
Lecture 2:
Matchings and Flows

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena


Winner: Kanye East (11 problems, 890 minutes)



Topic: Network Flow Theory

• Network flow theory

• Matchings in Graphs

• Applications of Flows and Matchings

• Make Graphs, Not Algorithms



Network Flow

An edge-weighted graph can model a network of pipes, where
the weight of edge (i, j) defines the capacity of the pipe.

S T TS

Given a weighted graph G and vertices s and t, the network
flow problem seeks the maximum flow which can be sent from
s to t respecting the maximum capacities of each pipe.



Linear Programming

Optimization people vs. algorithm people. . .



Flow Constraints as a Linear Program

Except for the source and the sink, each node must satisfy the
constraint that flow in equals flow out:

∑
k‖(j,k)∈E

fjk =
∑

i‖(i,j)∈E
fij

The source and sink may have a capacity b, such that:
∑

k‖(s,k)∈E
fsk = b =

∑
i‖(i,t)∈E

fit

The flow on each edge is bounded by its upper bound capacity
u:

0 ≤ fij ≤ uij



Objective Functions

• The MaxFlow or maximum flow problem seeks to
maximize the amount of flow from s to t. So b should
be large (infinite) while we maximize:

∑
i‖(i,t)∈E

fit

• If there is a cost c for each unit of flow, the minimum cost
flow problem seeks to minimize:

∑
(i,j)∈E

cij · fi,j



Why is MaxFlow Important?

Although the network flow problem is of independent
interest, its primary importance is that of being able to solve
other important graph problems.
Classic examples are bipartite matching and edge/vertex
connectivity testing.
But it is important as perhaps the most powerful linear
programming problem which can be solved by combinatorial
algorithms (not linear programming).



Linear Programming and Integrality

Linear programming is very powerful for optimization, but
can produce fractional solutions: max y subject to the
constraints x = y and x + y = 1.
Forcing a linear program to only work with integers creates
an NP-complete problem, integer programming.
But linear programmng on integer totally unimodular matri-
ces as capacities always produce integer solutions.
The node-arc incidence matrix of a directed graph is totally
unimodular. Hence network flow solutions with integer
capacities always have integral solutions.
Thus flows on edges of capacity between 0 and 1 act as
boolean variables.



Augmenting Paths

Traditional network flow algorithms are based on the idea of
augmenting paths: finding a path of positive capacity from s
to t and adding it to the flow.
It can be shown that the flow through a network is optimal iff
it contains no augmenting path.
Since each augmentation increases the flow, by repeating the
process until no such path remains we must eventually find
the global maximum.



The Residual Flow Graph

The key structure is the residual flow graph, denoted as
R(G, f ), where G is the input graph whose weights are the
capacities, and f is array of flows through G.
For each edge (i, j) in G with capacity c(i, j) and flow f (i, j),
R(G, f ) may contain two positive-weight edges:

(i) an edge (i, j) with remaining capacity c(i, j)−f (i, j), and

(ii) an edge (j, i) with weight f (i, j), if f (i, j) > 0.



Example: Residual Flow Graph

5

5

3
3

5

2

9
5

2

5

7

3

7

12

3

9

4 4

25

10

2

2

G

t

s

t

s

R(G,f)

The maximum s–t flow in graph G is 7. Such a flow is
revealed by the two directed t to s paths in the residual graph
R(G), of flows 2 and 5 respectively. These flows completely
saturate capacity, so no augmenting path remains.



Edge-weights in the Residual Flow Graph

The weight of the edge (i, j) in the residual graph gives the
exact amount of extra flow that can be pushed from i to j. A
path in the residual flow graph from s to t implies that more
flow can be pushed from s to t.
The smallest edge weight on this path defines the amount of
extra flow that can be pushed along it.
Initial flows are all set to 0. The initial residual flow of (i, j)
is set to the capacity of e, while the initial residual flow of
(j, i) is set to 0.



MaxFlow Implmementatiopn

Add augmenting paths until none can be found.
For each edge in the residual flow graph, we must keep track
of both the amount of flow currently going through the edge,
as well as its remaining residual capacity. Thus, we must
modify our edge structure to accommodate the extra fields:
typedef struct {

int v; /* neighboring vertex */
int capacity; /* capacity of edge */
int flow; /* flow through edge */
int residual; /* residual capacity of edge */
struct edgenode *next; /* next edge in list */

} edgenode;



