In-Class Midterm
 (2:35 PM - 3:50 PM : 75 Minutes)

- This exam will account for either 15% or 30% of your overall grade depending on your relative performance in the midterm and the final. The higher of the two scores (midterm and final) will be worth 30% of your grade, and the lower one 15%.
- There are four (4) questions, worth 75 points in total. Please answer all of them in the spaces provided.
- There are 16 pages including four (4) blank pages and two (2) pages of appendices. Please use the blank pages if you need additional space for your answers.
- The exam is open slides.

Good Luck!

Question	Pages	Score	Maximum
1. Counting Paths	$2-4$		20
2. A Schönhage-Strassen-like Recurrence	$6-8$		25
3. Closest Pair of Points	$10-11$		20
4. An Impossible Priority Queue	13		10
Total			75

\qquad

Question 1. [20 Points] Counting Paths. Suppose you are given two directed graphs ${ }^{1} G_{1}$ and G_{2} containing $n+2$ nodes each for some $n \geq 0$. For $i \in\{1,2\}, G_{i}$ includes two special nodes - a source node s_{i} with no incoming edges ${ }^{2}$ and a target node t_{i} with no outgoing edges ${ }^{3}$. These two nodes are called external nodes while the rest are called internal nodes. The figure below shows an example with $n=5$ in which the internal nodes are colored grey and the external nodes are white. Let $g_{i}(k)$ denote the number of paths in G_{i} that go from s_{i} to t_{i} and pass through exactly k internal (i.e., grey) nodes. For example, in the figure below $g_{1}(3)=4$ which represents the following 4 paths:

$$
\begin{aligned}
s_{1} & \rightarrow a_{1} \rightarrow b_{1} \rightarrow e_{1} \rightarrow t_{1}, \\
s_{1} & \rightarrow a_{1} \rightarrow c_{1} \rightarrow b_{1} \rightarrow t_{1}, \\
s_{1} & \rightarrow c_{1} \rightarrow b_{1} \rightarrow e_{1} \rightarrow t_{1} \\
\text { and } s_{1} & \rightarrow c_{1} \rightarrow d_{1} \rightarrow e_{1} \rightarrow t_{1} .
\end{aligned}
$$

Suppose for $0 \leq k \leq n$, all $g_{1}(k)$ and $g_{2}(k)$ values are known to you.

Now suppose you connect G_{1} and G_{2} by putting an edge directed from t_{1} to s_{2}. For $0 \leq k \leq 2 n$, let $g_{12}(k)$ denote the number of paths from s_{1} to t_{2} that pass through exactly k internal (i.e., grey) nodes. The figure above shows an example in which $g_{12}(3)=5$ representing the following 5 paths:

$$
\begin{aligned}
\left(s_{1} \rightarrow c_{1} \rightarrow t_{1}\right) \rightarrow\left(s_{2} \rightarrow c_{2} \rightarrow b_{2} \rightarrow t_{2}\right), \\
\left(s_{1} \rightarrow c_{1} \rightarrow t_{1}\right) \rightarrow\left(s_{2} \rightarrow d_{2} \rightarrow e_{2} \rightarrow t_{2}\right), \\
\left(s_{1} \rightarrow a_{1} \rightarrow b_{1} \rightarrow t_{1}\right) \rightarrow\left(s_{2} \rightarrow d_{2} \rightarrow t_{2}\right), \\
\left(s_{1} \rightarrow a_{1} \rightarrow c_{1} \rightarrow t_{1}\right) \rightarrow\left(s_{2} \rightarrow d_{2} \rightarrow t_{2}\right) \\
\text { and }\left(s_{1} \rightarrow c_{1} \rightarrow b_{1} \rightarrow t_{1}\right) \rightarrow\left(s_{2} \rightarrow d_{2} \rightarrow t_{2}\right) .
\end{aligned}
$$

[^0]$1(a)$ [5 Points] For any given integer $k \in[0,2 n]$, show that $g_{12}(k)$ can be computed from g_{1} 's and g_{2} 's in $\mathcal{O}(n)$ time.

