
CSE 548: Analysis of Algorithms

Lectures 27 & 28

(Analyzing I/O and Cache Performance)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2014

Iterative Matrix-Multiply Variants

I-J-K

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

for (int k = 0; k < n; k++)

Z[i][j] += X[i][k] * Y[k][j];

I-K-J

for (int i = 0; i < n; i++)

for (int k = 0; k < n; k++)

for (int j = 0; j < n; j++)

Z[i][j] += X[i][k] * Y[k][j];

J-I-K

for (int j = 0; j < n; j++)

for (int i = 0; i < n; i++)

for (int k = 0; k < n; k++)

Z[i][j] += X[i][k] * Y[k][j];

J-K-I

for (int j = 0; j < n; j++)

for (int k = 0; k < n; k++)

for (int i = 0; i < n; i++)

Z[i][j] += X[i][k] * Y[k][j];

K-I-J

for (int k = 0; k < n; k++)

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

Z[i][j] += X[i][k] * Y[k][j];

K-J-I

for (int k = 0; k < n; k++)

for (int j = 0; j < n; j++)

for (int i = 0; i < n; i++)

Z[i][j] += X[i][k] * Y[k][j];

double Z[n][n], X[n][n], Y[n][n];

Performance of Iterative Matrix-Multiply Variants

� � 1000 � � 2000 � � 3000
Processor: 2.7 GHz Intel Xeon E5-2680 (used only one core)

Caches & RAM: private 32KB L1, private 256KB L2, shared 20MB L3, 32 GB RAM

Optimizations: none (icc 13.0 with –O0)

For efficient computation we need

− fast processors

− fast and large (but not so expensive) memory

But memory cannot be cheap, large and fast at the same time,

because of

− finite signal speed

− lack of space to put enough connecting wires

A reasonable compromise is to use a memory hierarchy.

Memory: Fast, Large & Cheap!

Tape

Disk

Main Memory

On Board Cache

Registers

On Chip Cache

Larger

Smaller

Slower

Faster

Block Transfer

CPU

A memory hierarchy is

− almost as fast as its fastest level

− almost as large as its largest level

− inexpensive

The Memory Hierarchy

To perform well on a memory hierarchy algorithms must

have high locality in their memory access patterns.

The Memory Hierarchy

Tape

Disk

Main Memory

On Board Cache

Registers

On Chip Cache

Larger

Smaller

Slower

Faster

Block Transfer

CPU

Locality of Reference

Spatial Locality: When a block of data is brought into the cache it

should contain as much useful data as possible.

Temporal Locality: Once a data point is in the cache as much useful

work as possible should be done on it before evicting it from the

cache.

CPU-bound vs. Memory-bound Algorithms

The Op-Space Ratio: Ratio of the number of operations performed

by an algorithm to the amount of space (input + output) it uses.

Intuitively, this gives an upper bound on the average number of

operations performed for every memory location accessed.

CPU-bound Algorithm:

‒ high op-space ratio

‒ more time spent in computing than transferring data

‒ a faster CPU results in a faster running time

Memory-bound Algorithm:

‒ low op-space ratio

‒ more time spent in transferring data than computing

‒ a faster memory system leads to a faster running time

The two-level I/O model [Aggarwal

& Vitter, CACM’88] consists of:

− an internal memory of size M

− an arbitrarily large external

memory partitioned into blocks

of size B.

I/O complexity of an algorithm

= number of blocks transferred between these two levels

Basic I/O complexities: ��	�
 � Θ � and ����
 � Θ � log�� �
Algorithms often crucially depend on the knowledge of M and B

⇒ algorithms do not adapt well when M or B changes

block transfer
(size = B)

Cache Lines

internal memory

external memory

(size = M)

Cache Misses

CPU

The Two-level I/O Model

The ideal-cache model [Frigo et al.,

FOCS’99] is an extension of the I/O

model with the following constraint:

algorithms are not allowed to

use knowledge of M and B.

Consequences of this extension

− algorithms can simultaneously adapt to all levels of a multi-

level memory hierarchy

− algorithms become more flexible and portable

Algorithms for this model are known as cache-oblivious algorithms.

