
Time-Parallel Algorithms for Simulation
of Multiple Access Protocols

Kevin G. Jones and Samir R. Das
Department of Electrical & Computer Engineering and Computer Science

University of Cincinnati
Cincinnati, OH 45221-0030

U.S.A.
Email:

�
kjones, sdas � @ececs.uc.edu

Abstract

We present time-parallel algorithms for parallel simu-
lation of multiple access protocols for medium access –
in particular, slotted Aloha and slotted � -persistent CSMA.
Two mechanisms are presented — regeneration point-based
and fix up-based. Aloha is simulated using both mecha-
nisms and CSMA is simulated using only the first mech-
anism. An analytical technique is developed to predict
speedup for the regeneration point-based scheme for slotted
Aloha. Speedup values obtained from the analytical tech-
nique are found to be in good agreement with those obtained
from simulations. In general, it is observed that any mech-
anism that reduces the number of backlogged packets has
good parallel performance regardless of the protocol simu-
lated or the mechanism used to parallelize the simulation.

1. Introduction

Large-scale simulations of wireless/mobile networks are
complex and slow compared to their wired counterparts.
The reason is threefold. First, intricate inter-layer interac-
tions being common in wireless, there is a need for detailed
simulations of all protocol layers together. The vagaries of
radio channels and the shared nature of the medium affects
the upper layer protocols in unpredictable and interesting
ways. Second, mobility makes the network behavior very
dynamic, increasing the number of events that need to be
processed for effective modeling. Third, there is a new em-
phasis on sending multimedia over various forms of wire-
less networks, increasing the complexity in the application
layers. Parallel discrete event simulation (PDES) mecha-
nisms present an opportunity to speed up simulations of
wireless networks. Indeed, some work in this direction has
been reported in [2, 14, 10].

Traditional PDES techniques fall in two categories: con-

servative and optimistic. In both these mechanisms the sim-
ulation problem is usually partitioned spatially by partition-
ing the simulation state. Each partition is modeled by a
logical process (LP). LPs are mapped onto physical pro-
cessors. In conservative mechanisms [12], the LPs are syn-
chronized by using a block-resume technique. An LP is
prevented from making progress in simulation time if, after
doing so, there is a chance of its receiving an event message
at an older simulation time. Such an LP is blocked and is
again allowed to make progress only when there is no such
possibility. Conservative mechanisms require knowledge of
lookahead, the ability of an LP to predict how long in future
simulation time its execution will be unaffected by activities
in other LPs. More lookahead generally means less block-
ing and hence more parallel performance.

In contrast, optimistic mechanisms use an aggressive
style of operation. Here, an LP makes progress unless it re-
ceives an event message in a past simulation time. When
this happens, the LP rolls back to an appropriate earlier
state. To implement rollback, the LPs must checkpoint their
state periodically. Optimistic methods do not need to deter-
mine lookahead, but checkpointing and rollback overheads
affect performance. Also, checkpointing itself is a complex
process unless the simulation kernel has complete access to
the process states. This is hard to do for independently de-
veloped simulation models. Thus, it comes as no surprise
that the tools that parallelize existing sequential simulators
[13, 15, 8] chose to use conservative techniques.

Time-parallel simulation [11] partitions the simulation
in the temporal dimension. Each processor simulates only
a portion of the whole simulation time. The processor that
starts from an intermediate simulation time “assumes” some
starting state. If the ending state of the processor that sim-
ulates the previous portion of the simulation time turns out
to be different from this assumed starting state, the simula-
tion is wrong and must be corrected. Two techniques can be

used to generate a correct simulation. In the regeneration
point-based scheme [11], all starting states are equal to a
state the simulator is known to return to occasionally. Each
processor simulates until the regenerative state is encoun-
tered again. It is possible to achieve a coherent simulation
by threading the simulations of all processors together. In
the other, fix up-based [6] scheme, the simulation of a pro-
cessor that started with a state not matching the previous
processor’s ending state is corrected. The success of the
first scheme depends on how frequent regeneration points
are (more frequent is better). The success of the second
scheme depends on how long the corrections take relative
to the original simulation. More details of such schemes are
discussed in later sections.

In this paper we pursue the modest goal of evaluating
the effectiveness of time parallel simulations for multiple-
access protocols in a completely connected wireless net-
work (every node can hear each other). We present and eval-
uate techniques for slotted simulations, in particular slotted
Aloha and a variation of CSMA (carrier-sense multiple ac-
cess) medium access protocol. The hope is that success in
demonstrating effectiveness of time-parallel simulations for
such protocols will indicate that similar mechanisms could
be employed for faster simulations of a complete wireless
network protocol stack (with routing, transport and applica-
tion layers on top of medium access) and in more general
scenarios (such as sparsely connected network, changing
topology for mobility, diverse traffic). This study will also
garner interest in exploiting combination mechanisms (both
time- and space-parallel [4]) for more effective exploitation
of parallelism.

