CSE 548: Analysis of Algorithms

Lecture 2 (Divide-and-Conquer Algorithms: Integer Multiplication)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2014

<u>A Latin Phrase</u>

"Divide et impera"

(meaning: "divide and rule" or "divide and conquer")

— Philip II, king of Macedon (382-336 BC), describing his policy toward the Greek city-states (some say the Roman emperor Julius Caesar, 100-44 BC, is the source of this phrase)

The strategy is to break large power alliances into smaller ones that are easier to manage (or subdue).

This is a combination of political, military and economic strategy of gaining and maintaining power.

Unsurprisingly, this is also a very powerful problem solving strategy in computer science.

Divide-and-Conquer

- 1. Divide: divide the original problem into smaller subproblems that are easier are to solve
- 2. Conquer: solve the smaller subproblems (perhaps recursively)
- 3. Merge: combine the solutions to the smaller subproblems to obtain a solution for the original problem

Integer Multiplication

Multiplying Two n-bit Numbers

$$xy = (2^{n/2}x_L + x_R)(2^{n/2}y_L + y_R) = 2^n x_L y_L + 2^{n/2}(x_L y_R + x_R y_L) + x_R y_R$$

So # $\frac{n}{2}$ -bit products: 4

bit shifts (by n or $\frac{n}{2}$ bits): 2

additions (at most 2n bits long) : 3

We can compute the $\frac{n}{2}$ -bit products recursively.

Let T(n) be the overall running time for n-bit inputs. Then

$$T(n) = \begin{cases} \Theta(1) & if \ n = 1, \\ 4T\left(\frac{n}{2}\right) + O(n) & otherwise. \end{cases} = O(n^2) \text{ (how? derive)}$$

<u>Multiplying Two n-bit Numbers Faster</u> (Karatsuba's Algorithm)

$$x = \underbrace{ \begin{array}{c|c} \frac{n}{2}bits & \frac{n}{2}bits \\ \hline x_L & x_R \\ \hline y = \underbrace{ \begin{array}{c|c} y_L & y_R \\ \hline n \ bits \end{array}} = 2^{n/2}x_L + x_R$$

$$xy = (2^{n/2}x_L + x_R)(2^{n/2}y_L + y_R)$$

$$= 2^n x_L y_L + 2^{n/2}(x_L y_R + x_R y_L) + x_R y_R$$

$$= 2^n x_L y_L + 2^{n/2}((x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R) + x_R y_R$$

So # $\frac{n}{2}$ - or $(\frac{n}{2}+1)$ -bit products: 3

Then the overall running time for n-bit inputs:

$$T(n) = \begin{cases} \Theta(1) & if \ n = 1, \\ 3T\left(\frac{n}{2}\right) + O(n) & otherwise. \end{cases}$$
$$= O(n^{\log_2 3}) = O(n^{1.59}) \text{(how? derive)}$$

<u>Algorithms for Multiplying Two n-bit Numbers</u>

Inventor	Year	Complexity
Classical	_	$\Theta(n^2)$
Anatolii Karatsuba	1960	$\Theta(n^{\log_2 3})$
Andrei Toom & Stephen Cook (generalization of Karatsuba's algorithm)	1963 – 66	$\Theta\left(n2^{\sqrt{2\log_2 n}}\log n\right)$
Arnold Schönhage & Volker Strassen (Fast Fourier Transform)	1971	$\Theta(n \log n \log \log n)$
Martin Fürer (Fast Fourier Transform)	2005	$n \log n 2^{O(\log^* n)}$

Lower bound: $\Omega(n)$ (why?)