Estimation of Multiple Illuminants from a Single Image of Arbitrary Known Geometry*
 Yang Wang, Dimitris Samaras
 Computer Science Department, SUNY-Stony Brook

Overview

- Assumptions
- Lambertian object of arbitrary known geometry
- Directional light sources $\quad \mathbf{L}=\mathbf{a} \cdot \mathbf{I} \cdot \mathbf{n}$
- Advantanges
- Single image
- No need for particular calibration objects
- Robust to noise
- Use of global information more suitable to Lambertian surfaces

Related Work

Critical Points \& Occluding Boundaries:
Yang et al., CVPR'91 [20]
Zhang et al., CVPR'00 [21]

- Sensitive to noise. Needs calibration object
- Convolution

Basri et al., ICCV'01 [1]
Ramamoorthi et al., SIGGRAPH'01 [15]

- Can not compute exact positions of directional light sources on Lambertian Surfaces
- Specular Sphere

Debevec, SIGGRAPH’98 [3]

- Interacts with environment. Need calibration object

Basic Definitions

- Critical Point
- A point in the image is called a critical point if the surface normal at the corresponding point on the surface of the object is perpendicular to one of the light sources.
- Critical Boundary
- All critical points corresponding to a real light will be grouped into a cut-off curve which is called a critical boundary.
- Circle of maximum circumference on the sphere.

2 Light Sources

Real Light Source

 Detection- Virtual Light Patch
- Critical boundaries will segment the whole sphere image into several regions. Each segmented region corresponds to one virtual light that minimizes $\Sigma_{\mathrm{i}}(\mathrm{Ii}-\mathrm{L} \cdot \mathrm{Ni})^{2}$. Each region is called a virtual light patch.
- Intuitively, the difference between two virtual lights is caused by a real light source, e.g.,
$\mathrm{v} 3-\mathrm{v} 1=(\mathrm{L} 1+\mathrm{L} 2)-\mathrm{L} 1=\mathrm{L} 2$

- Input Image

- Segmented Image

Our Algorithm

1. Detect critical points.
2. Find initial critical boundaries by Hough transform.
3. Adjust critical boundaries. Adjust every critical boundary by moving it by a small step, and a reduction in the least-squares error indicates a better solution. Update boundaries using a "greedy" algorithm to minimize the total error.
4. Merge spurious critical boundaries. If two critical boundaries are closer than a threshold angle (e.g. 5 degrees), they can be replaced by their average.
5. Remove spurious critical boundaries. Test every critical boundary, and remove it if the least-squares error does not increase. Test boundaries in increasing order of Hough transform votes (first test boundaries that are not as trustworthy).
6. Calculate the real lights along a boundary by subtracting neighboring virtual lights.

Synthetic Sphere - 15 Light Sources

- Virtual Light
- Original Image • Rerendered Image Patches

■ Average Pixel Intensity (0-255 range) Error: 0.42 gray levels

Objects of Arbitrary Geometry

- Normals are mapped to a sphere
- High number of missing data points on the sphere (in green)

Hough Transform

- Use global information to get boundaries.
- Problems:
- Noise causes fake boundaries.
- Sparse data cause missing boundaries.

Solution:

- Evaluating the Least-Squares error using information from every available pixel inside a region (virtual light patch).

- Lambertian Ball

- Lambertian Vase

Virtual Light Patches

- Lambertian Ball

- One spurious critical boundary is removed

- Lambertian Vase

- One spurious critical boundary is removed
- Two critical
boundaries are merged

Synthetic Vase - 15 Light Sources

- Virtual Light
- Original Image • Rerendered Image Patches
- Average Pixel Intensity ($0-255$ range) Error: 0.74 gray levels

Real Image of a Rubber Ball

- 5 Light Sources

- Original Image - Rerendered Image Image
- Average Pixel Intensity (0-255 range) Error: 3.39 gray levels

Real Image of a Rubber Ball

- 5 Light Sources

- Initial and Final Virtual Light Patches

Real Image of a Rubber Duck

- 4 Light Sources

- Error
- Original Image . Rerendered Image Image

■ Average Pixel Intensity (0-255 range) Error: 6.55 gray levels

Real Image of a Rubber Duck

- 4 Light Sources

- 3D Shape
- Sphere mapping
(Noise in acquisition)

Real Image of a Rubber Duck

- 4 Light Sources

- Initial patches
- Final patches

Future Work

- Study of the properties of arbitrary surfaces, so that we can avoid the intermediate sphere mapping.
- Speed up of the least-squares method.
- Extend the method to non-Lambertian diffuse reflectance for rough surfaces.
- Explore combinations of our method with shadow based light estimation methods and with specularity detection methods.

Future Work (Preview)

- Augmented Reality Application- 3 Light Sources

- Superimposing an object with one light switched off

