bit flips	#bit resets $(1\rightarrow 0)$	
0	0000000			
1	00000001	1	0	1
2	00000010	2	1	1
3	0 0 0 0 0 0 1 1	1	0	1
4	0 0 0 0 0 1 0 0	3	2	1
5	00000101	1	0	1
6	0 0 0 0 0 1 1 0	2	1	1
7	0 0 0 0 0 1 1 1	1	0	1
8	0 0 0 0 1 0 0 0	4	3	1
9	00001001	1	0	1
10	0 0 0 0 1 0 1 0	2	1	1
11	0 0 0 0 1 0 1 1	1	0	1
12	0 0 0 0 1 1 0 0	3	2	1
13	0 0 0 0 1 1 0 1	1	0	1
14	0 0 0 0 1 1 1 0	2	1	1
15	0 0 0 0 1 1 1 1	1	0	1
16	00010000	5	4	1

A Binary Counter

Consider a k-bit counter initialized to 0 (i.e., all bits are 0's).

Suppose we increment the counter n times.

and cost of an increment = #bits flipped

Question: What is the worst-case total cost of n increments?

Worst-case cost of a single increment:

#bit sets (
$$0 \rightarrow 1$$
), $b_1 \le 1$ #bit resets ($1 \rightarrow 0$), $b_0 \le k - b_1$ #bit flips $= b_1 + b_0 \le k$

Worst-case cost of *n* increments:

#bit flips $\leq nk$

This turns out to be a very loose upper bound!

Aggregate Analysis

A better upper bound can be obtained as follows.

Each increment sets ($0 \rightarrow 1$) at most one bit, i.e., $b_1 \leq 1$

So, total number of bits set by n increments, $B_1 = b_1 n \le n$

Since at most n bits are set, there cannot be more than n bit resets ($1 \rightarrow 0$), i.e., $B_0 \le B_1 \le n$

So, total number of bit flips $= B_1 + B_0 \le n + n = 2n$

Thus worst-case cost of a sequence of n increments, $T(n) \leq 2n$

Hence, in the worst case, average cost of an increment $=\frac{T(n)}{n} \le 2$

This worst-case average cost is called the amortized cost of an increment in a sequence of n increments.

A Binary Counter

counter value	counter	#bit flips	#bit resets $(1\rightarrow 0)$	#bit sets ($0 \rightarrow 1$)	total #bit flips
0	0000000				
1	00000001	1	0	1	1
2	0 0 0 0 0 0 1 0	2	1	1	3
3	0 0 0 0 0 0 1 1	1	0	1	4
4	000000100	3	2	1	7
5	0 0 0 0 0 1 0 1	1	0	1	8
6	0 0 0 0 0 1 1 0	2	1	1	10
7	0 0 0 0 0 1 1 1	1	0	1	11
8	00001000	4	3	1	15
9	00001001	1	0	1	16
10	0 0 0 0 1 0 1 0	2	1	1	18
11	0 0 0 0 1 0 1 1	1	0	1	19
12	0 0 0 0 1 1 0 0	3	2	1	22
13	00001101	1	0	1	23
14	0 0 0 0 1 1 1 0	2	1	1	25
15	0 0 0 0 1 1 1 1	1	0	1	26
16	00010000	5	4	1	31

Amortized Analysis

- often obtains a tighter worst-case upper bound on the cost of a sequence of operations on a data structure by reasoning about the interactions among those operations
- the actual cost of any given operation may be very high, but that operation may change the state of the data structure in such a way that similar high-cost operations cannot appear for a while
- tries to show that there must be enough low-cost operations in the sequence to average out the impact of high-cost operations
- unlike average case analysis proves a worst-case upper bound on the total cost of the sequence of operations
- unlike expected case analysis no probabilities are involved

Accounting Method (Banker's View)

Consider a k-bit counter initialized to 0 (i.e., all bits are 0's).

Worst-case cost of a single increment:

```
#bit sets ( 0 \rightarrow 1 ), b_1 \le 1 #bit resets ( 1 \rightarrow 0 ), b_0 \le k - b_1 #bit flips = b_1 + b_0 \le k
```

Thus each increment is paying for the bit it sets (fair).

But also paying for resetting bits set by prior increments (unfair)!