1(b) [15 Points] Show that for $0 \leq k \leq 2 n$, one can compute all $g_{12}(k)$ values simultaneously in $\mathcal{O}(n \log n)$ time.

Use this page if you need additional space for your answers.

Question 2. [25 Points] A Schönhage-Strassen-like Recurrence. Consider the following recurrence (for $n \geq 2$) which is similar to the recurrence that arises during the analysis of the Schönhage-Strassen algorithm for multiplying large integers.

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1) & \text { if } 2 \leq n \leq 8 \\
n^{\frac{2}{3}} T\left(n^{\frac{1}{3}}\right)+n^{\frac{1}{3}} T\left(n^{\frac{2}{3}}\right)+\Theta(n \log n) & \text { otherwise }
\end{array}\right.
$$

2(a) [4 Points] Show that the recurrence above can be rewritten as follows, where $T(n)=n S(n)$.

$$
S(n)=\left\{\begin{array}{lr}
\Theta(1) & \text { if } 2 \leq n \leq 8 \\
S\left(n^{\frac{1}{3}}\right)+S\left(n^{\frac{2}{3}}\right)+\Theta(\log n) & \text { otherwise }
\end{array}\right.
$$

2(b) [4 Points] Show that the recurrence in 2(a) can be rewritten as follows, where $P(x)=S\left(2^{x}\right)$.

$$
P(x)=\left\{\begin{array}{lr}
\Theta(1) & \text { if } 1 \leq x \leq 3 \\
P\left(\frac{x}{3}\right)+P\left(\frac{2 x}{3}\right)+\Theta(x) & \text { otherwise } .
\end{array}\right.
$$

2(c) [9 Points] Solve the recurrence from part 2(b) to show that $P(x)=\Theta(x \log x)$.

2(d) [8 Points] Use your results from part 2(c) to show that $T(n)=\Theta(n \log n \log \log n)$.

Use this page if you need additional space for your answers.

Question 3. [20 Points] Closest Pair of Points. Consider the algorithm Closest-Pair given below that finds the closest pair of points among a given set of points in the plane.

Closest-Pair(P, n)
Input: A set $P=\left\{p_{1}=\left(x_{1}, y_{1}\right), p_{2}=\left(x_{2}, y_{2}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right)\right\}$ of n points in the plane. Assume for simplicity that $(a) n=2^{k}$ for some integer $k>0,(b)$ all x_{i} 's are distinct, and (c) all y_{i} 's are distinct.
Output: Two distinct points $p_{i}, p_{j} \in P$ such that the distance between p_{i} and p_{j} is the smallest among all pairs of points in P.

Algorithm:

1. if $n=2$ then return $\left\langle p_{1}, p_{2}\right\rangle$
else
Find a value x such that exactly $\frac{n}{2}$ points in P have $x_{i}<x$, and the other $\frac{n}{2}$ points have $x_{i}>x$
2. Let L be the subset of P containing all points with $x_{i}<x$
3. Let R be the subset of P containing all points with $x_{i}>x$
4. $\left\langle p_{L}, q_{L}\right\rangle \leftarrow \operatorname{Closest-Pair}\left(L, \frac{n}{2}\right)$
5. $\left\langle p_{R}, q_{R}\right\rangle \leftarrow \operatorname{CLOSESt-PaiR}\left(R, \frac{n}{2}\right)$
6. $\quad d_{L} \leftarrow$ distance between p_{L} and q_{L}
7. $\quad d_{R} \leftarrow$ distance between p_{R} and q_{R}
8. $d \leftarrow \min \left\{d_{L}, d_{R}\right\}$
9. \quad Scan P and remove each $p_{i}=\left(x_{i}, y_{i}\right) \in P$ with $x_{i}<x-d$ or $x_{i}>x+d$
10. Sort the remaining points of P in increasing order of y-coordinates
11. Scan the sorted list, and for each point compute its distance to the 7 subsequent points in the list.