The Ideal-Cache Model

block transfer
(size = B)

Cache Lines

internal memory

external memory

(size = M)

Cache Misses

CPU

� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

The Ideal-Cache Model: Assumptions

� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

− LRU & FIFO allow for a constant factor approximation of

optimal [Sleator & Tarjan, JACM’85]

The Ideal-Cache Model: Assumptions

� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

− can be effectively removed by making several reasonable

assumptions about the memory hierarchy [Frigo et al.,

FOCS’99]

The Ideal-Cache Model: Assumptions

� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

− in practice, cache replacement is automatic

(by OS or hardware)

− fully associative LRU caches can be simulated in software

with only a constant factor loss in expected performance

[Frigo et al., FOCS’99]

The Ideal-Cache Model: Assumptions

� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

� , i.e., the cache is tall

Often makes the following assumption, too:

(((())))Ω====
2M B

The Ideal-Cache Model: Assumptions

� Optimal offline cache replacement policy

� Exactly two levels of memory

� Automatic replacement & full associativity

The model makes the following assumptions:

� , i.e., the cache is tall

Often makes the following assumption, too:

(((())))Ω====
2M B

− most practical caches are tall

The Ideal-Cache Model: Assumptions

� Basic I/O bounds (same as the cache-aware bounds):

� Most cache-oblivious results match the I/O bounds of

their cache-aware counterparts

� There are few exceptions; e.g., no cache-oblivious

solution to the permutation problem can match cache-

aware I/O bounds [Brodal & Fagerberg, STOC’03]

Cache-oblivious vs. cache-aware bounds:

− ��	�
 � Θ �
− ����
 � Θ � log�� �

The Ideal-Cache Model: I/O Bounds

Some Known Cache Aware / Oblivious Results

Problem Cache-Aware Results Cache-Oblivious Results

Array Scanning (scan(N))

Sorting

(sort(N))

Selection

B-Trees [Am]

(Insert, Delete)

Priority Queue [Am]

(Insert, Weak Delete,
Delete-Min)

Matrix Multiplication

Sequence Alignment

Single Source

Shortest Paths

Minimum Spanning Forest

N
O

B

log
M

B

N N
O

B B

log
M

B

N N
O

B B

1

log
M

B

N
O

B B

1

log
M

B

N
O

B B

log

B

N
O

B

log

B

N
O

B

(((())))(((())))O scan N (((())))(((())))O scan N

Table 1: N = #elements, V = #vertices, E = #edges, Am = Amortized.

2
N

O
BM

3
N

O
B M

3
N

O
B M

N
O

B

2
N

O
BM

2

+ ⋅+ ⋅+ ⋅+ ⋅

log

E V
O V

B B

(((()))) (((())))2 2

++++

min log log ,

VB
O sort E V sort E

E

2

+ ⋅+ ⋅+ ⋅+ ⋅

log

E V
O V

B B

(((()))) (((())))(((())))(((())))2 2
 min log log ,O sort E V V sort E++++

Matrix

Multiplication

1

n

ij ik kj
k

z x y
====

==== ∑∑∑∑

11 12 1

21 22 2

1 2

n

n

n n nn

z z z

z z z

z z z

L

L

M M O M

L

11 12 1

21 22 2

1 2

n

n

n n nn

x x x

x x x

x x x

L

L

M M O M

L

11 12 1

21 22 2

1 2

n

n

n n nn

y y y

y y y

y y y

L

L

M M O M

L

==== ××××

Iter-MM (X, Y, Z, n)

1. for i ← 1 to n do

2. for j ← 1 to n do

3. for k ← 1 to n do

4. zij ← zij + xik × ykj

Iterative Matrix Multiplication

row-major order
store in

Each iteration of the for loop in line 3 incurs O � cache misses.

I/O-complexity of Iter-MM, Q � � O ��

row-major order
store in

Iter-MM (X, Y, Z, n)

1. for i ← 1 to n do

2. for j ← 1 to n do

3. for k ← 1 to n do

4. zij ← zij + xik × ykj

Iterative Matrix Multiplication

Each iteration of the for loop in line 3 incurs � 1 � � cache misses.

