Introduction to the Objective Caml Programming Language

Jason Hickey

September 4, 2002

Contents

1 Introduction 7
1.1 Functional and imperative languages 8
1.2 Organization 9
1.3 Additional Sources of Information 9
2 Simple Expressions 11
2.1 Basic expressions 11
2.1.1 unit: the singleton type 12
2.1.2 int: the integers 12
2.1.3 float: the floating-point numbers 12
2.1.4 char: the characters 13
2.1.5 string: character strings 13
2.1.6 boo7: the Boolean values. 14
2.2 Compiling your code 14
2.3 The OCaml type system 15
2.4 Comment convention 16
3 Variables and Functions 17
3.1 Functions 18
3.1.1 Scoping and nested functions 20
3.1.2 Recursive functions 20
3.1.3 Higher order functions 21
3.2 Variable names 23
4 Basic Pattern Matching 25
4.1 Incomplete matches 28
4.2 Patterns are everywhere 29
5 Tuples, Lists, and Polymorphism 31
5.1 Polymorphism 31
5.1.1 Value restriction 32
5.1.2 Comparison with other languages 33
5.2 Tuples 34
5.3 Lists 36
6 Unions 39
6.1 Unbalanced binary trees 40
6.2 Unbalanced, ordered, binary trees 41
6.3 Balanced red-black trees 42
6.4 Some common built-in unions 44
7 Exceptions 47
8 Records, Arrays, and Side-Effects 51
8.1 Records 51
8.1.1 Imperative record updates. 52
8.1.2 Field label namespace 54
8.2 References 54
8.2.1 Value restriction 55
8.3 Arrays and strings 56
8.4 Sequential execution and looping. 57
8.4.1 while loops 58
8.4.2 for loop 58
9 Input and Output 61
9.1 File opening and closing 61
9.2 Writing and reading values on a channel 63
9.3 Channel manipulation 63
9.4 Printf 64
9.5 String buffers 66
10 Files, Compilation Units, and Programs 67
10.1 Signatures 68
10.1.1 Type declarations 68
10.1.2 Method declarations 69
10.2 Implementations 69
10.2.1 Type definitions 70
10.2.2 Method definitions 70
10.3 Building a program 71
10.4 Compiling the program 72
10.4.1 Where is the "main" function? 73
10.4.2 Some common errors 74
10.5 Using open to expose a namespace 76
10.5.1 A note about open 76
10.6 Debugging a program 77
11 The OCaml Module System 81
11.1 Module signatures 82
11.2 Module structures 83
11.2.1 Assigning a signature 84
11.3 Functors. 85
11.3.1 Using a functor 88
11.3.2 Sharing constraints . 89
11.3.3 An implementation that works 89

12 The OCaml Object System 91
12.1 The basic object system. 91
12.1.1 Class types. 91
12.1.2 Class expressions . 92
12.1.3 Objects . 93
12.1.4 Parameterized class expressions. 94
12.2 Polymorphism . 95
12.3 Inheritance . 96
12.3.1 Multiple inheritance . 97
12.3.2 Virtual methods . 99
12.3.3 Subclassing . 100
12.3.4 Superclassing, or typecase 101
12.4 Functional objects . 105

Chapter 1

Introduction

This document is an introduction to ML programming, specifically for the Objective Caml (OCaml) programming language from INRIA [4] 6]. OCaml is a dialect of the ML (Meta-Language) family of languages, which derive from the Classic ML language designed by Robin Milner in 1975 for the LCF (Logic of Computable Functions) theorem prover [2] (3).

OCaml shares many features with other dialects of ML, and it provides several new features of its own. Throughout this document, we use the term ML to stand for any of the dialects of ML, and OCaml when a feature is specific to OCaml.

