
CSE 373 Analysis of Algorithms

Solution to HW3

Total Points: 100

Steven Skiena

Problem 1

7-4 [5]
Let T be the BFS-tree of the graph G. For any e in G and e 6∈ T, we have

to show that e is a cross edge. Prove it by contradiction: suppose e = (x, y) is
not a cross edge. Also, say x is an ancestor of y. This means that x was
discovered before y in the BFS traversal. The way BFS works, all of x’s
children would have been discovered at the next level. This means that e =
(x, y)∈ T, which leads to a contradiction.

Remark: This is only a sample answer. We give credits for other
reasonable answers.

Problem 2

7-8 [10]
Given pre-order and in-order traversals of a binary tree, is it possible to

reconstruct the tree? [5]
Yes. We can do it as follows:
1. The first element of the pre-order traversal is the root.
2. Find the root in the in-order traversal, the elements to its left are in the

left subtree and to its right are in the right subtree.
3. Recursively follows the above steps to construct the entire tree.

Given the pre-order and post-order traversals of a binary tree, is it
possible to reconstruct the tree? [5]

No. See the following example:

Figure 1: Example.

Both tree have the same pre-order and post-order traversal. Remark: For
each question, 1 point for Yes/No. 4 points for algorithm, reason or
counterexample.

Problem 3

7-16 [5]
For adjacency matrix:
for i = 1 to V do

for j = 1 to V do
G2(i, j) = 0
for k = 1 to V do

if G(i, k) == 1 and G(k, j) == 1 then
G2(i, j) = 1

Thus, the total time complexity is O(V3). [2.5]

For adjacency list:
for u ∈ V do

for v ∈ Adj(u) do
for w ∈ Adj(v) do

Add edge (u, w) in G2

The total time complexity is O(V E). [2.5]

Remark: 2.5 points for each data structure.

Problem 4

7-17 [15]
(a). In a vertex cover we need to have at least one vertex for each edge.

Every tree has at least two leaves, meaning that there is always an vertex v
which is adjacent to a leaf u. Apparently it’s always better to choose v than u,
since it is the only one which can also cover other edges! After trimming othe
covered edges, we have a smaller tree. We can repeat the process until the
tree has 0 or 1 edges. When the tree has only one isolated edge, pick either
vertex. All leaves can be identied and trimmed in O(n) time during a DFS, so
it takes O(n) in total. [5]

(b). Actually this is a dynamic programming problem on tree. Let’s define
score[u][include] as the minimum weight vertex cover for the subtree rooted at
u. include ∈ {0, 1} and indicates whether we include u itself in the vertex
cover or not. Then, run DFS in the tree, and during the DFS traversal:

(1) If current vertex u is a leaf node, then simply set score[u][0] = 0,
score[u][1] = wu, where wu is the weight of vertex.

(2) Else, update the score of current node u using its children’s scores:

score[u][0] = ∑c∈child(u)score[c][1],

because when you don’t include current root, you have to include each
of its child.

score[u][1] = wu +∑c∈child(u) min(score[c][0], score[c][1])

because now you can choose to include each child or not. Finally, get
the vertex cover by running DFS again from root node, and check
which vertices we select. The total time complexity is the same as
DFS, which is O(V + E).

[5]
(c). The algorithm is the same as (b). [5]

Remark: 5 points for each sub-question.

Problem 5

7-18 [5]
If the tree has more than one vertex, then yes. The remaining vertices are

still the vertex cover because for every edge e ∈ E incident on the leaves,
their other end-point is still in the remaining tree.

Problem 6

7-23 [10]
Do a BFS of the tree by starting at any node s and marking the distance of

the nodes from the root s. Let’s find a leaf u with maximum d(s, u), and we do
a BFS with root = u. Pick the leaf v such that d(u, v) is the maximum among
all leaves. The diameter of the tree is then d(u, v). Apparently, the time
complexity is the same as BFS, which is O(V + E). [4]

Now let’s prove the correctness of the algorithm.
For simplicity, let us assume that the diameter of the graph is unique. That

is, there exists exactly one pair of vertices (u, v) which have path length d(u,
v) between them, which is the highest path length among any pair of vertices
in the graph. It is easy to see that both u and v are leaf nodes.

Take any node w and find the vertex which is furthest from it. We will show
that the vertex found will be either u or v. Suppose that the vertex found is
different, say z. We will consider 2 cases.