I/O-complexity of Iter-MM,� � � � �� 1 � � � � �� � ��

row-major order
store in

column-major order
store in

Iter-MM (X, Y, Z, n)

1. for i ← 1 to n do

2. for j ← 1 to n do

3. for k ← 1 to n do

4. zij ← zij + xik × ykj

Iterative Matrix Multiplication

Block Matrix Multiplication

Block-MM (X, Y, Z, n)

1. for i ← 1 to n / m do

2. for j ← 1 to n / m do

3. for k ← 1 to n / m do

4. Iter-MM (Xik, Ykj, Zij)

==== ××××

n

n

m

m

n

n

m

m

n

n

m

m

Z X Y

M/3 M/3 M/3

cache (size = M)

M/3 M/3 M/3

Block-MM (X, Y, Z, n)

1. for i ← 1 to n / m do

2. for j ← 1 to n / m do

3. for k ← 1 to n / m do

4. Iter-MM (Xik, Ykj, Zij)

n

n

m

m

Choose � � 3⁄ , so that Xik, Ykj and Zij just fit into the cache.

Then line 4 incurs Θ � 1 � " cache misses.

I/O-complexity of Block-MM [assuming a tall cache, i.e., � Ω #�]

(Optimal: Hong & Kung, STOC’81)

� Θ
�" � � � "$ � Θ

��"$ � ��" � Θ
��% � �� % � Θ

�� %

Block Matrix Multiplication

Block-MM (X, Y, Z, n)

1. for i ← 1 to n / m do

2. for j ← 1 to n / m do

3. for k ← 1 to n / m do

4. Iter-MM (Xik, Ykj, Zij)

n

n

m

m

Choose � � 3⁄ , so that Xik, Ykj and Zij just fit into the cache.

Then line 4 incurs Θ � 1 � " cache misses.

I/O-complexity of Block-MM [assuming a tall cache, i.e., � Ω #�]

� Θ
�" � � � "$ � Θ

��"$ � ��" � Θ
��% � �� % � Θ

�� %

Optimal for any algorithm that performs

the operations given by the following

definition of matrix multiplication:

1

n

ij ik kj
k

z x y
====

==== ∑∑∑∑

(Optimal: Hong & Kung, STOC’81)

Block Matrix Multiplication

n

n
s

s

Block-MM (X, Y, Z, n)

1. for i ← 1 to n / s do

2. for j ← 1 to n / s do

3. for k ← 1 to n / s do

4. Iter-MM (Xik, Ykj, Zij, s)

Multiple Levels of Cache

n

n
s

s

t

t

Block-MM (X, Y, Z, n)

1. for i1 ← 1 to n / s do

2. for j1 ← 1 to n / s do

3. for k1 ← 1 to n / s do

7. Iter-MM ((Xi1k1
)i2k2

, (Yk1j1
)k2j2

, (Xi1j1
)i2j2

, t)

4. for i2 ← 1 to s / t do

5. for j2 ← 1 to s / t do

6. for k2 ← 1 to s / t do

Multiple Levels of Cache

n

n
s

s

t

t

One Parameter Per Caching Level!

Multiple Levels of Cache

Block-MM (X, Y, Z, n)

1. for i1 ← 1 to n / s do

2. for j1 ← 1 to n / s do

3. for k1 ← 1 to n / s do

7. Iter-MM ((Xi1k1
)i2k2

, (Yk1j1
)k2j2

, (Xi1j1
)i2j2

, t)