2. Related work

A number of prior work used space-parallel, conserva-
tive or optimistic PDES techniques and tools to speed up
various wireless network simulations. See for example
[14, 2]. Here, we review in detail only the time-parallel
mechanisms, as the rest of our work will concentrate on
time-parallel mechanisms alone.

One of the early work was done by Chandy and Sherman
[4]. They observe that simulation space-time can be parti-
tioned arbitrarily, with updates being made when inputs to a
partition change. Simulation continues until the whole sys-
tem converges. A very general technique is proposed with-
out any specific examples or indications of performance.

Heidelberger and Stone [6] simulate set associative
cache accesses by partitioning the access trace in block
fashion among the processors, resulting in a time-parallel
partitioning. Each processor starts with an empty cache,
and stores references for the first � misses of each set, so
that fix-up can be performed later. When the cache accesses
have been simulated, ending cache contents are compared

to the next processor’s first misses to correct for misses that
were counted incorrectly. A miss was counted incorrectly if
one of the first � references happened to be in the cache at
the end of the previous neighbor’s simulation. The speedup
is very good because the amount of influence a processor
has on its neighbor (in time domain) is limited by the size
of each cache set. Also, initial cache state has a very limited
influence on the performance of miss rate in general.

Lin and Lazowska [11] simulate a G/G/1 queue in time-
parallel fashion by starting each processor with an empty
queue at time zero. An empty queue defines a regeneration
point. Each processor continues simulating, storing all de-
parture times, until the queue again becomes empty, then
informs its neighbor about its ending time so the neighbor
can “fix” its departure times simply by incrementing them
by the ending time.

Bagrodia, Chandy, and Liao [1] simulate feed-forward
queueing networks using Chandy-Sherman’s space-time
technique, where different spatial regions are synchronized
optimistically. Time-parallel regions are fixed by notifica-
tion of remaining service times of servers that were busy at
the end of a time partition. Fix-up is needed since each time
region starts in the state where all servers are idle and all
queues are empty. They evaluate performance for various
space-time partitioning techniques. For purely time-parallel
partitioning they observe that speedup decreases with in-
creasing load (the ratio of arrival to service rates) in the net-
work, since the amount of fix-up needed increases.

Greenberg, Lubachevsky, and Mitrani [5] use fast algo-
rithms to solve certain recurrence relations to develop mas-
sively parallel SIMD algorithms for open and closed queue-
ing networks and slotted Aloha simulations. In general, any
simulations that can be expressed in terms of such recur-
rence relations can be parallelized by their technique.

3. Time-parallel slotted aloha

For simplicity we consider only the slotted versions of
medium access control protocols. We describe two algo-
rithms for time-parallel slotted Aloha. One is based on the
occurrence of regeneration points, i.e. slots in which the
simulation returns to a specific, commonly occurring state.
The locations of regeneration points determine how the slots
are partitioned among the processors. The other algorithm
is based on a fixed partitioning of slots to processors but
requires a fix-up phase to match simulation state across par-
tition boundaries.

For the readers’ benefit we describe briefly the operation
of slotted Aloha [16]. The scenario is multiple nodes com-
municating via a single, shared, wireless channel, where
each node can hear every other node in the network. It is
assumed that the network has infinite number of nodes so
that each packet arrival can be assumed to be on an other-

wise idle node. This alleviates the complexities of handling
buffering in the model. This assumption might underes-
timate performance of the parallel simulator compared to
handling buffering, since some packets might get dropped
in case of buffer overflow, decreasing the number of pack-
ets that actually reach the network. Under the infinite node
assumption, all arriving packets are transmitted without the
chance of being dropped, so the load is at least as high (for
the same input parameters) as it would be using buffering.

In the model we use, zero or more new packets are gen-
erated in each slot according to a Poisson arrival process.
Time is slotted, meaning that packet transmission begins
only on a slot boundary. Each packet takes a single slot
time to be transmitted. All new packets are immediately
transmitted. If more than one packet is transmitted in a
particular slot, a collision occurs and none of the transmit-
ted packets are received correctly. Each colliding packet
must be retransmitted in a later slot. The sender implicitly
knows whether there has been a collision and retransmits
the collided packet in each subsequent slot with a small re-
transmission probability, � , until the packet is transmitted
successfully. This effectively constitutes a geometric back-
off interval for the colliding packets. Retransmitted packets
can again collide with other retransmitted or newly arriving
packets. Thus a packet may require several attempts before
transmission is successful.

Each time slot can end up in one of three states – idle (no
packet transmission), collision (more than one packet trans-
mission) or successful (exactly one packet transmission).
The goal of the simulation is to determine the throughput
of the network (i.e. , the rate of occurrence of successful
slots) versus offered load. Two forms of load are of interest
– rate of new packet arrivals (�) and rate of transmissions
into the network (�). � is � plus rate of retransmissions.
All rates are quoted on a packets per slot basis. Note that
the network capacity is unity.

