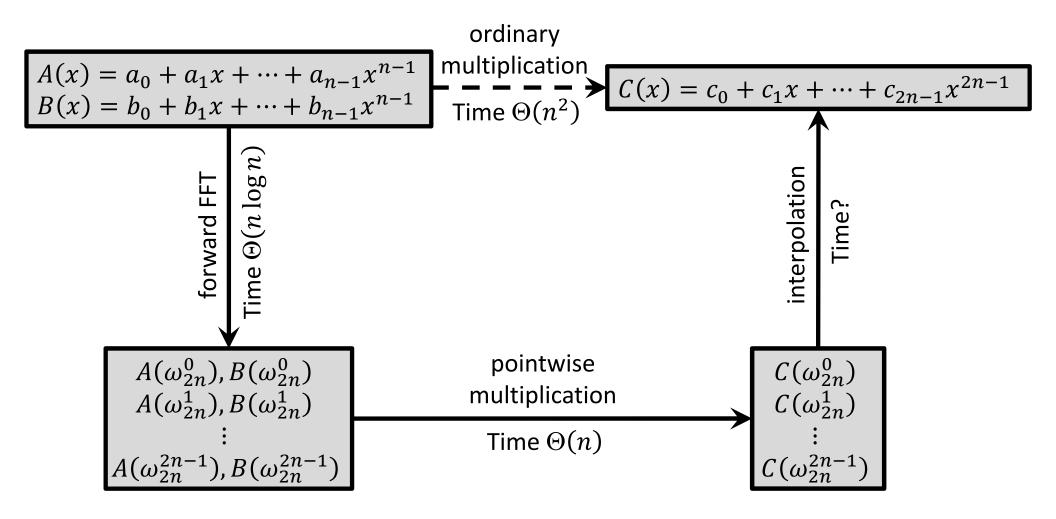
CSE 548: Analysis of Algorithms

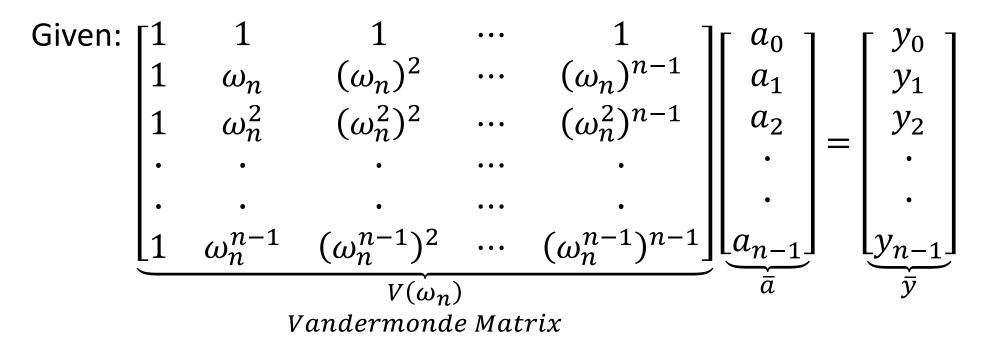
Lecture 5 (Divide-and-Conquer Algorithms: Polynomial Multiplication (Continued))

Rezaul A. Chowdhury

Department of Computer Science SUNY Stony Brook Spring 2014

<u>Faster Polynomial Multiplication?</u> (in Coefficient Form)





 $\Rightarrow V(\omega_n) \cdot \bar{a} = \bar{y}$

We want to solve: $\bar{a} = [V(\omega_n)]^{-1} \cdot \bar{y}$

It turns out that:
$$[V(\omega_n)]^{-1} = \frac{1}{n}V\left(\frac{1}{\omega_n}\right)$$

That means $[V(\omega_n)]^{-1}$ looks almost similar to $V(\omega_n)!$

Show that:
$$[V(\omega_n)]^{-1} = \frac{1}{n}V\left(\frac{1}{\omega_n}\right)$$

Let $U(\omega_n) = \frac{1}{n}V\left(\frac{1}{\omega_n}\right)$

We want to show that $U(\omega_n)V(\omega_n) = I_n$, where I_n is the $n \times n$ identity matrix.

Observe that for $0 \le j, k \le n - 1$, the $(j, k)^{th}$ entries are: $[V(\omega_n)]_{jk} = \omega_n^{jk}$ and $[U(\omega_n)]_{jk} = \frac{1}{n} \omega_n^{-jk}$

Then entry (p,q) of $U(\omega_n)V(\omega_n)$,

$$[U(\omega_n)V(\omega_n)]_{pq} = \sum_{k=0}^{n-1} [U(\omega_n)]_{pk} [V(\omega_n)]_{kq} = \frac{1}{n} \sum_{k=0}^{n-1} \omega_n^{k(q-p)}$$

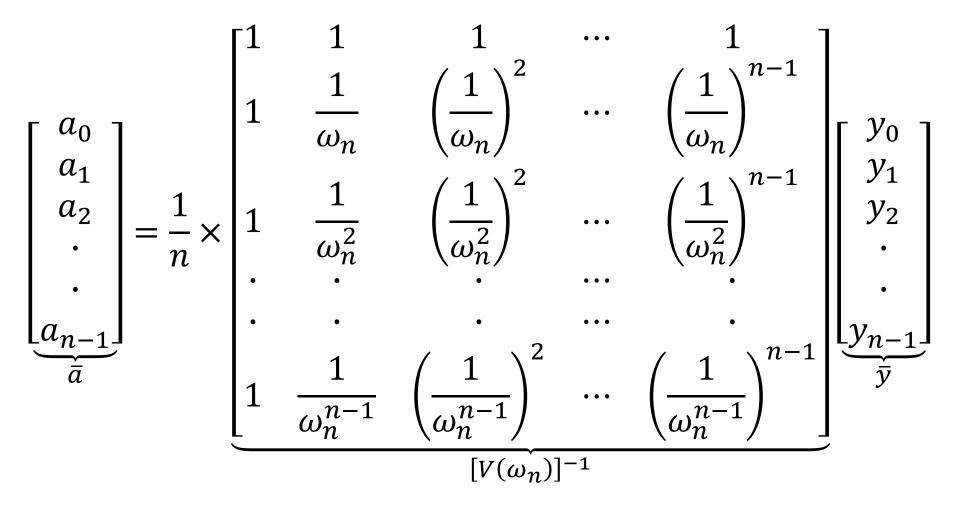
$$[U(\omega_n)V(\omega_n)]_{pq} = \frac{1}{n} \sum_{k=0}^{n-1} \omega_n^{k(q-p)}$$

CASE
$$p = q$$
:
 $[U(\omega_n)V(\omega_n)]_{pq} = \frac{1}{n} \sum_{k=0}^{n-1} \omega_n^0 = \frac{1}{n} \sum_{k=0}^{n-1} 1 = \frac{1}{n} \times n = 1$

CASE
$$p \neq q$$
:
 $[U(\omega_n)V(\omega_n)]_{pq} = \frac{1}{n} \sum_{k=0}^{n-1} (\omega_n^{q-p})^k = \frac{1}{n} \times \frac{(\omega_n^{q-p})^n - 1}{\omega_n^{q-p} - 1}$
 $= \frac{1}{n} \times \frac{(\omega_n^n)^{q-p} - 1}{\omega_n^{q-p} - 1} = \frac{1}{n} \times \frac{(1)^{q-p} - 1}{\omega_n^{q-p} - 1} = 0$

