Estimation of Multiple Illuminants from a Single Image of Arbitrary Known Geometry*

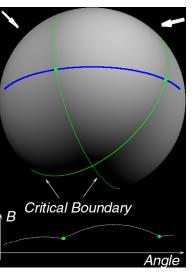
Yang Wang, Dimitris Samaras Computer Science Department, SUNY-Stony Brook

*Support for this research was provided by DOE grant MO-068.

Overview

- Assumptions
 - Lambertian object of arbitrary known geometry
 - Directional light sources

 $\mathbf{L} = \mathbf{a} \cdot \mathbf{I} \cdot \mathbf{n}$

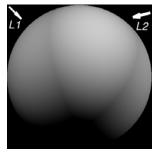

- Advantanges
 - ◆ Single image
 - ◆ No need for particular calibration objects
 - Robust to noise
 - Use of global information more suitable to Lambertian surfaces

Related Work

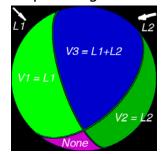
- Critical Points & Occluding Boundaries: Yang et al., CVPR'91 [20] Zhang et al., CVPR'00 [21]
 - Sensitive to noise. Needs calibration object
- Convolution
 Basri et al., ICCV'01 [1]
 Ramamoorthi et al., SIGGRAPH'01 [15]
 - ◆ Can not compute exact positions of directional light sources on Lambertian Surfaces
- Specular Sphere Debevec, SIGGRAPH'98 [3]
 - Interacts with environment. Need calibration object

Basic Definitions

- Critical Point
 - A point in the image is called a critical point if the surface normal at the corresponding point on the surface of the object is perpendicular to one of the light sources.
- Critical Boundary
 - All critical points corresponding to a real light will be grouped into a cut-off curve which is called a critical boundary.
 - Circle of maximum circumference on the sphere.



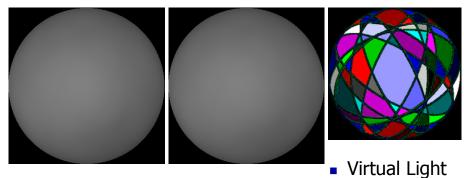
2 Light Sources


Real Light Source Detection

- Virtual Light Patch
 - Critical boundaries will segment the whole sphere image into several regions.
 Each segmented region corresponds to one virtual light that minimizes Σ_i(Ii L · Ni)².
 Each region is called a virtual light patch.
- Intuitively, the difference between two virtual lights is caused by a real light source, e.g.,

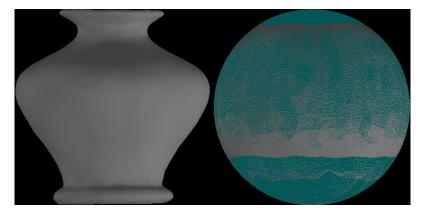
$$v3-v1 = (L1+L2)-L1 = L2$$

Input Image



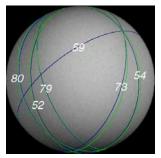
Segmented Image

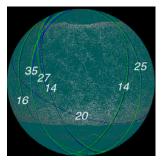
Our Algorithm


- Detect critical points.
- 2. Find initial critical boundaries by Hough transform.
- 3. <u>Adjust critical boundaries</u>. Adjust every critical boundary by moving it by a small step, and a reduction in the least-squares error indicates a better solution. Update boundaries using a "greedy" algorithm to minimize the total error.
- 4. <u>Merge spurious critical boundaries</u>. If two critical boundaries are closer than a threshold angle (e.g.5 degrees), they can be replaced by their average.
- 5. Remove spurious critical boundaries. Test every critical boundary, and remove it if the least-squares error does not increase. Test boundaries in increasing order of Hough transform votes (first test boundaries that are not as trustworthy).
- 6. <u>Calculate the real lights</u> along a boundary by subtracting neighboring virtual lights.

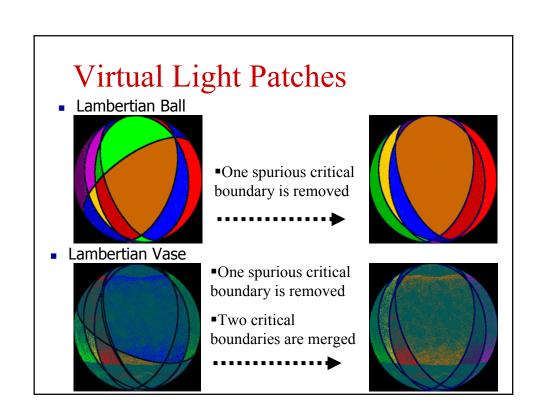
Synthetic Sphere – 15 Light Sources

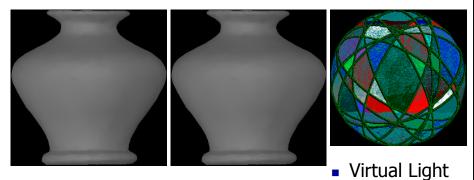
- Original Image
 Rerendered Image
 Patches
- Average Pixel Intensity (0-255 range) Error: 0.42 gray levels


