
CSE 373 Analysis of Algorithms

Solutions to HW 5

PROBLEM 1
[Problem 1] (16pts)

Implementation of the edit distance algorithm. Some form of output was expected from the
students showing the edit distance and/or the best alignment between the strings.

Edit distance for first pair is 12, second 14, third 16. The alignments could vary slightly for
each program. Sample output for the three parts respectively are:

MMMMMMSSDMMSSSDMMMSSDDDMMMMMMMMM
DMIMMSMMIIMMMMMIMMMSMMMMMMMMMMSIMMMMMMSSSSI
MSDMMMMMMMSDMMII

PROBLEM 2

[10–8] (8pts)

(a) Say we are given strings A and B of lengths n and m. Then for every i, j, 1 ≤ i ≤ n, and 1 ≤
j ≤ m, we need to know what is the longest common suffix between the two strings that ends
respectively at positions i and j. This gives us a matrix M of dimensions n m, which we then
iterate and find the max value in it. We generate the values in the matrix as follows: if A[i] =
B[j] then M[i, j] = M[i - 1, j - 1] + 1, else M[i, j] = 0. The base case is M[i, 0] = 0 for any i and
M[0, j] = 0 for any j.

(b) We fix string A and shift string B against it. For each shift we go through aligned
characters and record consequitive matches. If we encountered a list of matches longer than
have seen before, we save it.

PROBLEM 3

[10–13] (8pts)

(a) There are 7 different ways or C(20) = 7. 20 equals to:
1. Twenty 1
2. Fourteen 1, one 6
3. Four 1, two 6
4. Two 1, three 6
5. Ten 1, One 10
6. Four 1, One 6, One 10 7

7. Two 10.

(b) We can solve this problem using Dynamic Programming. We fill matrix C, where C[n, k] is
the number of ways to make a change of n, using first k denominations only.

C[n, k] = C[n - dk, k] + C[n, k - 1]

PROBLEM 4

[10-25] (8pts) Take Pw(g, i) and Pb(g, i) are respectively the probabilities that a champion
wins a championship where there are g games left, and i games are required for her to win,
while currently playing as white (black). Then we have the following recurrences:

Pw(g, i) = wwPb(g − 1, i − 1) + wdPb(g − 1, i − 1/2) + wlPb(g − 1, i).

Similarly,

Pb(g, i) = bwPw(g − 1, i − 1) + bdPw(g − 1, i − 1/2) + blPw(g − 1, i).

After filling in these two matrices, we obtain the probability that a champion wins an entire
championship by looking at an entry Pw[0, 24]. The running time of the algorithm is quadratic.

PROBLEM 5
[10-30] (8pts)

Suppose the greedy algorithm didn’t give the optimal height. Lets call the total height given
by greedy algorithm HG. Now consider a non-greedy ordering in which at least one shelf is
not filled with books (empty or partially filled) and books are put in the next shelf. Now think
about the last shelf and the possible consequence of this change. Leaving a middle shelf
partially empty, can make us make an extra shelf on top to put all the book that are pushed
forward and don’t fit in the last shelf anymore. This means an extra shelf and since all the
books have the save height hb, the total height, HT , is now at least HG + hb(HT ≥ HG + hb).
Note that leaving some shelves not completely filled would not make an extra shelf as long
as there is enough space in the following shelves including the last shelf for all the books that
are pushed forward. This means HT = HG. Therefore, library height given by greedy is always
less than or equal to total height given by any other ordering which means HG = Hopt. There
are n books and the order is given so we put book 1 to n in O(n) time.

PROBLEM 6

[10-31] (10pts)

(a) Consider the sequence of books with the following heights: 9, 10, 11, 4, 15. Say the width
of the shelf is such that the books of heights 9, 10 and 11 could fit on the shelf, and the total
height of both shelves would be 11+15 = 26. If we move 11 to the second shelf, then the total
height is 10 + 15 = 25.

