
CSE526: Principles of Programming Languages (Spring 2003)
Scott Stoller

Exam 2 (version 24apr2003)

Each problem is worth 20 points. Justify your answers.

Problem 1

Consider adding a new command CAS (“compare and swap”) to the language of chapter 8.
The syntax of CAS is:

〈comm〉 ::= CAS(〈var〉, 〈var〉, 〈intexp〉, 〈var〉)

Informally, the semantics of CAS(x,old,new,out) is that it executes the following two atomic
steps.

(1) evaluate the expression “new” to an integer k.
(2) if x=old then (x:=k; out:=1) else (old:=x; out:=0).

Each of these two steps executes atomically. Transitions of other threads may occur between
the steps.
(a) Extend the transition semantics of section 8.1 with transition rule(s) for CAS. (If nec-
essary, you may augment the variety of configurations by introducing additional kinds of
commands.)
(b) An alternative way to give semantics for CAS is to treat it as syntactic sugar, by defining
it in terms of critical regions (Section 8.2). Give such a definition of CAS. This semantics
for CAS must be consistent with the above informal semantics, but it does not need to be
exactly equivalent to the semantics in part (a).

Problem 2

Consider the lambda calculus expression (λf.f(fI))P1, where we used the following abbre-
viations: I = (λx.x), P1 = (λx.λy.x).
(a) Give a proof of the normal order evaluation of this expression using the inferences rules
in Section 10.3. (You may write the proof as a sequence of steps, like the textbook does, or
as a tree, like I occasionally did in class.)
(b) Give the result of eager evaluation of this expression using the inference rules in Section
10.4. (For part (b), you do not need to show the proof in detail, although you should still
sketch the basic steps to justify your answer.)

Problem 3

Exercise 11.8.

1 of 2



Problem 4

Consider the expression

letrec v0 ≡ λu0.e0, . . . , vn−1 ≡ λun−1.en−1 in e (1)

When n > 1, this expression defines a collection of mutually recursive functions. Your
friend proposes to simplify the programming language by restricting letrec to define a single
function; in other words, the new syntax of letrec is

letrec v ≡ λu.e′ in e′′ (2)

Is it possible to treat expressions like (1) as syntactic sugar by defining them in terms
of expressions like (2)? If so, give such a definition. If not, explain informally why it is
impossible.

Problem 5

In the Iswim-like language of chapter 13, define a function newIter that, when applied to
a list, returns a pair of functions 〈hasNext, next〉 that work like an iterator in Java. For
example, newIter can be used as follows to define a function “sum” that, when applied to a
list of integers, returns the sum of the elements of the list
let newIter ≡ · · · in

let sum ≡ λ x. let 〈hasNext, next〉 = newIter x in

newvar s:=0 in (while hasNext() do s:=(val s)+next()); val s

Note: This definition of “sum” uses the syntactic sugar of Section 13.4.

2 of 2