The total number of backlogged packets (i.e. , waiting
to be retransmitted) constitutes the state of the simulation.
If the evolution of the state space is memory-less (the case
here), any value of the number of backlogged packets can
be used as regeneration points. We use the value zero. The
regeneration point-based scheme is presented below. The
fix-up-based scheme will follow thereafter.

3.1. Regeneration points-based scheme

This scheme is somewhat similar to the idea explored
by Lin and Lazowska in [11]. The number of slots, � , in
a given simulation run is equal to the simulation endtime
divided by the slot width. The slots are distributed evenly
among � processors (��� s) in block fashion, so that each
processor gets �	�
���� consecutive slots as shown in Fig-
ure 1. This slot distribution is only a first cut; each ��� may

PE0 PE1 PE i PEP-1
. . .

.
. . .

0 1 S 2S iS (i+1)S N-S N-1

Figure 1. Distribution of � slots among �
processors.

end up simulating more or fewer slots, as described below.
If the arrival rate of new packets is low enough, the num-

ber of backlogged packets may fall to zero in some slot.
Such a slot is a regeneration point, since the simulation state
has become the same as the starting state of the simulation.
The time period from one regeneration point to the next is
called a regeneration cycle. The simulation consists of a
sequence of regeneration cycles. The idea is to distribute
them evenly across the processors, but the problem is that
the locations of the regeneration points are not known until
the simulation is performed.

Our solution is to start each ��� in a state equal to the
start state and fit the results together when finished. Each
��� simulates up to either the first regeneration point be-
yond � slots or to slot � , whichever comes first. At this
point, each ��� has simulated zero or more whole number
of regeneration cycles, and possibly part of another one in
case the ��� went all the way to slot � . All that is left is to
string the cycles together.

To accomplish this, the ��� s communicate in a ring pat-
tern at the end of the simulation. ����� initiates the commu-
nication by informing ����� of the number of slots it sim-
ulated, along with the number of successful transmissions
counted. Each ����� other than ����� reads the number of
slots simulated so far (by ����� through ���������), and the
number of successes counted so far from its left neighbor,
��� ����� , updates the counts, and sends the updated counts to
its right neighbor, ����� �������! #"%$'& . As long as the number of
slots so far is less than � , ��� � has something to contribute
to the simulation. Otherwise, ��� � simply passes the counts
to its right neighbor unchanged. If the slot count read from
��������� plus the number of slots simulated by ���(� is less
than or equal to � , all of the work done by ����� is useful,
so ����� increments the slot count by the number of slots it
simulated and updates the success count similarly. Other-
wise, only part of the work done by ���(� was useful. In
other words, ����� simulates the last regeneration cycle in
the simulation. The number of useful slots simulated by
����� in this case is just � minus the number of slots sim-
ulated so far. Call this difference � . ��� � simply looks up
the cumulative success count stored in its � th slot and adds
this value to the successes so far before passing a slot count
of � and the total success count to its right neighbor. Fi-
nally, ��� � reads the total slot count (which should be �)
and the total success count from its left neighbor, ���(&)��� ,
and outputs the results of the simulation. Pseudocode for

��� � using this algorithm is shown below.

//Given N, P, and i
S := N/P;
backlog := 0;
slotsSimulated := 0;
repeat {

simulate the slot (i.e. determine whether idle,
success, or collision)

slotsSimulated++;
} until first regeneration point after S slots, or have

simulated to slot N

if (i == 0) {
send msg(slotsSimulated, number of successes)

to PE i+1;
receive msg (N, totalSuccesses) from PE P-1;
output throughput of totalSuccesses/N;

}
else {

receive msg (runningTotalSlots,
runningTotalSuccesses) from PE i-1;

if (runningTotalSlots < N) {
k := N - runningTotalSlots;
if (k >= slotsSimulated) { //all work is useful

runningTotalSlots += slotsSimulated;
runningTotalSuccesses += number of Successes;

}
else { //only some of the work of PE i is useful

runningTotalSlots := N;
runningTotalSuccesses +=

slot[k].(cumulative number of Successes);
}

}
send msg(runningTotalSlots, runningTotalSuccesses)

to PE (i+1) mod P;
}

In the worst case, no regeneration point is encountered
before simulation endtime, so ����� does all the useful work,
and there is no speedup over the sequential simulation. In
the best case, each ����� finds a regeneration point just after
� slots, resulting in a speedup of ��� � , or simply � .

We can think of the sequences of slots being shifted so
they do not overlap. This is analogous to the state matching
described in [11], where a processor that assumed a start
time of 0 is later informed of the end time (

� �) of its previ-
ous neighbor, necessitating incrementing all computed de-
parture times by

� � . This in effect shifts the range of time
simulated from � ��� ��� to � �	� � � � � � � � � . The processor does
not know exactly where its time range falls in the simulated
timeline until it is informed of the end time of its previous
neighbor.

