In-Class Midterm (2:35 PM – 3:50 PM : 75 Minutes)

- This exam will account for either 15% or 30% of your overall grade depending on your relative performance in the midterm and the final. The higher of the two scores (midterm and final) will be worth 30% of your grade, and the lower one 15%.
- There are four (4) questions, worth 75 points in total. Please answer all of them in the spaces provided.
- There are 16 pages including four (4) blank pages and two (2) pages of appendices. Please use the blank pages if you need additional space for your answers.
- The exam is open slides.

GOOD LUCK!

Question	Pages	Score	Maximum
1. Counting Paths	2-4		20
2. A Schönhage-Strassen-like Recurrence	6-8		25
3. Closest Pair of Points	10-11		20
4. An Impossible Priority Queue	13		10
Total			75

NAME:

QUESTION 1. [20 Points] Counting Paths. Suppose you are given two directed graphs¹ G_1 and G_2 containing n + 2 nodes each for some $n \ge 0$. For $i \in \{1, 2\}$, G_i includes two special nodes — a source node s_i with no incoming edges² and a target node t_i with no outgoing edges³. These two nodes are called *external nodes* while the rest are called *internal nodes*. The figure below shows an example with n = 5 in which the internal nodes are colored grey and the external nodes are white. Let $g_i(k)$ denote the number of paths in G_i that go from s_i to t_i and pass through exactly k internal (i.e., grey) nodes. For example, in the figure below $g_1(3) = 4$ which represents the following 4 paths:

$$s_1 \to a_1 \to b_1 \to e_1 \to t_1,$$

$$s_1 \to a_1 \to c_1 \to b_1 \to t_1,$$

$$s_1 \to c_1 \to b_1 \to e_1 \to t_1$$

and
$$s_1 \to c_1 \to d_1 \to e_1 \to t_1.$$

Suppose for $0 \le k \le n$, all $g_1(k)$ and $g_2(k)$ values are known to you.

Now suppose you connect G_1 and G_2 by putting an edge directed from t_1 to s_2 . For $0 \le k \le 2n$, let $g_{12}(k)$ denote the number of paths from s_1 to t_2 that pass through exactly k internal (i.e., grey) nodes. The figure above shows an example in which $g_{12}(3) = 5$ representing the following 5 paths:

$$\begin{array}{c} (s_1 \rightarrow c_1 \rightarrow t_1) \rightarrow (s_2 \rightarrow c_2 \rightarrow b_2 \rightarrow t_2), \\ (s_1 \rightarrow c_1 \rightarrow t_1) \rightarrow (s_2 \rightarrow d_2 \rightarrow e_2 \rightarrow t_2), \\ (s_1 \rightarrow a_1 \rightarrow b_1 \rightarrow t_1) \rightarrow (s_2 \rightarrow d_2 \rightarrow t_2), \\ (s_1 \rightarrow a_1 \rightarrow c_1 \rightarrow t_1) \rightarrow (s_2 \rightarrow d_2 \rightarrow t_2) \\ \text{and} \ (s_1 \rightarrow c_1 \rightarrow b_1 \rightarrow t_1) \rightarrow (s_2 \rightarrow d_2 \rightarrow t_2). \end{array}$$

¹e.g., road networks with one-way roads

²e.g., incoming roads

³e.g., outgoing roads

1(a) [5 Points] For any given integer $k \in [0, 2n]$, show that $g_{12}(k)$ can be computed from g_1 's and g_2 's in $\mathcal{O}(n)$ time.

1(b) [15 Points] Show that for $0 \le k \le 2n$, one can compute all $g_{12}(k)$ values simultaneously in $\mathcal{O}(n \log n)$ time.

QUESTION 2. [25 Points] A Schönhage-Strassen-like Recurrence. Consider the following recurrence (for $n \ge 2$) which is similar to the recurrence that arises during the analysis of the *Schönhage-Strassen algorithm* for multiplying large integers.

$$T(n) = \begin{cases} \Theta(1) & \text{if } 2 \le n \le 8, \\ n^{\frac{2}{3}}T\left(n^{\frac{1}{3}}\right) + n^{\frac{1}{3}}T\left(n^{\frac{2}{3}}\right) + \Theta(n\log n) & \text{otherwise.} \end{cases}$$

2(a) [4 Points] Show that the recurrence above can be rewritten as follows, where T(n) = nS(n).

$$S(n) = \begin{cases} \Theta(1) & \text{if } 2 \le n \le 8, \\ S\left(n^{\frac{1}{3}}\right) + S\left(n^{\frac{2}{3}}\right) + \Theta(\log n) & \text{otherwise.} \end{cases}$$

2(b) [4 Points] Show that the recurrence in 2(a) can be rewritten as follows, where $P(x) = S(2^x)$.

$$P(x) = \begin{cases} \Theta(1) & \text{if } 1 \le x \le 3, \\ P\left(\frac{x}{3}\right) + P\left(\frac{2x}{3}\right) + \Theta(x) & \text{otherwise.} \end{cases}$$

2(c) [9 Points] Solve the recurrence from part 2(b) to show that $P(x) = \Theta(x \log x)$.

2(d) [8 Points] Use your results from part 2(c) to show that $T(n) = \Theta(n \log n \log \log n)$.

QUESTION 3. [**20 Points**] **Closest Pair of Points.** Consider the algorithm CLOSEST-PAIR given below that finds the closest pair of points among a given set of points in the plane.