- ML is a functional language, meaning that functions are treated as first-class values. Functions may be nested, functions may be passed as arguments to other functions, and functions can be stored in data structures. Functions are treated like their mathematical counterparts as much as possible. Assignment statements that permanently change the value of certain expressions are permitted, but used much less frequently than in languages like C or Java.
- ML is strongly typed, meaning that the type of every variable and every expression in a program is determined at compile-time. Programs that pass the type checker are safe: they will never "go wrong" because of an illegal instruction or memory fault.
- Related to strong typing, ML uses type inference to infer types for the expressions in a program. Even though the language is strongly typed, it is rare that the programmer has to annotate a program with type constraints.
- The ML type system is polymorphic, meaning that it is possible to write programs that work for values of any type. For example, it is
straightforward to define data structures like lists, stacks, and trees that can contain elements of any type. In a language like C or Java, the programmer would either have to write different implementations for each type (say, lists of integers vs. lists of floating-point values), or else use explicit coercions to bypass the type system.
- ML implements a pattern matching mechanism that unifies case analysis and data destructors.
- ML includes an expressive module system that allows data structures to be specified and defined abstractly. The module system includes functors, which are are functions over modules that can be used to produce one data structure from another.
- OCaml is also the only widely-available ML implementation to include an object system. The module system and object system complement one another: the module system provides data abstraction, and the object system provides inheritance and re-use.
- OCaml includes a compiler that supports separate compilation. This makes the development process easier by reducing the amount of code that must be recompiled when a program is modified. OCaml actually includes two compilers: a byte-code compiler that produces code for the portable OCaml byte-code interpreter, and a native-code compiler that produces efficient code for many machine architectures.
- One other feature should be mentioned: all the languages in the ML family have a formal semantics, which means that programs have a mathematical interpretation, making the programming language easier to understand and explain.

1.1 Functional and imperative languages

The ML languages are semi-functional, which means that the normal programming style is functional, but the language includes assignment and side-effects.

To compare ML with an imperative language, here is how Euclid's algorithm would normally be written in an imperative language like C .

```
/*
    * Determine the greatest common divisor of two positive
    * numbers a and b. We assume a>b.
    */
int gcd(int a, int b)
{
    int r;
```

```
    while(r = a % b) {
        a = b;
        b = r;
    }
    return b;
}
```

In a language like C, the algorithm is normally implemented as a loop, and progress is made by modifying the state. Reasoning about this program requires that we reason about the program state: give an invariant for the loop, and show that the state makes progress on each step toward the goal.

In OCaml, Euclid's algorithm is normally implemented using recursion. The steps are the same, but there are no side-effects. The 1 et keyword specifies a definition, the rec keyword specifies that the definition is recursive, and the gcd a b defines a function with two arguments a and b.

```
1et rec gcd a b =
    let r = a mod b in
        if r = 0 then
            b
    else
            gcd b r
```

In ML, programs rarely use assignment or side-effects except for I/O. Functional programs have some nice properties: one is that data structures are persistent (by definition), which means that no data structure is ever destroyed.

There are problems with taking too strong a stance in favor of functional programming. One is that every updatable data structure has to be passed as an argument to every function that uses it (this is called threading the state). This can make the code obscure if there are too many of these data structures. We take a moderate approach. We use imperative code when necessary, but its use is discouraged.

1.2 Organization

This document is organized as a user guide to programming in OCaml. It is not a reference manual: there is already an online reference manual. I assume that the reader already has some experience using an imperative programming language like C; I'll point out the differences between ML and C in the cases that seem appropriate.

1.3 Additional Sources of Information

This document was originally used for a course in compiler construction at Caltech. The course material, including exercises, is available at
http://www.cs.ca1tech.edu/courses/cs134/cs134b.
The OCaml reference manual [4] is available on the OCaml home page http://www.ocam7.org/.

The author can be reached at jyh@cs.caltech.edu.

Chapter 2

Simple Expressions

Many functional programming implementations include a significant runtime that defines a standard library and a garbage collector. They also often include a toploop that can be used to interact with the system. OCaml provides a compiler, a runtime, and a toploop. By default, the toploop is called ocam7. The toploop prints a prompt (\#), reads an input expression, evaluates it, and prints the result . Expressions in the toploop must be terminated by a double-semicolon ; ; My machine name is kenai.

```
<kenai 113>ocam1
    Objective Cam7 version 2.04
# 1 + 4;;
- : int = 5
#
```

The toploop prints the type of the result (in this case, int) and the value (5). To exit the toploop, you may type the end-of-file character (usually Control-D in Unix, and Control-Z in Windows).