Note that there is no change needed to the simulation
output computed in the regeneration cycle, since we are
only interested in measuring system throughput. We need
to know how many successful packets were transmitted in
each cycle, not the actual times at which they were sent.
We still need to do the shifting, however, so that the ���
that simulates the last slot of the simulation (slot ��
�)
knows which of its slots corresponds to slot ��
�� , so the
appropriate output can be presented.

Due to the time shifting, this algorithm assumes that
each processor generates its own independent random ar-
rivals during simulation runtime. This, however, can be a
problem if the simulation must be run using a given random

number stream for the entire arrival process or, equivalently,
if the arrivals are trace-driven. Usually, this requirement is
present if there is a desire for repeatability of the arrival pro-
cess for debugging, comparisons across protocols, variance
reduction in simulation output analysis, etc.

It is still possible, albeit with a little extra work, to use
common random number streams for sequential and paral-
lel execution. For instance, each ����� in the parallel simu-
lation can use a unique random number stream, (say, stream�
). The sequential simulation can simply switch random

number streams to match the stream used by the corre-
sponding ����� in the parallel simulation upon encounter-
ing a slot corresponding to the first slot of each ���(� . The
sequential simulation can compute when to switch streams
based on observing the regeneration cycles, and by know-
ing the value of ���� , the number of slots per processor
in the parallel simulation. Of course, different sequential
runs would be needed to match random number streams for
different values of � in the parallel simulation. This tech-
nique, however, still cannot match random number streams
among parallel simulations using different number of pro-
cessors. These complications for using common random
numbers are absent in the next protocol we study.

3.2. Fix-up-based scheme

This algorithm allocates slots to processors using the
block partitioning described in the previous subsection and
shown in Figure 1. Since no shifting is performed, this al-
gorithm can be used for trace-driven simulations.

The simulation proceeds in two phases: the main phase
and the fix-up phase. Each processor starts the main phase
of the simulation with the initial state of zero backlogged
packets. Each ����� , � ranging from � through ��
�� , simu-
lates slot

��� � through slot � � ��� � � �	
�� . This ends the main
phase. Then each ��� � , for

�
from � through ��
�� , commu-

nicates the number of backlogged packets remaining at the
beginning of slot � � ��� � � � to its right neighbor, ��� ����� .
The number of remaining backlogged packets constitutes
the state of the simulation after ��� � simulates its final slot
in the main phase. Then each ��� � , for

�
from � through

�
�� , enters the fix-up phase, which may require multiple
iterations. ����� does not enter the fix-up phase since it does
not have a left neighbor. Similarly, the left-most ��� drops
out of each subsequent fix-up iteration.

Fix-up may be necessary in case ����� finished the main
phase with a non-zero backlog, resulting in an ending state
which does not match the starting state of ��� � � � , (zero
backlog). In order to match the states, ��� ����� can re-
simulate the ��� � ’s remaining backlogs on top of what it
already simulated in the main phase, provided it stored the
results of each slot it simulated in the main phase.

The result of a slot is either idle, success, or collision,

Table 1. Fix-up computation.
Number of backlogged
packets transmitted in New result
the slot during fix-up

0 same as main phase result

1 ���������������
	 if main phase result was idle� "���� � � ��"� 	 otherwise
2 or more collision

depending on whether 0, 1, or more than 1 packet was trans-
mitted in the slot, respectively. Suppose there are � back-
logged packets that need to be simulated by ���(� in the fix-
up phase. ����� continues re-simulating slots in the fix-up
iteration until all � backlogged packets are transmitted suc-
cessfully, or until ��� � ’s ending slot is reached, whichever
comes first, and then communicates the ending backlog to
its right neighbor.

During fix-up, 0, 1, or more than 1 backlogged pack-
ets are transmitted in each slot according to the retransmit
probability, � . If 0 packets are transmitted in a particular
slot, there is no change to the previous result of the slot.
The backlog is actually higher than it was known to be in
the main phase, but since no additional backlogged packets
got transmitted during fix-up for the slot, it was simulated
correctly during the main phase.

If exactly 1 packet is transmitted in the slot, the new re-
sult for the slot depends on the previous result. If the pre-
vious result was idle, the new result is success (since ex-
actly 1 packet is transmitted in this slot). The success count
is incremented and the backlog count is decremented. If
the previous result was success, the new result is collision,
since the currently transmitting backlog collides with the
single packet that was transmitted in this slot during the
main phase. The success count is decremented, and the
backlog count is incremented to include the previous suc-
cessful packet which has now collided with the new trans-
mission. If the previous result was collision, the new result
is a collision, with no change in backlog.