4. for i2 ← 1 to s / t do

5. for j2 ← 1 to s / t do

6. for k2 ← 1 to s / t do

==== ××××

Z X Y

n

n

n/2

n/2 Z11

Z21

Z12

Z22

n

n

n/2

n/2 X11

X21

X12

X22

n

n

n/2

n/2 Y11

Y21

Y12

Y22

====

n

n

n/2

n/2 X11 Y11 + X12 Y21

X21 Y11 + X22 Y21

X11 Y12 + X12 Y22

X21 Y12 + X22 Y22

Recursive Matrix Multiplication

n

n

n/2

n/2 Z11

Z21

Z12

Z22

====

n

n

n/2

n/2 X11 Y11 + X12 Y21

X21 Y11 + X22 Y21

X11 Y12 + X12 Y22

X21 Y12 + X22 Y22

Rec-MM (Z, X, Y)

1. if Z ≡ 1 × 1 matrix then Z ← Z + X ·Y

2. else

3. Rec-MM (Z11, X11, Y11), Rec-MM (Z11, X12, Y21)

4. Rec-MM (Z12, X12, Y12), Rec-MM (Z12, X12, Y22)

5. Rec-MM (Z21, X21, Y11), Rec-MM (Z21, X22, Y21)

6. Rec-MM (Z22, X21, Y12), Rec-MM (Z22, X22, Y22)

Recursive Matrix Multiplication

I/O-complexity (for � &), � � � 'O � � �$, 							*+	�� , - 8� �� � O 1 , 		��/0�1*�0
			� O �� � ��# � O ��# ,1/0�	 � Ω #�

Recursive Matrix Multiplication

Rec-MM (Z, X, Y)

1. if Z ≡ 1 × 1 matrix then Z ← Z + X ·Y

2. else

3. Rec-MM (Z11, X11, Y11), Rec-MM (Z11, X12, Y21)

4. Rec-MM (Z12, X12, Y12), Rec-MM (Z12, X12, Y22)

5. Rec-MM (Z21, X21, Y11), Rec-MM (Z21, X22, Y21)

6. Rec-MM (Z22, X21, Y12), Rec-MM (Z22, X22, Y22)

I/O-complexity (for all �)� O �� % � �$ � 1 (why?)

Recursive Matrix Multiplication with Z-Morton Layout

3

Recursive Matrix Multiplication with Z-Morton Layout

344 34� 3�4 3��3

Recursive Matrix Multiplication with Z-Morton Layout

34444 3444� 344�4 344�� 34�44 34�4� 34��4 34��� 3�444 3�44� 3�4�4 3�4�� 3��44 3��4� 3���4 3����

34444 3444�
344�4 344��

34�44 34�4�
34��4 34���

3�444 3�44�
3�4�4 3�4��

3��44 3��4�
3���4 3����

3344 34� 3�4 3��

Recursive Matrix Multiplication with Z-Morton Layout

Source: wikipedia

I/O-complexity (for � &), � � � 'O 1 � �$, 							*+	�� , - 8� �� � O 1 , 		��/0�1*�0
			� O �� � ��# � O ��# ,1/0�	 � Ω #

Rec-MM (Z, X, Y)

1. if Z ≡ 1 × 1 matrix then Z ← Z + X ·Y

2. else

3. Rec-MM (Z11, X11, Y11), Rec-MM (Z11, X12, Y21)

4. Rec-MM (Z12, X12, Y12), Rec-MM (Z12, X12, Y22)

5. Rec-MM (Z21, X21, Y11), Rec-MM (Z21, X22, Y21)

6. Rec-MM (Z22, X21, Y12), Rec-MM (Z22, X22, Y22)

Recursive Matrix Multiplication with Z-Morton Layout

I/O-complexity (for all �) � O �� % � �$ � 1

Recursive Matrix Multiplication with Z-Morton Layout

Source: wikipedia

Searching

(Static B-Trees)

� A perfectly balanced binary search tree

� Height of the tree, / � Θ log� �

(((())))2
Θ==== logh n

degree: 2

� Static: no insertions or deletions

A Static Search Tree

(((())))2
Θ==== logh n

a search path

� A search path visits O / nodes, and incurs O / � O log� � I/Os

A Static Search Tree

� A perfectly balanced binary search tree

� Height of the tree, / � Θ log� �� Static: no insertions or deletions

B + 1

� Each node stores B keys, and has degree B + 1

� Height of the tree, / � Θ log �

(((())))logBh nΘ====

I/O-Efficient Static B-Trees

(((())))logBh nΘ====

B + 1

a search path

� Each node stores B keys, and has degree B + 1

� Height of the tree, / � Θ log �
� A search path visits O / nodes, and incurs O / � O log � I/Os