CLOSEST-PAIR(P, n)

Input: A set $P = \{p_1 = (x_1, y_1), p_2 = (x_2, y_2), \dots, p_n = (x_n, y_n)\}$ of *n* points in the plane. Assume for simplicity that (a) $n = 2^k$ for some integer k > 0, (b) all x_i 's are distinct, and (c) all y_i 's are distinct.

Output: Two distinct points $p_i, p_j \in P$ such that the distance between p_i and p_j is the smallest among all pairs of points in P.

Algorithm:

1. if n = 2 then return $\langle p_1, p_2 \rangle$

- 2. else
- 3. Find a value x such that exactly $\frac{n}{2}$ points in P have $x_i < x$, and the other $\frac{n}{2}$ points have $x_i > x$
- 4. Let L be the subset of P containing all points with $x_i < x$
- 5. Let R be the subset of P containing all points with $x_i > x$
- 6. $\langle p_L, q_L \rangle \leftarrow \text{CLOSEST-PAIR}(L, \frac{n}{2})$
- 7. $\langle p_R, q_R \rangle \leftarrow \text{CLOSEST-PAIR}(R, \frac{n}{2})$
- 8. $d_L \leftarrow \text{distance between } p_L \text{ and } q_L$
- 9. $d_R \leftarrow \text{distance between } p_R \text{ and } q_R$
- 10. $d \leftarrow \min\{ d_L, d_R \}$
- 11. Scan P and remove each $p_i = (x_i, y_i) \in P$ with $x_i < x d$ or $x_i > x + d$
- 12. Sort the remaining points of P in increasing order of y-coordinates
- 13. Scan the sorted list, and for each point compute its distance to the 7 subsequent points in the list. Let $\langle p_M, q_M \rangle$ be the closest pair of points found in this way.
- 14. Let $\langle p, q \rangle$ be the closest pair among $\langle p_L, q_L \rangle$, $\langle p_R, q_R \rangle$ and $\langle p_M, q_M \rangle$
- 15. return $\langle p, q \rangle$
- 3(a) [**10 Points**] Argue that for a set of *n* points, steps 3–5 take $\mathcal{O}(n)$ time while steps 8–15 take $\mathcal{O}(n \log n)$ time.

3(b) [**10 Points**] Let T(n) be the running time of CLOSEST-PAIR on a set of n points. Write a recurrence relation for T(n) and solve it.

QUESTION 4. [10 Points] An Impossible Priority Queue. Consider a (comparison-based) priority queue Q (for real numbers) that supports the following operations.

MAKE-QUEUE(Q): Create an empty queue Q.

INSERT(Q, x): Insert item x into Q.

INCREASE-KEY(Q, x, k): Increase the key of item x to k assuming $k \ge$ current key of x.

FIND-MIN(Q): Return a pointer to an item in Q containing the smallest key.

DELETE-MIN(Q): Delete an item with the smallest key from Q and return a pointer to it.

4(a) [10 Points] Suppose Q supports INSERT and INCREASE-KEY operations in $\mathcal{O}(1)$ amortized time each, and DELETE-MIN operations in $\mathcal{O}(\log n)$ worst-case time each, where n is the number of items in Q. It also supports the MAKE-QUEUE operation and every FIND-MIN operation in $\mathcal{O}(1)$ worst-case time.

Argue that such a priority queue cannot exist.

APPENDIX: RECURRENCES

Master Theorem. Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \le 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise,} \end{cases}$$

where, $\frac{n}{b}$ is interpreted to mean either $\lfloor \frac{n}{b} \rfloor$ or $\lfloor \frac{n}{b} \rfloor$. Then T(n) has the following bounds:

Case 1: If $f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$. **Case 2:** If $f(n) = \Theta(n^{\log_b a} \log^k n)$ for some constant $k \ge 0$, then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$. **Case 3:** If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Akra-Bazzi Recurrences. Consider the following recurrence:

$$T(x) = \begin{cases} \Theta(1), & \text{if } 1 \le x \le x_0, \\ \sum_{i=1}^k a_i T(b_i x) + g(x), & \text{otherwise,} \end{cases}$$

where,

- 1. $k \ge 1$ is an integer constant,
- 2. $a_i > 0$ is a constant for $1 \le i \le k$,
- 3. $b_i \in (0, 1)$ is a constant for $1 \le i \le k$,
- 4. $x \ge 1$ is a real number,
- 5. x_0 is a constant and $\geq \max\left\{\frac{1}{b_i}, \frac{1}{1-b_i}\right\}$ for $1 \le i \le k$, and
- 6. g(x) is a nonnegative function that satisfies a polynomial growth condition (e.g., $g(x) = x^{\alpha} \log^{\beta} x$ satisfies the polynomial growth condition for any constants $\alpha, \beta \in \Re$).

Let p be the unique real number for which $\sum_{i=1}^{k} a_i b_i^p = 1$. Then

$$T(x) = \Theta\left(x^p\left(1 + \int_1^x \frac{g(u)}{u^{p+1}}du\right)\right).$$

APPENDIX: COMPUTING PRODUCTS

Integer Multiplication. Karatsuba's algorithm can multiply two *n*-bit integers in $\Theta(n^{\log_2 3}) = \mathcal{O}(n^{1.6})$ time (improving over the standard $\Theta(n^2)$ time algorithm).

Matrix Multiplication. Strassen's algorithm can multiply two $n \times n$ matrices in $\Theta(n^{\log_2 7}) = \mathcal{O}(n^{2.81})$ time (improving over the standard $\Theta(n^3)$ time algorithm).

Polynomial Multiplication. One can multiply two *n*-degree polynomials in $\Theta(n \log n)$ time using the FFT (Fast Fourier Transform) algorithm (improving over the standard $\Theta(n^2)$ time algorithm).