If more than 1 packet is transmitted in a particular slot,
the new result is a collision, regardless of the result of the
slot in the main phase. In case the previous result was a
success, the success count is decremented and the backlog
count is incremented due to the collision of the previously
successful packet. The correction computation for fix-up is
shown in Table 1.

The fix-up phase continues as long as some ��� has
backlogged packets to simulate. There can be as few as
0 or as many as �
 � iterations of the fix-up phase. In the
best case, each ��� ends the main phase with zero backlog,
so no fix-up is needed. Each ��� simulates exactly � slots,
resulting in a speedup of ��� � � � . In the worst case, each
��� � ends with a backlog so high that the each fix-up itera-
tion takes � slots, and there is still a non-zero backlog upon
reaching ��� � � � ’s ending slot. This causes

�
fix-up itera-

tions to be performed by each ���(� . ����& ��� simulates �
slots in the main phase and �
 � fix-up iterations of � slots
each. If each fix-up slot is counted with the same weight as
each main phase slot, this results in a total of � � � � �
slots, resulting in no speedup over sequential simulation.

4. Time-parallel slotted CSMA

We also used similar time-parallel mechanisms to simu-
late slotted CSMA (carrier-sense multiple access) protocols.
The � -persistent variation of CSMA [9] is used for simula-
tion, as this has a close resemblance to the industry standard
unslotted CSMA protocols used in wireless ad hoc networks
based on collision avoidance (such as IEEE standard 802.11
[7]). In CSMA, carrier is sensed before transmission of any
packet. It is assumed that the carrier is always sensed for
one full slot. If the carrier is idle (no other transmission in
this slot) the packet is transmitted in the subsequent slots
with probability � . This again presents a geometric backoff
interval. On the other hand if the carrier is busy, the trans-
mission is deferred until the carrier becomes idle when the
above procedure is used. A packet in backoff is also trans-
mitted only after carrier sensing. A busy carrier results in
deferment until idle and another backoff following it. Colli-
sions are now rarer than in slotted Aloha because of carrier
sensing, but they may still happen. Colliding packets are
retransmitted after a similar geometric backoff with proba-
bility parameter � .

Only the regeneration point-based scheme is explored
for slotted CSMA. Determining regeneration points is now
more involved, since the state of the simulation consists of
more than just the number of backlogged packets. In ad-
dition to backlogged packets resulting from collision, there
may be packets which arrived and found the carrier busy, so
they continue sensing the channel, waiting for it to become
idle. There may also be deferred packets, which failed to
transmit upon sensing an idle channel; they are in backoff
waiting to start sensing the channel again. There may also
be some packets in the middle of transmission, since the
size of a packet in CSMA can be more than 1 slot. A regen-
eration point occurs in time-parallel CSMA when the sim-
ulation enters the state where there are no sensing packets,
no transmitting packets, and no packets in backoff, whether
deferred or collided.

We do not present an algorithm based on fix-up com-
putations for CSMA. The complication is due to the fact
that packets can span multiple slots. Upon fix-up, a back-
logged packet may start transmission in an idle channel, but
the transmission may overlap with a previously simulated
transmission that started in a later slot. The previous trans-
mission needs to be undone, since it should have found the
channel to be busy instead of idle, due to the new transmis-
sion. The problem is that undoing the previous transmission

leaves the non-overlapping slots (those after the end of the
new transmission up through the end of the previous trans-
mission(s)) idle, whereas they used to be busy. Some other
packets may have sensed the channel during these slots, tak-
ing some action based on the fact that the channel was busy.
But now that the channel has become idle for those slots,
those decisions become wrong and need to be fixed. Since
our simulation does not trace the fate of individual packets,
that fix-up cannot be done. We leave this study as a part of
our future work.

5. Performance evaluation

Performance of the time-parallel algorithms is inves-
tigated using simulation of the time-parallel mechanism.
This is essentially a sequential program that loops through
the ��� s in sequence, counting successes until � slots
have been simulated (in the algorithm based on regenera-
tion points) or until the fix-up phase is complete (in the al-
gorithm using fix-ups). Speedup is calculated by dividing �
by the maximum number of slots simulated by a single ��� .
A fix-up slot is given the same weight as a main phase slot
in the fix-up algorithm, even though the amount of compu-
tation needed may be less. So we will at best underestimate
the parallel performance.

We feel that a simulation gives sufficient insight into the
parallel performance and a real multiprocessor implemen-
tation is not really necessary to estimate performance. This
is because the amount of interprocessor communication is
very minimal in the time-parallel mechanisms studied. The
only communication needed is a single message to commu-
nicate the state between neighboring processors in the time
domain at the end of the main simulation phase for time
shifting, and one message for each processor in each fix-
up iteration. Given that the main simulation phase is long
enough on each processor, we can ignore the communica-
tion time.