Objects of Arbitrary Geometry

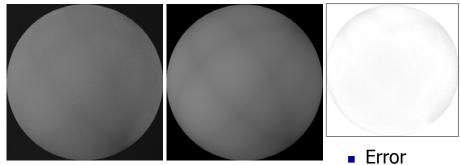

- Normals are mapped to a sphere
- High number of missing data points on the sphere (in green)

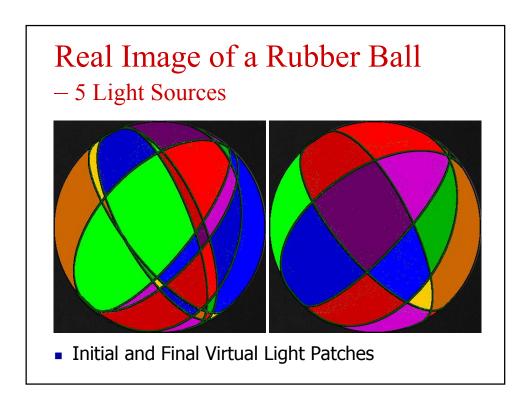
Hough Transform

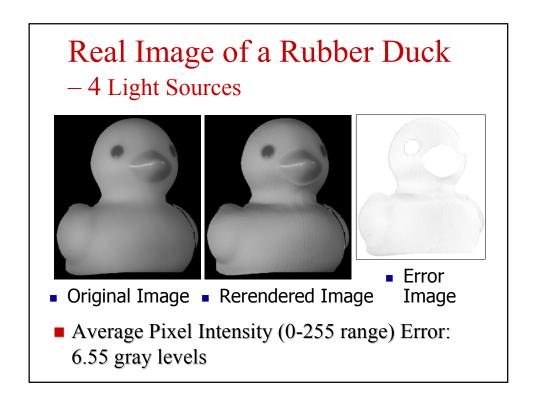

- Use global information to get boundaries.
- Problems:
 - Noise causes fake boundaries.
 - Sparse data cause missing boundaries.
- Solution:
 - Evaluating the Least-Squares error using information from every available pixel inside a region (virtual light patch).

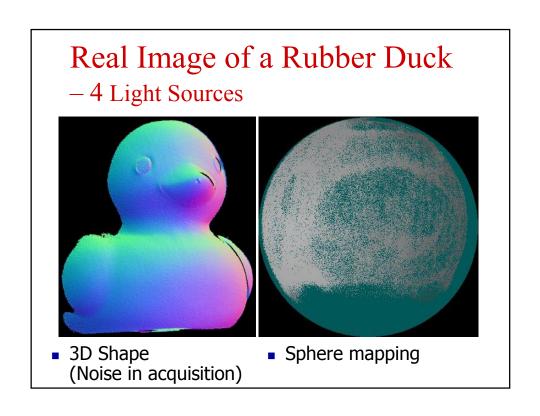

Lambertian Ball

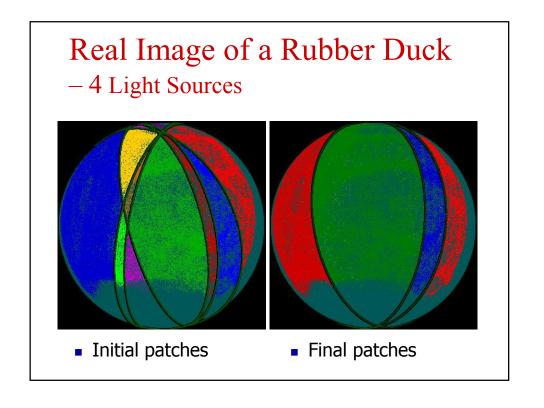
Lambertian Vase




- Original Image
 Rerendered Image
 Patches
- Average Pixel Intensity (0-255 range) Error: 0.74 gray levels


Real Image of a Rubber Ball


- 5 Light Sources



- Original Image
- Rerendered Image
- Image
- Average Pixel Intensity (0-255 range) Error: 3.39 gray levels

Future Work

- Study of the properties of arbitrary surfaces, so that we can avoid the intermediate sphere mapping.
- Speed up of the least-squares method.
- Extend the method to non-Lambertian diffuse reflectance for rough surfaces.
- Explore combinations of our method with shadow based light estimation methods and with specularity detection methods.

Future Work (Preview)

■ Augmented Reality Application—3 Light Sources

Original Image

Rerendering with one light switched off

Superimposing an object