I/O-Efficient Static B-Trees

Cache-Oblivious Static B-Trees?

h

a binary search tree

van Emde Boas Layout

h

 h / 2

 h / 2

A

B1 Bk

A B1 B2 Bk

each subtree contains Θ 25/� � Θ � nodes,

If the tree contains � nodes,

and 7 � Θ � .

a binary search tree

van Emde Boas Layout

h

 h / 2

 h / 2

A

B1 Bk

Recursive Subdivision

van Emde Boas Layout

A B1 B2 Bk

each subtree contains Θ 25/� � Θ � nodes,

If the tree contains � nodes,

and 7 � Θ � .

a binary search tree

h

 h / 2

 h / 2

A

B1 Bk

Recursive Subdivision

van Emde Boas Layout

A B1 B2 Bk

each subtree contains Θ 25/� � Θ � nodes,

If the tree contains � nodes,

and 7 � Θ � .

a binary search tree

h

 h / 2

 h / 2

A

B1 Bk

Recursive Subdivision

van Emde Boas Layout

A B1 B2 Bk

each subtree contains Θ 25/� � Θ � nodes,

If the tree contains � nodes,

and 7 � Θ � .

a binary search tree

h

 h / 2

 h / 2

A

B1 Bk

Recursive Subdivision

van Emde Boas Layout

A B1 B2 Bk

each subtree contains Θ 25/� � Θ � nodes,

If the tree contains � nodes,

and 7 � Θ � .

a binary search tree

� Each has height between
4� log# & log#.

� The height of the tree is log �
� Each spans at most 2 blocks of size #.

I/O-Complexity of a Search

� p = number of ‘s visited by a search path

� Then 8 9 :;< �:;< � log �, and 8 , :;< �=$:;< � 2log �
� The number of blocks transferred is , 2 > 2 log � � 4 log �

a search path

I/O-Complexity of a Search

� Each has height between
4� log# & log#.

� The height of the tree is log �
� Each spans at most 2 blocks of size #.

Sorting

(Mergesort)

Merge-Sort (A, p, r) { sort the elements in A[p … r] }

1. if p < r then

3. Merge-Sort (A, p, q)

4. Merge-Sort (A, q + 1, r)

2. q ← (p + r) / 2

5. Merge (A, p, q, r)

Merge Sort

Merging k Sorted Sequences

‒ 7 9 2 sorted sequences @4, @�, … , @B stored in external memory

‒ @C � �C for 1 , * , 7
‒ � � �4 � �� �⋯� �B is the length of the merged sequence @
‒ @ (initially empty) will be stored in external memory

‒ Cache must be large enough to store

• one block from each @C
• one block from @

Thus 9 7 � 1 #

Merging k Sorted Sequences

‒ Let Bi be the cache block associated with @C, and let B be the

block associated with @ (initially all empty)

‒ Whenever a Bi is empty fill it up with the next block from @C
‒ Keep transferring the next smallest element among all Bis to B

‒ Whenever B becomes full, empty it by appending it to @
‒ In the Ideal Cache Model the block emptying and replacements

will happen automatically ⇒ cache-oblivious merging

I/O Complexity

‒ Reading @C: #block transfers , 2 � �E
‒ Writing @: #block transfers , 1 � �
‒ Total #block transfers , 1 � � � ∑ 2 � �E4GCGB � O 7 � �

Merge-Sort (A, p, r) { sort the elements in A[p … r] }

1. if p < r then

3. Merge-Sort (A, p, q)

4. Merge-Sort (A, q + 1, r)

2. q ← (p + r) / 2

5. Merge (A, p, q, r)

Cache-Oblivious 2-Way Merge Sort

� � � Ο 1 � �# , 															*+	� , ,
2� �2 � Ο 1 � �# , 		��/0�1*�0.