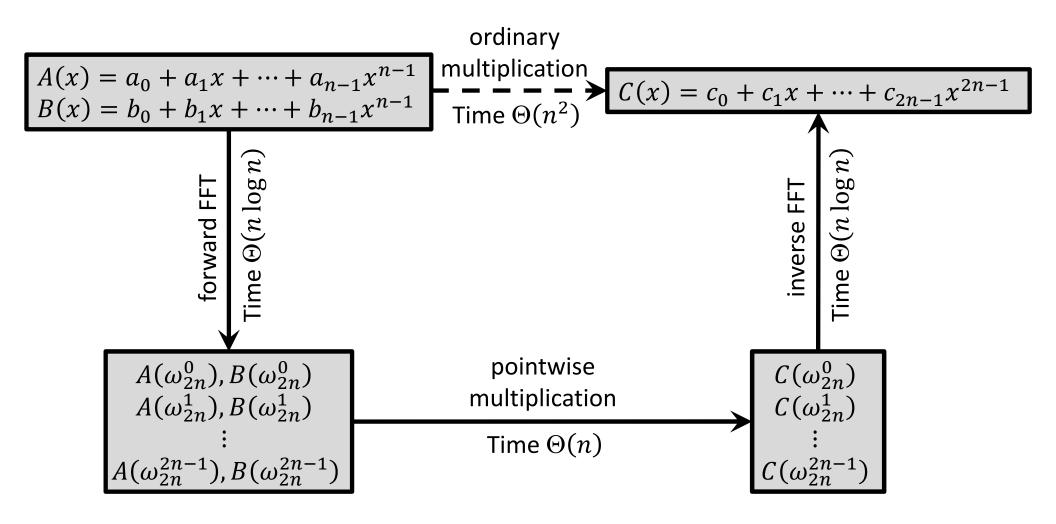
Hence $U(\omega_n)V(\omega_n) = I_n$

We need to compute the following matrix-vector product:



This inverse problem is almost similar to the forward problem, and can be solved in $\Theta(n \log n)$ time using the same algorithm as the forward FFT with only minor modifications!

<u>Faster Polynomial Multiplication?</u> (in Coefficient Form)



Two polynomials of degree bound n given in the coefficient form can be multiplied in $\Theta(n \log n)$ time!

Some Applications of Fourier Transform and FFT

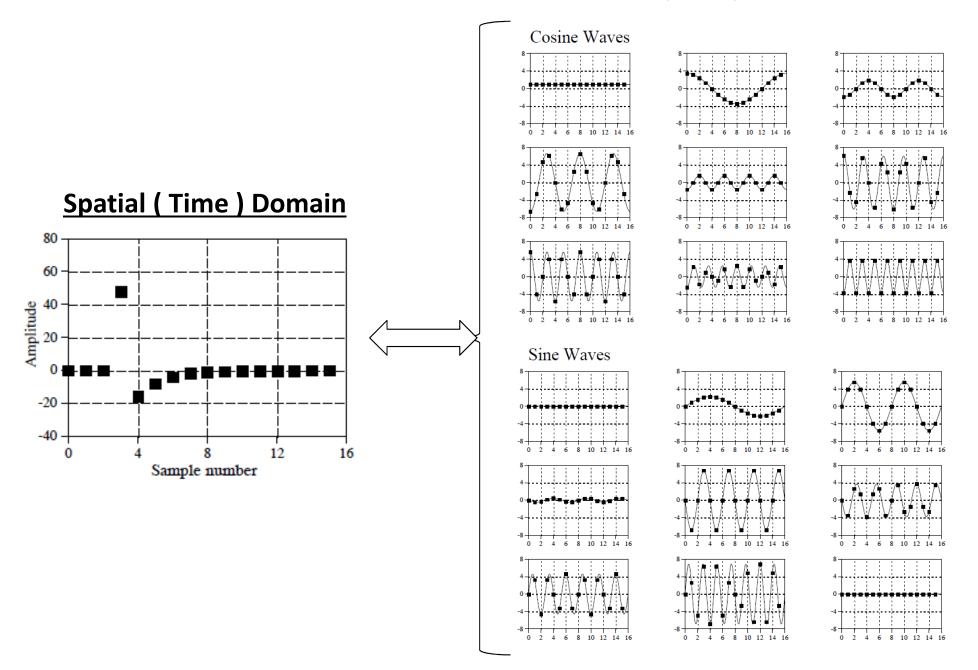
- Signal processing
- Image processing
- Noise reduction
- Data compression
- Solving partial differential equation
- Multiplication of large integers
- Polynomial multiplication
- Molecular docking

Some Applications of Fourier Transform and FFT

Any periodic signal can be represented as a sum of a series of sinusoidal (sine & cosine) waves. [1807]

<u>Spatial (Time) Domain ⇔ Frequency Domain</u>

Frequency Domain



Source: The Scientist and Engineer's Guide to Digital Signal Processing by Steven W. Smith

<u>Spatial (Time) Domain ⇔ Frequency Domain</u> <u>(Fourier Transforms)</u>

Let s(t) be a signal specified in the time domain.