Figure 2: w lies on the path from u to v.
First suppose that w lies on the path from u to v. Without loss of generality,

let the w − u path have no edges overlapping with the w − z path. We have
d(w, z) ≥ d(w, v). But we know that d(w, z) ≥ d(w, u). Thus d(u, z) = d(u, w)+
d(w, z) ≥ d(u, w) + d(w, v) = d(u, v). This contradicts the assumption that d(u,
v) is the unique diameter of the tree. [2]

So let w not lie on the path from u to v. Now, either the w − z path either
overlaps with the u − v path or is disjoint.

Figure 3: w doesn’t lie on the path from u to v and the w − z path overlaps
with the u − v path.

If there is overlap, consider the vertex y which is the vertex closest to w
among the vertices are part of the overlap. Without loss of generality, let the
y−u path have no edges overlapping with the y−z path. Now, d(y, z) ≥ d(y, v).
Hence d(u, z) = d(u, y) + d(y, z) ≥ d(u, y) + d(y, v) = d(u, v). This once again
contradicts the assumption of (u, v) being the unique diameter of the tree. [2]

Figure 4: w doesn’t lie on the path from u to v and the w − z path and the u −
v path don’t overlap.

If the paths do not overlap, there are vertices x and y on the u−v and w −z

paths respectively which are closest to each other. d(y, z) ≥ d(y, v). Hence
d(u, z) = d(u, y) +d(y, z) ≥ d(u, y) +d(y, v) ≥ d(u, x) +d(x, v) = d(u, v). Hence
the assumption that d(u, v) is the diameter is contradicted. [2]

In each case, we have seen that there is a contradiction if z is not one of u
or v. Hence it follows that z, the furthest vertex from w, is either u or v. Now it
is easy to see that the furthest vertex from u (or v) is v (or u) and hence the
distance we calculate in the second dfs is actually the diameter of the tree.

Remark: 3 points for giving the algorithm. 1 point for giving the running
time. 6 points are for proving the correctness of the algorithm (2 points for
each case). Other correct answers are also accepted.

Problem 7

7-34 [5]
Do a DFS for each vertex, if one of the DFS tree contains all the vertices

of the graph, return true. Running time O(n2).

Problem 8
[Connected Components] (20pts)

The pseudocode is as follows:

dfs (node u)
for each node v connected to u, do

visited[v] = true
dfs(v)

for each node u, do
if u is not visited, then

visited [u] = true
component += 1
dfs (u)

The code is as follows (written in C++):

include < cstdio >
include < cstring >
include < vector >
using namespace std ;

const int N = 105 , L = 50;
bool tag [N];
vector < int > adj_list [N];
vector < int > component [N];

int component_count ;

void init (int node_count)
{

for (int i = 1; i <= node_count ; ++ i)
{

adj_list [i]. clear ();
component [i]. clear ();

}
memset (tag , 0 , sizeof (tag));
component_count = 0;

}

void dfs (int u)
{

component [component_count -1]. push_back (u); int
adj_count = adj_list [u]. size ();
for (int i = 0; i < adj_count ; ++ i)
{

int v = adj_list [u][i];
if (! tag [v])
{

tag [v] = true ;
dfs (v);

}
}

}

void print_ans ()
{

for (int i = 0; i < component_count ; ++ i) {
int component_size = component [i]. size (); printf ("
Connected Component # % d :\ n " , i + 1); for (int j = 0; j <
component_size ; ++ j) {

if (j)
printf (" ");

printf (" \% d " , component [i][j]);
}
printf (" \ n ");

}
}

int main ()
{

char fname [L];
int node_count , edge_count , u , v ;
printf (" Please enter the graph file ’s name :\ n "); scanf (" % s " ,
fname);

freopen (fname , " r " , stdin);
scanf (" % d % d " , & edge_count , & node_count);
init (node_count);
for (int i = 0; i < edge_count ; ++ i)
{

scanf (" % d % d " , &u , & v);
adj_list [u]. push_back (v);
adj_list [v]. push_back (u);

}
for (int i = 1; i <= node_count ; ++ i)
{

if (! tag [i])
{

++ component_count ;
tag [i] = true ;
dfs (i);

}
}
print_ans ();

}

The result for test file 1:

Connected Component #1:
1 2 4 8 5 10 9 6
Connected Component #2:
3
Connected Component #3:
7

The result for test file 2:

Connected Component #1:
1 15 5 7 27 26 14 13 12 21 25 16 6 19 9 17 2 10 18 28 29 30 23 24 20 3
Connected Component #2:
4 8
Connected Component #3:
11
Connected Component #4:
22
Connected Component #5:
31 42 46 32 37 41 47 39 40 49
Connected Component #6:
33 48 45 44
Connected Component #7:
34 43 36
Connected Component #8:
35
Connected Component #9:
38

Connected Component #10:
50

The result for test file 3:

Connected Component #1:
1 11 37 62 23 46 63 4 55 85 52 75 12 87 67 70 97 30 43 77 34 96 47 33 79
Connected Component #2:
2 10
Connected Component #3:
3 15 44 25 26 54 22 82 27 59 29 39 24 51 35 89 9 72 68 74 99 76 93 71 90
80 84 64 92 6
Connected Component #4:
5 21
Connected Component #5:
7
Connected Component #6:
8 73 40 61 16 83 100 19 45 48 57 81 50 32 Connected
Component #7:
13
Connected Component #8:
14
Connected Component #9:
17
Connected Component #10:
18
Connected Component #11:
20
Connected Component #12:
28 60 42 65 53 66 88
Connected Component #13:
31
Connected Component #14:
36
Connected Component #15:
38
Connected Component #16:
41
Connected Component #17:
49
Connected Component #18:
56
Connected Component #19:
58
Connected Component #20:
69 98
Connected Component #21:
78
Connected Component #22:

86
Connected Component #23:
91
Connected Component #24:
94
Connected Component #25:
95

The result for test file 4:

Connected Component #1:
1 4 7 8 9 12 13 14 16 20 22 23 25 26 30 32 34 38 40 41 42 44 45 46 48 49 50
52 53 54 55 56 59 62 65 66 67 70 73 75 77 81 82 87 88 89 90 91 93 100
Connected Component #2:
2 3 5 6 10 11 15 17 18 19 21 24 27 28 29 31 33 35 36 37 39 43 47 51 57 58 60 61
63 64 68 69 71 72 74 76 78 79 80 83 84 85 86 92 94 95 96 97 98 99

Remark: 3.5 points for providing the source code. 1.5 points in total for
test file 1 (0.5 points for each case). 4 points in total for test file 2 (0.4 points
for each case). 10 points in total for test file 3 (0.4 points for each case). 1
point in total for test file 4 (0.5 points for each case).

Problem 9

8-4 [2.5]
If the graph has distinct edge weights then it has a unique spanning tree

and both Prim’s and Kruskal’s algorithm will output the same tree. But if there
exists two edges with the same weight, and the tie is broken arbitrarily, then
both the algorithms may output different trees.

Problem 10

8-5 [2.5]
Both Prim’s and Kruskal’s algorithm work with negative edge weights. It is

because the correctness of the algorithm does not depend on the weights
being positive. Kruskal’s algorithm sorts the edges according to weights
(which doesn’t change when negative weights are present) and chooses the
best edge from it each time. In Prim’s algorithm the tree evolves by adding
the least weight edge that connects a tree vertex to a non-tree vertex. The
edge selection is not effected by negative weights.

Problem 11

8-10 [10]
Note that you have to include all vertices of G and T must be connected

(but it does not necessarily have to be a spanning tree).
This problem is different from minimum spanning tree - consider the graph

on {a, b, c} which is a triangle and each edge has weight -1. A minimum span
ning tree would include any two edges like {ab, ac} with total weight -2, while
minimum connected subset would include all three edges with total weight -3.
[5]

An efficient algorithm to compute minimum weight connected subset T is:
1. Find the minimum spanning tree T of G using Kruskal’s algorithm. 2.
For each edge e ∈ G with we < 0, add e to T.
This takes O(E log V + E) = O(E log V) in total. [5]
Remark: 5 points for describing why this problem is different from

minimum spanning tree problem. Note that it is only a sample answer. 5
points for the efficient algorithm.

Problem 12

8-16 [5]
No, it is not necessary. Consider the following example. Let G be the

graph below and T be the shortest path spanning tree rooted at the leftmost
vertex as shown. If we add k = 2 to all the edge weights and get graph G0.
Then the shortest path spanning tree will change to T0. See Figure 5.

Problem 13

8-18 [5]
Is the path between a pair of vertices in a minimum spanning tree of an

undirected graph necessarily the shortest (minimum weight) path? - No, see
the example given in Figure 6. [2.5]

Suppose that the minimum spanning tree of the graph is unique. Is the
path between a pair of vertices in a minimum spanning tree of an undirected
graph necessarily the shortest (minimum weight) path? - No, see the example
given in Figure 7. [2.5]

Remark: For each sub-question, 1 point for Yes/No. 1.5 points for reasons.

(a) Original graph G (b) T

(c) New graph G0(d) T0

Figure 5: Illustration for Problem 9.

(a) Shortest path in G (b) Shortest path in T

Figure 6: Illustration for Problem 6-17 (a).

(a) Shortest path in G0(b) Shortest path in T0

Figure 7: Illustration for Problem 6-17 (b).

11