Before we describe the simulation results, we note that
the speedup for the regeneration point-based scheme for
slotted Aloha can be analytically estimated.

5.1. Analytically estimating speedup using average
size of a regeneration cycle

The average regeneration cycle size (the average number
of slots in a single regeneration cycle) can be used to predict
the number of slots simulated by each processor in the time-
parallel slotted Aloha algorithm using regeneration points,
which can then be used to estimate the speedup.

The slotted Aloha protocol can be modeled as a discrete-
time Markov chain (see, for example, [3]), the state be-
ing the number of backlogged packets. Let us denote the
steady-state probability for state

�
(i.e. , the state with

�

P 2,1 P 3,2

P 1,2

P 0,3

P 2,3

......

P 1,0

P 0,0 P 1,1 P 2,2 P 3,3

......

0 1 2 3

P 1,3P 0,2

P 4,3
. . .

Figure 2. Markov chain for slotted Aloha. The
state (i.e. , number of backlogged packets)
can decrease by at most one in each slot, but
can increase by an arbitrary amount.

0

0.0005

0.001

0.0015

0.002

0.0025

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
R

eg
en

er
at

io
n

po
in

ts
 p

er
 s

lo
t

Lambda

actual
Expected (= pi_1 * P_1,0)

Figure 3. Regeneration points per slot, ex-
pected and actual; ��� ������� . Note that
the curves are almost overlapping showing
a very good agreement.

backlogged packets) by � � and the state transition proba-
bility from state

�
to state 	 by � � 	
 . For the benefit of the

reader the Markov chain is shown in Figure 2. The tran-
sition probabilities can be determined by observing that in
state

�
: (a) a binomially distributed number of backlogged

packets (with parameters
�

and �) is retransmitted and (b) a
Poisson distributed number of newly arrived packets (with
rate �) is transmitted. A combination of different possibili-
ties in (a) and (b) may increase the backlog by one or more,
may decrease backlogs by one, or the backlogs may stay the
same. In [3] the transition probabilities � � 	
 have been de-
termined for finite node assumptions, which can be easily
extended for infinite node assumptions used here.

The transition from state 1 to 0 is used in the time-
parallel algorithm to determine the regeneration point, as
it defines the slot where a new regeneration cycle begins.
The product � � � � 	 � gives the expected rate of occurrence
of number of regeneration points (on a per slot basis). Ex-
tending the treatment in [3] for the infinite node case we get
� � 	 � ��� �� � � . This can also determined by simply ob-
serving that a state transition from 1 to 0 can only happen
if both these conditions are true: there are zero new arrivals
(probability = � ��) and the sole backlogged packet is trans-

mitted (probability = �).
This still leaves for us to determine the steady state prob-

ability � � . We calculate � � by numerically solving the
steady state equations

� ��� � ����� � ����� 	 � �
��

�� �
�
 �

	 �

and �
�
� � �
� � � ���

Note that for the infinite node assumption, the Markov
chain may not have a steady state distribution for large
enough � and � . For example, if � �	�
�� in state � , all re-
transmissions will collide with a very high probability and
all newly arrived packets continue to add to backlogs, mov-
ing the state (see Figure 2) to the right indefinitely. See [3]
and [9] for further treatment of this stability phenomenon.

Figure 3 shows the analytically estimated number of
regeneration points per slot for various values of � and
� � ��� ��� . � was increased up to the extent steady state
distributions are possible for this value of � . Actual val-
ues from simulations were found by counting the number
of regeneration points that occurred in the simulation and
dividing by the total number of slots, and are averaged over
five different runs. The analytical and simulation curves are
in excellent agreement.

The average regeneration cycle size is just the recipro-
cal of � � � � 	 � . This can be used to determine the expected
number of slots a processor actually simulates in the time-
parallel simulation. A processor is expected to simulate
more than one regeneration cycle if the average regenera-
tion cycle size is less than the number of slots allocated per
processor. The expected number of additional slots simu-
lated beyond the processor’s original stopping point is half
the expected regeneration cycle size. In case the expected
regeneration cycle size exceeds the number of slots per pro-
cessor however, each processor is expected to simulate only
one regeneration cycle. With this assumption, speedup can
be estimated as the ratio of the total number of slots to be
simulated and the expected number of slots actually simu-
lated by each processor. The speedup predicted using this
method for a simulation of 50,000 slots per processor and
� � ��� � � is shown in Figure 4(a) for various loads. Once
again, � is varied up to the maximum extent possible. Be-
yond this, the slotted Aloha system is unstable.

Actual speedup from time-parallel simulation is shown
in Figure 4(b). Note these set of plots are in good agreement
with Figure 4(a). The slight overestimation in the expected
speedup comes from fact that the average regeneration cy-
cle size is used to predict speedup, whereas the maximum
number of slots simulated by a single processor governs the
actual speedup of the parallel simulation.