Let $\left\langle p_{M}, q_{M}\right\rangle$ be the closest pair of points found in this way.
14. Let $\langle p, q\rangle$ be the closest pair among $\left\langle p_{L}, q_{L}\right\rangle,\left\langle p_{R}, q_{R}\right\rangle$ and $\left\langle p_{M}, q_{M}\right\rangle$
return $\langle p, q\rangle$

3(a) [10 Points] Argue that for a set of n points, steps 3-5 take $\mathcal{O}(n)$ time while steps 8-15 take $\mathcal{O}(n \log n)$ time.
$3(b)$ [10 Points] Let $T(n)$ be the running time of Closest-Pair on a set of n points. Write a recurrence relation for $T(n)$ and solve it.

Use this page if you need additional space for your answers.

Question 4. [10 Points] An Impossible Priority Queue. Consider a (comparison-based) priority queue Q (for real numbers) that supports the following operations.

Make-Queve (Q) : Create an empty queue Q.
Insert (Q, x) : Insert item x into Q.
Increase- $\operatorname{Key}(Q, x, k)$: Increase the key of item x to k assuming $k \geq$ current key of x.
Find-Min (Q) : Return a pointer to an item in Q containing the smallest key.
Delete- $\operatorname{Min}(Q)$: Delete an item with the smallest key from Q and return a pointer to it.
$4(a)$ [10 Points] Suppose Q supports Insert and Increase-Key operations in \mathcal{O} (1) amortized time each, and Delete-Min operations in $\mathcal{O}(\log n)$ worst-case time each, where n is the number of items in Q. It also supports the Make-Queve operation and every Find-Min operation in $\mathcal{O}(1)$ worst-case time.

Argue that such a priority queue cannot exist.

Use this page if you need additional space for your answers.

Appendix: Recurrences

Master Theorem. Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1, \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise },
\end{array}\right.
$$

where, $\frac{n}{b}$ is interpreted to mean either $\left\lfloor\frac{n}{b}\right\rfloor$ or $\left\lceil\frac{n}{b}\right\rceil$. Then $T(n)$ has the following bounds:
Case 1: If $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
Case 2: If $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$ for some constant $k \geq 0$, then $T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$.
Case 3: If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

Akra-Bazzi Recurrences. Consider the following recurrence:

$$
T(x)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } 1 \leq x \leq x_{0}, \\
\sum_{i=1}^{k} a_{i} T\left(b_{i} x\right)+g(x), & \text { otherwise }
\end{array}\right.
$$

where,

1. $k \geq 1$ is an integer constant,
2. $a_{i}>0$ is a constant for $1 \leq i \leq k$,
3. $b_{i} \in(0,1)$ is a constant for $1 \leq i \leq k$,
4. $x \geq 1$ is a real number,
5. x_{0} is a constant and $\geq \max \left\{\frac{1}{b_{i}}, \frac{1}{1-b_{i}}\right\}$ for $1 \leq i \leq k$, and
6. $g(x)$ is a nonnegative function that satisfies a polynomial growth condition (e.g., $g(x)=$ $x^{\alpha} \log ^{\beta} x$ satisfies the polynomial growth condition for any constants $\left.\alpha, \beta \in \Re\right)$.

Let p be the unique real number for which $\sum_{i=1}^{k} a_{i} b_{i}^{p}=1$. Then

$$
T(x)=\Theta\left(x^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u^{p+1}} d u\right)\right) .
$$

Appendix: Computing Products

Integer Multiplication. Karatsuba's algorithm can multiply two n-bit integers in $\Theta\left(n^{\log _{2} 3}\right)=$ $\mathcal{O}\left(n^{1.6}\right)$ time (improving over the standard $\Theta\left(n^{2}\right)$ time algorithm).

Matrix Multiplication. Strassen's algorithm can multiply two $n \times n$ matrices in $\Theta\left(n^{\log _{2} 7}\right)=$ $\mathcal{O}\left(n^{2.81}\right)$ time (improving over the standard $\Theta\left(n^{3}\right)$ time algorithm).

Polynomial Multiplication. One can multiply two n-degree polynomials in $\Theta(n \log n)$ time using the FFT (Fast Fourier Transform) algorithm (improving over the standard $\Theta\left(n^{2}\right)$ time algorithm).

[^0]: ${ }^{1}$ e.g., road networks with one-way roads
 ${ }^{2}$ e.g., incoming roads
 ${ }^{3}$ e.g., outgoing roads