� Ο
� log �%

I/O Complexity:

How to improve this bound?

Cache-Oblivious k-Way Merge Sort

� � � Ο 1 � �# , 															*+	� , ,
7 ⋅ � �7 � Ο 7 � �# , 		��/0�1*�0.

� Ο 7 ⋅ �% � � logB �%
I/O Complexity:

How large can 7 be?

Recall that for 7-way merging, we must ensure

 9 7 � 1 # ⇒ 7 , # K 1

Cache-Aware
LM K N -Way Merge Sort

� � � Ο 1 � �# , 															*+	� , ,
7 ⋅ � �7 � Ο 7 � �# , 		��/0�1*�0.

� Ο 7 ⋅ �% � � logB �%
I/O Complexity:

Using 7 � % K 1, we get:

� � � Ο
 # K 1 � � �# log% � � Ο

�# log% �

Sorting

(Funnelsort)

k-Merger (k-Funnel)

7 9 2 sorted

input sequences

one merged

output sequence

7 - mergers

(7 of them)

7 - merger

(one)

7 linking buffers

(each of size 27�$)

#4

B

O4 O B#4 O� #� # BP
Memory layout of a 7-merger:

k-Merger (k-Funnel)

Space usage of a 7-merger: @ 7 � Q Θ 1 , 																															*+	7 , 2,7 � 1 @ 7 � Θ 7� , 		��/0�1*�0.
� Θ 7�

A 7-merger occupies Θ 7� contiguous locations.

k-Merger (k-Funnel)

Each invocation of a 7-merger

‒ produces a sorted sequence of length 7�
‒ incurs Ο 1 � 7 � B� � B� log% B cache misses provided � Ω #�

k-Merger (k-Funnel)

�′ 7 � Ο 1 � 7 � 7�# , 																			*+	7 S - ,
27�� � 2 7 �′ 7 � Θ 7� , 						��/0�1*�0.

� Ο
B� log% B , provided � ΩT#�U

Cache-complexity:

k-Merger (k-Funnel)

7 S - : 	�′ 7 � Ο 1 � 7 � 7�#
‒ Let �C be #items extracted the *-th input queue. Then ∑ �CBCW4 � Ο 7� .

‒ Since 7 S - and � Ω #� , at least
% � Ω 7 cache blocks are available

for the input buffers.

‒ Hence, #cache-misses for accessing the input queues (assuming circular

buffers) � ∑ Ο 1 � XE � Ο 7 � B�BCW4

k-Merger (k-Funnel)

7 S - : 	�′ 7 � Ο 1 � 7 � 7�#
‒ #cache-misses for accessing the input queues � Ο 7 � B�
‒ #cache-misses for writing the output queue � Ο 1 � B�
‒ #cache-misses for touching the internal data structures � Ο 1 � B$
‒ Hence, total #cache-misses � Ο 1 � 7 � B�

k-Merger (k-Funnel)

7 9 - :	�Y B � 27�� � 2 7 �Y 7 � Θ 7�
‒ Each call to P outputs 7�$ items. So, #times merger P is called � B�B�$ � 7�$
‒ Each call to an OC puts 7�$ items into #C. Since 7� items are output, and the

buffer space is 7 > 27�$ � 27�, #times the OC’s are called , 7�$ � 2 7
‒ Before each call to P, the merger must check each OC for emptiness, and thus

incurring Ο 7 cache-misses. So, #such cache-misses � 7�$ > Ο 7 � Ο 7�

Funnelsort

‒ Split the input sequence Z of length � into �=� contiguous

subsequences Z4, Z�, … , Z�=� of length �$� each

‒ Recursively sort each subsequence

‒ Merge the �=� sorted subsequences using a �=�-merger

� � � 'Ο 1 � �# , 																														*+	� , ,
�4�� ��� � �′ �4� , 																					��/0�1*�0.

										� Ο 1 � �# , 																															*+	� , ,
�4�� ��� � Ο

�# log% �# , 		��/0�1*�0.
� Ο 1 � � log% �

Cache-complexity:

