
CSE548, AMS542: Analysis of Algorithms, Spring 2014 Date: March 12

In-Class Midterm
(2:35 PM – 3:50 PM : 75 Minutes)

• This exam will account for either 15% or 30% of your overall grade depending on your relative
performance in the midterm and the final. The higher of the two scores (midterm and final)
will be worth 30% of your grade, and the lower one 15%.

• There are four (4) questions, worth 75 points in total. Please answer all of them in the spaces
provided.

• There are 16 pages including four (4) blank pages and two (2) pages of appendices. Please
use the blank pages if you need additional space for your answers.

• The exam is open slides.

Good Luck!

Question Pages Score Maximum

1. Counting Paths 2–4 20

2. A Schönhage-Strassen-like Recurrence 6–8 25

3. Closest Pair of Points 10–11 20

4. An Impossible Priority Queue 13 10

Total 75

Name:

1

Question 1. [20 Points] Counting Paths. Suppose you are given two directed graphs1 G1

and G2 containing n+ 2 nodes each for some n ≥ 0. For i ∈ {1, 2}, Gi includes two special nodes
— a source node si with no incoming edges2 and a target node ti with no outgoing edges3. These
two nodes are called external nodes while the rest are called internal nodes. The figure below shows
an example with n = 5 in which the internal nodes are colored grey and the external nodes are
white. Let gi(k) denote the number of paths in Gi that go from si to ti and pass through exactly k
internal (i.e., grey) nodes. For example, in the figure below g1(3) = 4 which represents the following
4 paths:

s1 → a1 → b1 → e1 → t1,
s1 → a1 → c1 → b1 → t1,
s1 → c1 → b1 → e1 → t1

and s1 → c1 → d1 → e1 → t1.

Suppose for 0 ≤ k ≤ n, all g1(k) and g2(k) values are known to you.

Now suppose you connect G1 and G2 by putting an edge directed from t1 to s2. For 0 ≤ k ≤ 2n,
let g12(k) denote the number of paths from s1 to t2 that pass through exactly k internal (i.e., grey)
nodes. The figure above shows an example in which g12(3) = 5 representing the following 5 paths:

(s1 → c1 → t1)→(s2 → c2 → b2 → t2),
(s1 → c1 → t1)→(s2 → d2 → e2 → t2),

(s1 → a1 → b1 → t1)→(s2 → d2 → t2),
(s1 → a1 → c1 → t1)→(s2 → d2 → t2)

and (s1 → c1 → b1 → t1)→(s2 → d2 → t2).

1e.g., road networks with one-way roads
2e.g., incoming roads
3e.g., outgoing roads

2

1(a) [5 Points] For any given integer k ∈ [0, 2n], show that g12(k) can be computed from g1’s
and g2’s in O (n) time.

3

1(b) [15 Points] Show that for 0 ≤ k ≤ 2n, one can compute all g12(k) values simultaneously
in O (n log n) time.

4

Use this page if you need additional space for your answers.

5

Question 2. [25 Points] A Schönhage-Strassen-like Recurrence. Consider the following
recurrence (for n ≥ 2) which is similar to the recurrence that arises during the analysis of the
Schönhage-Strassen algorithm for multiplying large integers.

T (n) =

{
Θ (1) if 2 ≤ n ≤ 8,

n
2
3T
(
n

1
3

)
+ n

1
3T
(
n

2
3

)
+ Θ (n log n) otherwise.

2(a) [4 Points] Show that the recurrence above can be rewritten as follows, where T (n) = nS(n).

S(n) =

{
Θ (1) if 2 ≤ n ≤ 8,

S
(
n

1
3

)
+ S

(
n

2
3

)
+ Θ (log n) otherwise.

2(b) [4 Points] Show that the recurrence in 2(a) can be rewritten as follows, where P (x) = S(2x).

P (x) =

{
Θ (1) if 1 ≤ x ≤ 3,
P
(
x
3

)
+ P

(
2x
3

)
+ Θ (x) otherwise.

6

2(c) [9 Points] Solve the recurrence from part 2(b) to show that P (x) = Θ (x log x).

7

2(d) [8 Points] Use your results from part 2(c) to show that T (n) = Θ (n log n log logn).

8

Use this page if you need additional space for your answers.

9

Question 3. [20 Points] Closest Pair of Points. Consider the algorithm Closest-Pair
given below that finds the closest pair of points among a given set of points in the plane.

Closest-Pair(P, n)

Input: A set P = {p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn)} of n points in the plane. Assume for
simplicity that (a) n = 2k for some integer k > 0, (b) all xi’s are distinct, and (c) all yi’s are distinct.

Output: Two distinct points pi, pj ∈ P such that the distance between pi and pj is the smallest among all
pairs of points in P .