The strength of s(t) at frequency f is given by:

$$S(f) = \int_{-\infty}^{\infty} s(t) \cdot e^{-2\pi i f t} dt$$

Evaluating this integral for all values of f gives the frequency domain function.

Now s(t) can be retrieved by summing up the signal strengths at all possible frequencies:

$$s(t) = \int_{-\infty}^{\infty} S(f) \cdot e^{2\pi i f t} \, df$$

Why do the Transforms Work?

Let's try to get a little intuition behind why the transforms work. We will look at a very simple example.

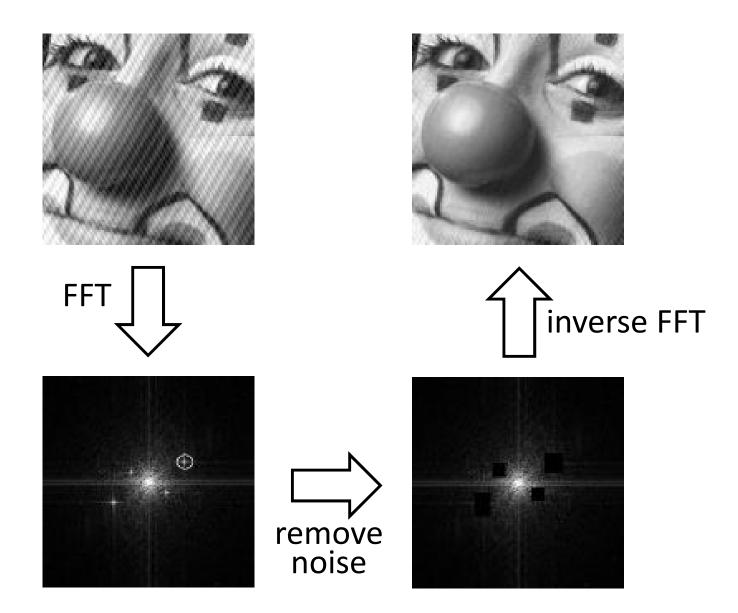
Suppose: $s(t) = \cos(2\pi h \cdot t)$

$$\frac{1}{T} \int_{-T}^{T} s(t) \cdot e^{-2\pi i f t} dt = \begin{cases} 1 + \frac{\sin(4\pi f T)}{4\pi f T}, & \text{if } f = h, \\ \frac{\sin(2\pi (h-f)T)}{2\pi (h-f)T} + \frac{\sin(2\pi (h+f)T)}{2\pi (h+f)T}, & \text{otherwise.} \end{cases}$$

$$\Rightarrow \lim_{T \to \infty} \left(\frac{1}{T} \int_{-T}^{T} s(t) \cdot e^{-2\pi i f t} dt \right) = \begin{cases} 1, & \text{if } f = h, \\ 0, & \text{otherwise.} \end{cases}$$

So, the transform can detect if f = h!

Noise Reduction



Source: http://www.mediacy.com/index.aspx?page=AH_FFTExample

Data Compression

- Discrete Cosine Transforms (DCT) are used for lossy data compression (e.g., MP3, JPEG, MPEG)
- DCT is a Fourier-related transform similar to DFT (Discrete Fourier Transform) but uses only real data (uses cosine waves only instead of both cosine and sine waves)
- Forward DCT transforms data from spatial to frequency domain
- Each frequency component is represented using a fewer number of bits (i.e., truncated / quantized)
- Low amplitude high frequency components are also removed
- Inverse DCT then transforms the data back to spatial domain
- The resulting image compresses better

Data Compression

Transformation to frequency domain using cosine transforms work in the same way as the Fourier transform.

Suppose: $s(t) = \cos(2\pi h \cdot t)$

$$\frac{1}{T} \int_{-T}^{T} s(t) \cdot \cos(2\pi f t) \, dt = \begin{cases} 1 + \frac{\sin(4\pi f T)}{4\pi f T}, & \text{if } f = h, \\ \frac{\sin(2\pi (h - f)T)}{2\pi (h - f)T} + \frac{\sin(2\pi (h + f)T)}{2\pi (h + f)T}, & \text{otherwise.} \end{cases}$$

$$\Rightarrow \lim_{T \to \infty} \left(\frac{1}{T} \int_{-T}^{T} s(t) \cdot \cos(2\pi ft) \, dt \right) = \begin{cases} 1, & \text{if } f = h, \\ 0, & \text{otherwise.} \end{cases}$$

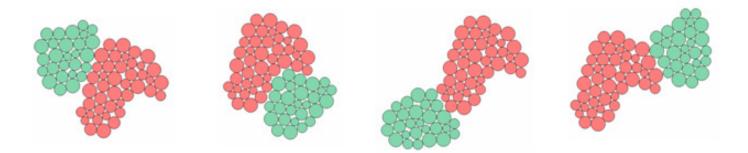
So, this transform can also detect if f = h.

Protein-Protein Docking

□ Knowledge of complexes is used in

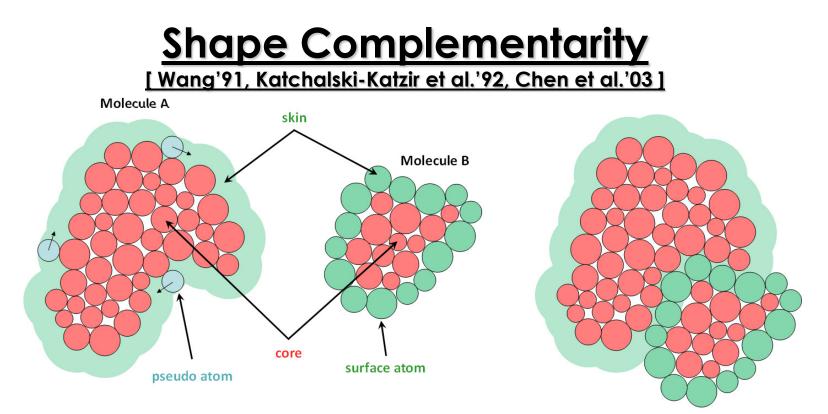
- Drug design
 Structure function analysis
- Studying molecular assemblies Protein interactions

Protein-Protein Docking: Given two proteins, find the best relative transformation and conformations to obtain a stable complex.



Docking is a hard problem

- Search space is huge (6D for rigid proteins)
- Protein flexibility adds to the difficulty

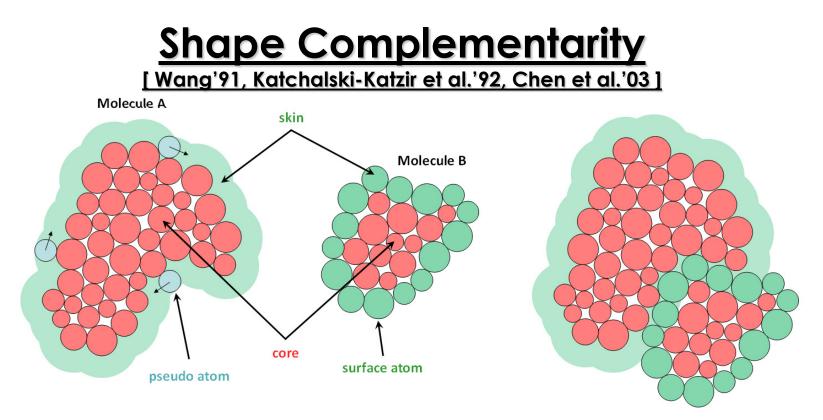


To maximize skin-skin overlaps and minimize core-core overlaps

- assign positive real weights to skin atoms
- assign positive imaginary weights to core atoms

Let A' denote molecule A with the pseudo skin atoms.

For $P \in \{A', B\}$ with M_P atoms, affinity function: $f_P(x) = \sum_{k=1}^{M_P} w_k \cdot g_k(x)$ Here $g_k(x)$ is a Gaussian representation of atom k, and w_k its weight.



a possible docking solution

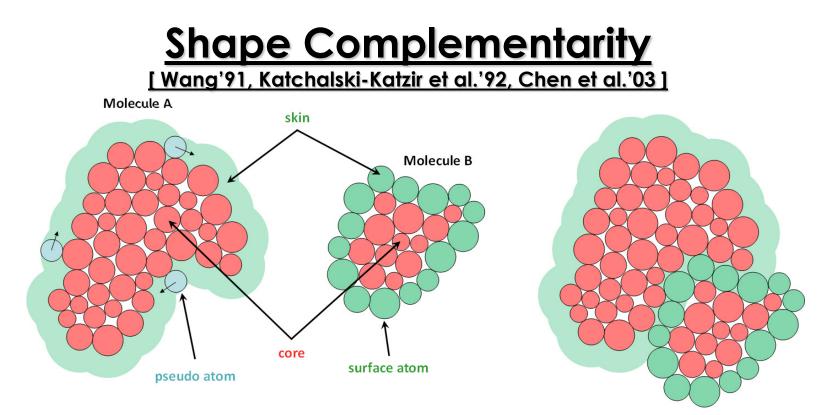
Let A' denote molecule A with the pseudo skin atoms.

For $P \in \{A', B\}$ with M_P atoms, affinity function:

$$f_P(x) = \sum_{k=1}^{M_P} w_k \cdot g_k(x)$$

For rotation r and translation t of molecule B (i.e., $B_{t,r}$),

the interaction score, $F_{A,B}(t,r) = \int_x f_{A'}(x) f_{B_{t,r}}(x) dx$



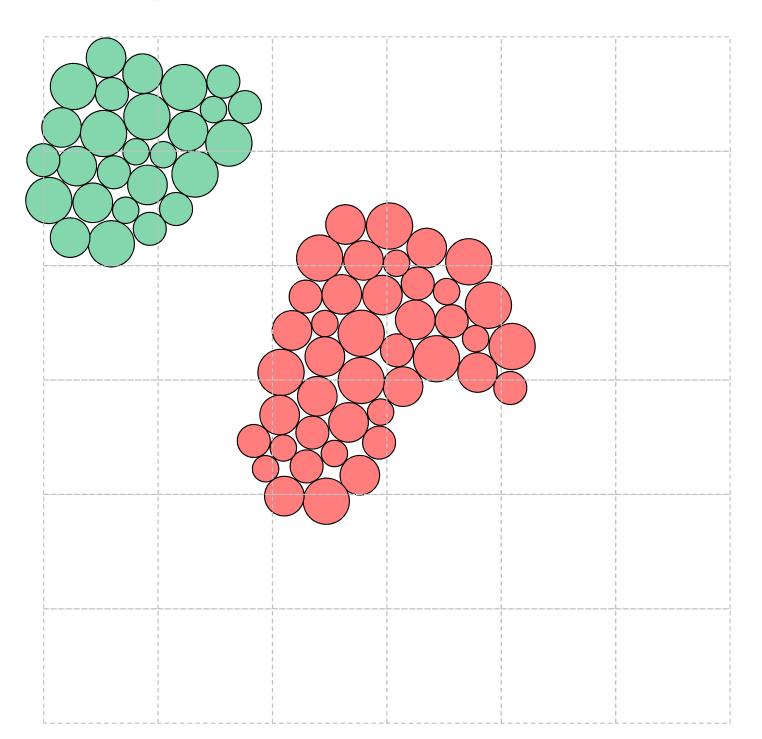
a possible docking solution

For rotation r and translation t of molecule B (i.e., $B_{t,r}$),

the interaction score, $F_{A,B}(t,r) = \int_x f_{A'}(x) f_{B_{t,r}}(x) dx$

 $Re(F_{A,B}(t,r)) =$ skin-skin overlap score – core-core overlap score $Im(F_{A,B}(t,r)) =$ skin-core overlap score

Docking: Rotational & Translational Search



Translational Search using FFT