Finding an Augmenting Path

We use a breadth-first search to look for any path from source
to sink that increases the total flow, and use it to augment
the total. We terminate with the optimal flow when no such
augmenting path exists.
void netflow(flow_graph *g, int source, int sink) {

int volume; /* weight of the augmenting path */

add_residual_edges(g);

initialize_search(g);
bfs(g, source);

volume = path_volume(g, source, sink);

while (volume > 0) {
augment_path(g, source, sink, volume);
initialize_search(g);
bfs(g, source);
volume = path_volume(g, source, sink);

}
}



The Volume of a Path

The flow through an augmenting a path is limited by the path
edge with the smallest amount of residual capacity:

int path_volume(flow_graph *g, int start, int end) {
edgenode *e; /* edge in question */

if (parent[end] == -1) {
return(0);

}

e = find_edge(g, parent[end], end);

if (start == parent[end]) {
return(e->residual);

} else {
return(min(path_volume(g, start, parent[end]), e->residual));

}
}



Updating the Residual Graph

Sending an additional unit of flow along directed edge (i, j)
reduces the residual capacity of edge (i, j) but increases the
residual capacity of edge (j, i).
void augment_path(flow_graph *g, int start, int end, int volume) {

edgenode *e; /* edge in question */

if (start == end) {
return;

}

e = find_edge(g, parent[end], end);
e->flow += volume;
e->residual -= volume;

e = find_edge(g, end, parent[end]);
e->residual += volume;

augment_path(g, start, parent[end], volume);
}



The Edmonds-Karp Algorithm

The augmenting path algorithm above eventually converges
to the optimal solution. However, each augmenting path may
add only a little to the total flow: perhaps as little as 1 flow
unit per path if the weights are integral.
So‘in principle, the algorithm might take an arbitrarily long
time to converge.
But Edmonds and Karp proved that using BFS to select the
shortest augmenting path in the residual graph guarantees that
O(n3) augmentations suffice for optimization.
Note this is independent of the capacities of the edges.



Algorithms for Minimum Cost Flow

Edmonds-Karp solved MaxFlow by repeatedly augmenting
along the shortest unweighted path.
It similarly solves MinCost Flow by repeatedly augmenting
along the shorted cost-weighted path.
Thus Dijkstra’s algorithm should be used instead of BFS for
MinCost flow.



Max Flow = Min Cut
A set of edges whose deletion separates s from t (like the two
edges incident to t) is called an s–t cut. Clearly, no s to t flow
can exceed the weight of the minimum such cut. In fact, a
flow equal to the minimum cut is always possible.

Min cut is an important problem which can be solved
by network flow, although there also more specialized
randomized algorithms.



Questions?



Topic: Matchings in Graphs

• Network flow theory

• Matchings in Graphs

• Applications of Flows and Matchings

• Make Graphs, Not Algorithms



Bipartite Graphs

Graph G is bipartite or two-colorable if the vertices can be
divided into two sets, say, L and R, such that all edges in G
have one vertex in L and one vertex in R.
Many naturally defined graphs are bipartite. For example,
suppose certain vertices represent jobs to be done and the
remaining vertices people who can potentially do them. The
existence of edge (j, p) means that job j can potentially done
by person p. Or let certain vertices represent boys and certain
vertices girls, with edges representing compatible pairs.



Bipartite Matching

A matching in a graph G = (V,E) is a subset of edges E ′ ⊂
E such that no two edges in E ′ share a vertex. Thus every
vertex is in at most one such matching edge.

Matchings in bipartitie graphs have natural interpretations as
job assignments or as marriages.



Bipartite Matching through Network Flow

The largest possible bipartite matching can be found using
network flow, where each edge has capacity 1:

s t

The maximum weighted bipartite matching can be found
using the Hungarian algorithm. See textbook for details.



Matching in General Graphs

Maximum cardinality and minimum weight perfect match-
ings can also be found in general (non-bipartite graphs) using
the blossum algorithm.

It uses augmenting paths, with special cases of odd-length
cycles.



1-Factorizations
The edges of certain regular graphs can be partitioned into
edge-disjoint matchings called 1-factorizations:

Such 1-factorizations define edge colorings, where no two
edges of the same color touch.
Vizing’s theorem: every graph can be edge colored with ∆ or
∆ + 1 colors, where ∆ is the largest vertex degree.



Questions?



Topic: Applications of Flows and Matching

• Network flow theory

• Matchings in Graphs

• Applications of Flows and Matchings

• Make Graphs, Not Algorithms



Applications of Flows

I find that I think more naturally of bipartite matchings than
network flows, and many flow applications are really just
matching problems.
To learn to recognize flow problems, it is useful to look at as
many examples as you can.



Edge Connectivity

Finding the minimum cut between vertex v and all other
vertices defines the edge-connectivity of G.

X

This means running n − 1 min cut/max flows between v and
each other vertex.