Algorithm:

1. if n = 2 then return 〈p1, p2〉
2. else

3. Find a value x such that exactly n
2
points in P have xi < x, and the other n

2
points have xi > x

4. Let L be the subset of P containing all points with xi < x

5. Let R be the subset of P containing all points with xi > x

6. 〈pL, qL〉 ← Closest-Pair(L, n
2
)

7. 〈pR, qR〉 ← Closest-Pair(R, n
2
)

8. dL ← distance between pL and qL

9. dR ← distance between pR and qR

10. d← min { dL, dR }
11. Scan P and remove each pi = (xi, yi) ∈ P with xi < x− d or xi > x+ d

12. Sort the remaining points of P in increasing order of y-coordinates

13. Scan the sorted list, and for each point compute its distance to the 7 subsequent points in the list.

Let 〈pM , qM 〉 be the closest pair of points found in this way.

14. Let 〈p, q〉 be the closest pair among 〈pL, qL〉, 〈pR, qR〉 and 〈pM , qM 〉
15. return 〈p, q〉

3(a) [10 Points] Argue that for a set of n points, steps 3–5 take O (n) time while steps 8–15
take O (n log n) time.

10

3(b) [10 Points] Let T (n) be the running time of Closest-Pair on a set of n points. Write a
recurrence relation for T (n) and solve it.

11

Use this page if you need additional space for your answers.

12

Question 4. [10 Points] An Impossible Priority Queue. Consider a (comparison-based)
priority queue Q (for real numbers) that supports the following operations.

Make-Queue(Q): Create an empty queue Q.

Insert(Q, x): Insert item x into Q.

Increase-Key(Q, x, k): Increase the key of item x to k assuming k ≥ current key of x.

Find-Min(Q): Return a pointer to an item in Q containing the smallest key.

Delete-Min(Q): Delete an item with the smallest key from Q and return a pointer to it.

4(a) [10 Points] Suppose Q supports Insert and Increase-Key operations in O (1) amortized
time each, and Delete-Min operations in O (log n) worst-case time each, where n is the
number of items in Q. It also supports the Make-Queue operation and every Find-Min
operation in O (1) worst-case time.

Argue that such a priority queue cannot exist.

13

Use this page if you need additional space for your answers.

14

Appendix: Recurrences

Master Theorem. Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and let T (n) be
defined on the nonnegative integers by the recurrence

T (n) =

{
Θ (1) , if n ≤ 1,
aT
(
n
b

)
+ f(n), otherwise,

where, n
b is interpreted to mean either

⌊
n
b

⌋
or
⌈
n
b

⌉
. Then T (n) has the following bounds:

Case 1: If f(n) = O
(
nlogb a−ε

)
for some constant ε > 0, then T (n) = Θ

(
nlogb a

)
.

Case 2: If f(n) = Θ
(
nlogb a logk n

)
for some constant k ≥ 0, then T (n) = Θ

(
nlogb a logk+1 n

)
.

Case 3: If f(n) = Ω
(
nlogb a+ε

)
for some constant ε > 0, and af

(
n
b

)
≤ cf(n) for some

constant c < 1 and all sufficiently large n, then T (n) = Θ (f(n)).

Akra-Bazzi Recurrences. Consider the following recurrence:

T (x) =

{
Θ (1) , if 1 ≤ x ≤ x0,∑k

i=1 aiT (bix) + g(x), otherwise,

where,

1. k ≥ 1 is an integer constant,

2. ai > 0 is a constant for 1 ≤ i ≤ k,

3. bi ∈ (0, 1) is a constant for 1 ≤ i ≤ k,

4. x ≥ 1 is a real number,

5. x0 is a constant and ≥ max
{

1
bi
, 1
1−bi

}
for 1 ≤ i ≤ k, and

6. g(x) is a nonnegative function that satisfies a polynomial growth condition (e.g., g(x) =
xα logβ x satisfies the polynomial growth condition for any constants α, β ∈ <).

Let p be the unique real number for which
∑k

i=1 aib
p
i = 1. Then

T (x) = Θ

(
xp
(

1 +

∫ x

1

g(u)

up+1
du

))
.

15

Appendix: Computing Products

Integer Multiplication. Karatsuba’s algorithm can multiply two n-bit integers in Θ
(
nlog2 3

)
=

O
(
n1.6

)
time (improving over the standard Θ

(
n2
)

time algorithm).

Matrix Multiplication. Strassen’s algorithm can multiply two n × n matrices in Θ
(
nlog2 7

)
=

O
(
n2.81

)
time (improving over the standard Θ

(
n3
)

time algorithm).

Polynomial Multiplication. One can multiply two n-degree polynomials in Θ (n log n) time using
the FFT (Fast Fourier Transform) algorithm (improving over the standard Θ

(
n2
)

time algorithm).

16