0

2

4

6

8

10

12

14

16

18

20

0.1 0.15 0.2 0.25 0.3 0.35

E
xp

ec
te

d
S

pe
ed

up

Lambda

1 PE
2 PEs
4 PEs

10 PEs
20 PEs

(a) Expected

0

2

4

6

8

10

12

14

16

18

20

0.1 0.15 0.2 0.25 0.3 0.35

S
pe

ed
up

Lambda

1 PE
2 PEs
4 PEs

10 PEs
20 PEs

(b) Actual

Figure 4. Expected and actual speedup of
time-parallel slotted Aloha using regenera-
tion points for increasing load; � � ������� .

5.2. Simulation results

Simulations were run for 50,000 slots per processor for
various loads and number of ��� s in the parallel simulation.
Each point in the plots presented here is an average of 10 to
15 runs using different random number seeds.

Figure 4(b) shows speedup versus � for time-parallel
slotted Aloha using regeneration points, where the retrans-
mit probability � is 0.01. The curves correspond to different
number of ��� s used in parallel. As expected, speedup gen-
erally decreases as the load, � , increases, since regeneration
points become less frequent with increasing load due to the
increased backlog. Note also that speedups are excellent at
low values of load.

The value of � also affects the frequency of regenera-
tion points, which in turn affects the speedup. The average
number of slots a packet backs off after collision is � �� ; so
as � decreases, average backoff period increases, increasing
the average regeneration cycle size, resulting in decreased
speedup. Figure 5 shows speedup vs. � using 20 proces-

0

5

10

15

20

0 0.002 0.004 0.006 0.008 0.01

S
pe

ed
up

q

lambda = 0.1

Figure 5. Speedup vs. � for time-parallel slot-
ted Aloha using regeneration points; � � � � � ,
20 processors.

sors under relatively low � � ��� � . Note that not only is
large � good for speedup, but it also reduces packet delay in
the simulated protocol, due to the smaller expected backoff
period. However, large � drives the protocol to instability
at a lower load as now more packets are retransmitted on
average, increasing the possibility of collisions.

Speedup vs. � for time-parallel slotted Aloha with fix-
ups is shown in Figure 6. Recall that � is � plus the rate of
retransmitted packets. The plots extend to different amounts
on � axis as the protocol becomes unstable at different
loads for different values of � . Note also lower speedup
with lower value of � . This effect is similar to the regener-
ation point-based scheme. Larger number of packets back-
ing off over longer intervals at processor boundaries gen-
erally means longer fix-ups. One noteworthy point is that
the speedups here are higher compared to the regeneration
point-based scheme. They fall comparatively much more
slowly with load. This is because the fix up only involves
successfully retransmitting all the packets that were back-
logged at the starting slot of a processor. Finding the next
regeneration point, on the other hand, involves finding a slot
with zero current backlogs. Since new backlogs can always
accumulate with newly arriving packets colliding, clearing
out a specific set of old backlogs always happens earlier
than getting to a point with zero current backlogs.

Speedup for time-parallel slotted � -persistent CSMA us-
ing regeneration points is shown in Figure 7 for two differ-
ent packet sizes and two different values of � . The value

� = 0.5 is used in all the plots. As expected, speedup falls
with increasing load as regeneration points become rarer.
Larger packet sizes usually gives better speedups as the ef-
ficiency of any CSMA protocol is higher with larger packet
sizes. Efficiency goes down with increasing ratio of car-
rier sensing delay (one slot here) and packet transmission
time [3]. Higher efficiency indicates fewer collisions, hence
fewer backlogged packets to be retransmitted. As before,
speedup is also sensitive to � . It decreases with lower � as

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
pe

ed
up

G

1 PE
2 PEs
4 PEs

10 PEs
20 PEs

(a) ������� ���

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
pe

ed
up

G

1 PE
2 PEs
4 PEs

10 PEs
20 PEs

(b) �	�
��� �����

Figure 6. Speedup vs. � for time-parallel slot-
ted Aloha using fix-up for different values of
� and various numbers of processors.

the expected backoff period increases.

6. Conclusions

We presented time-parallel algorithms for parallel sim-
ulation of slotted multiple access protocols, viz., slotted
Aloha and slotted � -persistent CSMA. Two mechanisms
were presented — regeneration point-based and fix up-
based. Slotted Aloha was simulated using both mechanisms
and CSMA was simulated using only the first mechanism.
In addition, an analytical technique was developed to pre-
dict speedup for the regeneration point-based scheme for
slotted Aloha. Speedup values obtained from the analytical
technique were found to be in good agreement with those
obtained from simulations. In general, it was observed
that any mechanism that reduced the number of backlogged
packets had a good parallel performance regardless of the
protocol simulated and the mechanism used to parallelize
the simulation — the reason being that our techniques used
the number of backlogged packets as the simulation state.