Menger’s Theorem and Edge-Disjoint Paths

The size of the minimum edge cut between s and t equals the
maximum number of edge-disjoint paths from s to t.
Think flow on a graph with edge capacities 1.



Vertex Connectivity and Vertex-Disjoint Paths

The size of the minimum vertex cut between s and t equals
the maximum number of vertex-disjoint paths from s to t.

Think flow on a graph with edge capacities 1 and split
verticies: vi(in) and vi(out)



The Baseball Elimination Program

Does Detroit have a chance if it has won 46 games to date?
No, because 46 + 28 = 74 < 75.
But what if it had won 47 games? 48? Is it officially
eliminated, or might there be a pattern of outcomes where
it beats all other teams?



Maxflow Solution

Build a bipartite network of:

• Team pairings (future games) weighted by how often team
i plays j

• Teams, weighted by the maximum number of remaining
games they can win while still below Detroit.



Is there a flow where all games can end with Detroit winning
more total games?



Bipartite Matching Solution

The network is essentially bipartite.

• Have a vertex for each distinct game (not team pairing)

• Have wi vertices for each team where wi is the number of
games team i is allowed to win

This formulation is less efficient if tean-pairs still must plan
large numbers of games between each other. (one number w
vs. w more vertices).



Realizing a Matrix from Row/Column Sums

There are generally many solutions: min cost flow can be
used to add constraints on shape.
Again, a lot like matching with multiple copies of nodes.



Eulerian Cycles

An Eulerian cycle is a tour which visits every edge of the
graph exactly once.

A mailman’s route is ideally an Eulerian cycle, so he can visit
every street (edge) in the neighborhood once before returning
home.



Degree Conditions and Eulerian Graphs

An undirected graph contains an Eulerian cycle if it is
connected and every vertex is of even degree. Why?
The circuit must enter and exit every vertex it encounters,
implying that all degrees must be even.
A connected directed graph contains an Eulerian cycle if it is
connected and every vertex has the equal in-degree and out-
degree.



Chinese Postman
Given a weighted graph G, find the lowest-weight tour that
visits every edge in G.
If it is Eulerian, the answer is an Eulerian cycle. If not, we
must add edges between vertices odd or imbalanced degrees.

The optimal bipartite matching gives the least expensive way
to make the graph Eulerian.



Finding an Eulerian Cycle

We can find an Eulerian cycle by building it one cycle at a
time. We can find a simple cycle in the graph by finding a
back edge using DFS. Deleting the edges on this cycle leaves
each vertex with even degree. Once we have partitioned the
edges into edge-disjoint cycles, we can merge these cycles
arbitrarily at common vertices to build an Eulerian cycle.
A Hamiltonian cycle is a tour which visits every vertex of the
graph exactly once. The traveling salesman problem asks for
the shortest such tour on a weighted graph.
Unfortunately, no efficient algorithm exists for solving
Hamiltonian cycle problems. If the graph is sufficiently
small, it can be solved via backtracking.



Questions?



Topic: Make Graphs, Not Algorithms

• Network flow theory

• Matchings in Graphs

• Applications of Flows and Matchings

• Make Graphs, Not Algorithms



Make Graphs, Not Algorithms

Designing novel graph algorithms is very hard, so don’t do it.
Instead, try to design graphs that enable you to use classical
algorithms to model your problem.
This approach is consistent with the idea of a reduction
between two problems, which is important in the theory of
NP-completeness.



Shortest k-Link Path

Given a weighted graph G, find the shortest (lowest weight)
path using exactly k links from s to t.
Yes, there is a dynamic programming solution:

Cost[s, t, k] = min
j

w(s, j) + Cost[j, t, k − 1]

But is there another way?



Reduction to Shortest Path

Build a DAG with k copies of G, such that all edges go from
the ith to (i + 1) copy.

Dijkstra’s algorithm (or something simpler) can now find the
shortest weighted path from s1 to tk.



Names in Collision

In porting code from Unix to DOS, I have to shorten several
hundred file names down to at most eight characters each.
I can’t just use the first eight characters from each name,
because “filename1” and “filename2” would be assigned the
exact same name. How can I meaningfully shorten the names
while ensuring that they do not collide?



Disambiguating Names

Construct a bipartite graph with vertices corresponding to
each original file name fi for 1 ≤ i ≤ n, as well
as a collection of acceptable shortenings for each name
fi1, . . . , fik. Add an edge between each original and
shortened name. We now seek a set of n edges that have
no vertices in common, so each file name is mapped to a
distinct acceptable substitute. Bipartite matching is exactly
this problem of finding an independent set of edges in a graph.



Questions?