(b) C(i) is thee total height of the selves for arrangement of books 0 to i.

C(i) = min i≤k≤m(C(k + 1) + min(hi, ..., hk)),

where m is the maximum number, such that
𝑗=1

𝑚

∑ ℎ
𝑗
 ≤ 𝐿

PROBLEM 7

[11–1] (3pts)

Just substitute each clause in F with the following:

PROBLEM 8

[11–2] (5pts)

PROBLEM 9
[11–11] (6pts)

Reduce vertex cover to baseball collector problem. Given a graph G = (V, E), for each node
vi∈ V , we have a packet Pi. For each edge incident on vi, we take one card. That is card ciis
in Pj iff edge eiis incident to vertex vj in the graph G. So to solve the vertex cover problem with
input k, we can just solve the baseball card collector with input k and return the same answer.
As vertex cover is NP hard, by this reduction we get that baseball card collector problem is
also NP hard.

PROBLEM 10

[11–16] (6pts)

To prove that a problem A is NP-complete, you need to prove that it is in NP and a known
NP-complete problem B can be reduced to A. Proving that a problem is in NP is easy, just 3

write a polynomial time verifier that output of A is correct. Then if you find a reduction from A
to B, it means that if you could solve A faster than NP-complete, than you could solve B
faster, which is impossible. Thus, your problem A is NP-complete. For the key we will not
give a proof that a problem is in NP, but you need to provide it. We give only an example of a

reduction.
We can reduce Clique problem, which is known to be NP-complete, to the dense subgraph
problem. Given input to Clique problem, graph G and integer k, we set y = (k(k-1))/2 and run
Dense Subgraph probem with G, k and y. If graph has a dense subgraph with k vertices and
at least y edges, then G has a clique of k vertices.

PROBLEM 11

[11–17] (6pts)

To prove that Clique-NoClique is NP-complete we can choose any known NP-complete
problem, for example, Clique, and reduce it to Clique-NoClique. To reduce Clique to
Clique-NoClique, we simply add k new unconnected vertices to G, input to Clique, and run
Clique-NoClique algorithm on the new graph, which will return clique of size k and
independent set of size k. The new added nodes will not be included in clique, thus the found
clique can be only for graph G. This means that by solving Clique-NoClique, we can solve
Clique. Thus Clique-NoClique is NP-complete.

PROBLEM 12

[11–18] (8pts)

From the hint, we already know that in the special case of a graph in which every vertex has
degree 3, Hamiltonian circuit problem is NP-hard. Now, in this specific type of graph,
consider the possible Eulerian cycles. When visiting a vertex, one edge is used to enter the
vertex, one edge to leave the vertex. As there are three edges that each vertex is incident
on, there is one edge left. In Eulerian cycle you would never be able to use the third edge,
because if you do, that means you are visiting the vertex again, and you would have to use
an already visited edge to leave the vertex and that is using an edge twice which is against
Eulerian cycle. So for every vertex in your cycle you visit it only one time which is a
Hamiltonian cycle. Therefore, using this specific graph we showed that the problem of finding
the maximal Eulerian cycle (maximum number of edges) reduced from a maximal
Hamiltonian cycle problem (maximum number of vertices) and therefore maximal Eulerian
problem is NP-complete.

PROBLEM 13

[11–22] (8pts)

We reduce vertex cover problem to it. Input to vertex cover is graph G containing a set of
vertices V , a set of edges E and a positive integer k. We can view each element in E as a
subset of V containing only 2 elements (2 vertices, connected by an edge). We set S = V and
C = E and use S, C and k as an input for the Hitting Set problem. The Hitting Set blackbox
returns S’ , a subset of S = V of size k, such that at least one element of a set from C = E is
in S’. This means that each vertex adjacent to an edge from E, is included into S’. Thus, each
edge is covered and S’ forms a vertex cover of k vertices.

4