A fairer cost accounting for each increment:

- (1) Pay for the bit it sets.
- (2) Pay in advance for resetting this bit (by some other increment) in the future. Store this advanced payment as a *credit* associated with that bit position.
- (3) When resetting a bit use the credit stored in that bit position.

Accounting Method (Banker's View)

counter value	counter	actual cost (c_i)	amortiz cost (<i>ĉ</i>		$\sum c_i$	<u>≤</u>	$\sum \hat{c}_i$
0	0000000						
1	0000001	1	9 2	(overcharged)	1	\leq	2
2	0000010	2	2		3	\leq	4
3	00000011	1	9 9 2	(overcharged)	4	\leq	6
4	00000100	3	9 2	(undercharged)	7	≤	8
5	00000101	1	9 9 2	(overcharged)	8	≤	10
6	00000110	2			10	≤	12
7	00000111	1	9 2	(overcharged)	11	≤	14
8	00001000	4	9 9 2	(undercharged)	15	≤	16
9	00001001	1	3 2	(overcharged)	16	≤	18

Accounting Method (Banker's View)

counter value	counter	actual cost (c_i)	amortized cost (\hat{c}_i)	$\sum c_i$	$\leq \frac{1}{2}$	$\sum \hat{c}_i$
0	0000000					
1	0000001	1	<pre> ② ② 2 (overcharged) </pre>	1	\leq	2
2	00000010	2	② ② 2	3	≤	4
3	00000011	1	<pre> ② ② 2 (overcharged) </pre>	4	≤	6
4	00000100	3	<pre> ② ② 2 (undercharged) </pre>	7	≤	8

Total credits remaining after n increments, $\Delta_n = \sum_{i=1}^n \hat{c}_i - \sum_{i=1}^n c_i$

We must make sure that for all n, $\Delta_n \geq 0$

$$\Rightarrow \sum_{i=1}^{n} \hat{c}_i \ge \sum_{i=1}^{n} c_i$$

This will ensure that the total amortized cost is always an upper bound on the total actual cost.

Potential Method (Physicist's View)

Banker's View: Store prepaid work as credit with specific objects in the data structure.

Physicist's View: Represent total remaining credit in the data structure as a single potential function.

Suppose: state of the initial data structure $= D_0$ state of the data structure after the i-th operation $= D_i$ potential associated with D_i is $= \Phi(D_i)$

Then amortized cost of the i-th operation,

 \hat{c}_i = actual cost + potential change due to that operation = $c_i + \Phi(D_i) - \Phi(D_{i-1})$

Potential Method (Physicist's View)

Then amortized cost of the i-th operation,

 \hat{c}_i = actual cost + potential change due to that operation = $c_i + \Phi(D_i) - \Phi(D_{i-1})$

$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1})) = \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)$$

Since we do not know n in advance, if we make sure that for all n, $\Phi(D_n) \ge \Phi(D_0)$, we ensure that always $\sum_{i=1}^n \hat{c}_i \ge \sum_{i=1}^n c_i$.

In other words, in that case, the total amortized cost will always be an upper bound on the total actual cost.

One way of achieving that is to find a Φ such that $\Phi(D_0) = 0$ and for all n, $\Phi(D_n) \ge 0$.

Potential Method (Physicist's View)

For the binary counter,

 $\Phi(D_i)$ = number of set bits (i.e., 1 bits) after the *i*-th operation

counter value	counter	actual cost (c_i)	$\Phi(D_i)$	amortized cost (\hat{c}_i)	$\sum c_i$	≤	$\sum \hat{c}_i$
0	0000000		\int_{0}^{∞}				
1	00000001	1	1	<pre> ② ② 2 (overcharged) </pre>	1	\leq	2
2	00000010	2	1		3	\leq	4
3	00000011	1	2	<pre> ② ② 2 (overcharged) </pre>	4	≤	6
4	00000100	3	1	<pre> ② ② 2 (undercharged) </pre>) 7	≤	8
5	00000101	1	2	<pre> ② ② 2 (overcharged) </pre>	8	≤	10
6	00000110	2	2	② ② 2	10	≤	12
7	000001111	1	3	<pre> ② ② 2 (overcharged) </pre>	11	≤	14
8	00001000	4	1	② ② 2 (undercharged)) 15	<	16