Thus speedup is higher at lower loads, higher retransmit
probabilities or larger packet sizes (for CSMA). Almost per-
fect speedups at low loads indicate that time-parallel tech-
niques can be quite viable for speeding up simulations for
which efficient space-parallel techniques may be hard to de-
velop. Our future work will involve extending this work to
develop combined time- and space-parallel techniques for
parallel simulation of multi-hop (ad hoc) networks.

Acknowledgment
This work is partially supported by NSF CAREER

grant ACI-0096186, NSF networking research grant ANI-
0096264, and Ohio Board of Regents computing research
enhancement funds in University of Cincinnati.

7. References

[1] R. Bagrodia, K. M. Chandy, and W.-T. Liao. An experimen-
tal study on the performance of the space-time simulation
algorithm. In Proceedings of the 6th Workshop on Parallel
and Distributed Simulation, pages 159–168, 1992.

[2] R. Bagrodia and X. Zeng. Glomosim: A library for the par-
allel simulation of large wireless networks. In Proceedings
of the 12th Workshop on Parallel and Distributed Simulation
(PADS ’98), pages 154–161, 1998.

[3] D. Bertsekas and R. Gallager. Data Networks, Second Edi-
tion. Prentice-Hall, 1992.

[4] K. M. Chandy and R. Sherman. Space-time and simulation.
Proceedings of the SCS Multiconference on Distributed Sim-
ulation, 21(2):53–57, March 1989.

[5] A. G. Greenberg, B. D. Lubachevsky, and I. Mitrani. Super-
fast parallel discrete event simulations. ACM Transactions
on Modeling and Computer Simulation, 6(2):107–136, April
1996.

[6] P. Heidelberger and H. S. Stone. Parallel trace-driven cache
simulation by time partitioning. In 1990 Winter Simulation
Conference Proceedings, pages 734–737, December 1990.

[7] IEEE. Wireless LAN medium access control (MAC) and
physical layer (PHY) specifications, IEEE standard 802.11–
1997, 1997.

[8] K. G. Jones and S. R. Das. Parallel execution of a sequential
network simulator. In 2000 Winter Simulation Conference
Proceedings, pages 418–424, December 2000.

[9] L. Kleinrock and F. A. Tobagi. Packet switching in radio
channels: Part-I - carrier sense multiple access modes and
their throughput-dely characteristics. IEEE Transactions in
Communications, COM-23(12):1400–1416, 1975.

[10] M. Liljenstam, R. Rönngren, and R. Ayani. Mobsim++: Par-
allel simulation of personal communication networks. IEEE
Distributed Systems Online, 2(2), February 2001.

[11] Y.-B. Lin and E. D. Lazowska. A time-division algorithm
for parallel simulation. ACM Transactions on Modeling and
Computer Simulation, 1(1):73–83, January 1991.

[12] D. Nicol. Principles of conservative paralllel simulation. In
Proc. of the 1996 Winter Simulation Conference, pages 128–
135, Dec 1996.

0

5

10

15

20

0 0.5 1 1.5 2 2.5

S
pe

ed
up

G

1 PE
2 PEs
4 PEs

10 PEs
20 PEs

(a) Packet size = 4 slots, ������� ���

0

5

10

15

20

0 0.5 1 1.5 2 2.5

S
pe

ed
up

G

1 PE
2 PEs
4 PEs

10 PEs
20 PEs

(b) Packet size = 4 slots, �	�����
�����

0

5

10

15

20

0 0.5 1 1.5 2 2.5

S
pe

ed
up

G

1 PE
2 PEs
4 PEs

10 PEs
20 PEs

(c) Packet size = 20 slots, �������
���

0

5

10

15

20

0 0.5 1 1.5 2 2.5

S
pe

ed
up

G

1 PE
2 PEs
4 PEs

10 PEs
20 PEs

(d) Packet size = 20 slots, �������
�����

Figure 7. Speedup vs. � for slotted CSMA
using regeneration points for various packet
sizes and different values of � .

[13] D. Nicol and P. Heidelberger. On extending parallelism
to serial simulators. In Proceedings of the 9th Workshop
on Parallel and Distributed Simulation, pages 60–67, June
1995.

[14] J. Panchal, O. Kelly, J. Lai, N. Mandayam, A. T. Ogielski,
and R. Yates. WiPPET, a virtual testbed for parallel sim-
ulations of wireless networks. In Proceedings of the 12th
Workshop on Parallel and Distributed Simulation (PADS),
pages 162–169, 1998.

[15] G. F. Riley, R. Fujimoto, and M. H. Ammar. A generic
framework for parallelization of network simulations. In
Proceedings of the 7th International Conference on Mod-
eling, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS’99), pages 128–135, 1999.

[16] L. G. Roberts. Dynamic allocation of satellite capacity
through packet reservation. In Proc. of AFIPS NCC, vol-
ume 42, pages 711–716, 1973.