2.1 Basic expressions

OCaml is a strongly typed language: every expression must have a type, and expressions of one type may not be used as expressions in another type. There are no implicit coercions. Normally, you do not have to input the types of expressions. Type inference [1] is used to figure out the types for you.

The basic types are unit, int, char, float, bool, and string.

2.1.1 unit: the singleton type

The simplest type in OCaml is the unit type, which contains one element: (). This seems to be a rather silly type. In a functional language every function must return a value; unit is commonly used as the value of a procedure that computes by side-effect. It corresponds to the void type in C.

2.1.2 int: the integers

The int type is the type of signed integers: ...,-2, $-1,0,1,2, \ldots$. The precision is finite. On a 32 -bit machine architecture, the precision is 31 bits (one bit is reserved for use by the runtime), and on a 64-bit architecture, the precision is 63 bits.

There are the usual expressions on integers \square (addition), \square (subtraction),罔 (multiplication), ∇ (division), and mod (remainder). In addition there are the normal shifting and masking operators on the binary representations of the numbers.

- i 7s7 j : logical shift left $i \cdot 2^{j}$.
- i 7sr j : logical shift right $i \div 2^{j}(i$ is treated as an unsigned twoscomplement number).
- i as7 j : arithmetic shift left $i \cdot 2^{j}$.
- i asr j : arithmetic shift right $i \div 2^{j}$ (the sign of i is preserved).
- i 7and j : bitwise-and.
- i 7or j : bitwise-or.
- 1 7xor j : bitwise exclusive-or.

2.1.3 float: the floating-point numbers

The floating-point numbers provide fractional numbers. The syntax of a floating point includes either a decimal point, or an exponent (base 10) denoted by an E. A digit is required before the decimal point. Here are a few examples.

$$
0.2,2 e 7,3.1415926,31.415926 e-1
$$

The integer arithmetic operators do not work with floating point values. The corresponding operators include a '.$:$ addition is.+ subtraction is.multiplication is ${ }^{*}$. and division is /. There are also coercion functions int_of_float and float_of_int.

```
<kenai 114>!!
ocam1
    Objective Cam1 version 2.04
# 31.415926e-1;;
- : float = 3.1415926
# float_of_int 1;;
- : float = 1
# int_of_float 1.2;;
- : int = 1
# 3.1415926 *. 17.2;;
- : float = 54.03539272
```


2.1.4 char: the characters

The character type is implemented as characters from the ASCII character set. The syntax for a character constant uses single quotes.

```
'a', 'Z', '\120', '\t', '\r', '\n'
```

The numerical specification is in decimal, so ' $\backslash 120$ ' is the ASCII character ' x ', not ' P '.

There are functions for converting between characters and integers. The function Char. code returns the integer corresponding to a character, and Char. chr returns the character with the given ASCII code. The Char.lowercase and Char. uppercasefunctions give the equivalent lower or uppercase characters.

2.1.5 string: character strings

Character strings are a built-in type. Unlike strings in C, character strings are not arrays of characters, and they do not use ' $\backslash 000$ ' as a termination character. The String. 7ength function computes the length of the string. The syntax for strings uses double-quotes. Characters in the string may use the \ddd syntax.

```
"He11o", " world\000 is not a terminator\n", ""
The ^ operator performs string concatenation.
```

```
# "He11o " ^ "world\000Not a terminator\n";;
```


"He11o " ^ "world\000Not a terminator\n";;

- : string = "Hello world\000Not a terminator\n"

Printf.printf "%s" ("He1lo " ^ "world\000Not a terminator\n");;

Hello worldNot a terminator

- : unit = ()

```

Strings also allow random access. The s. [i] operator gets character \(i\) from string \(s\), and the command s.[i] <- c replaces character \(i\) in string \(s\) by character \(c\).

\subsection*{2.1.6 boo1: the Boolean values}

There are only two Boolean values: true and false. Every relation returns a Boolean value. Logical negation is performed by the not function. The standard binary relations take two values of equal types and compare them in the normal way.
- \(x=y\) : equality
- \(x<>y: x\) is not equal to \(y\)
- \(x<y: x\) is less than \(y\)
- \(x<=y: x\) is no more than \(y\)
- \(x>=y: x\) is no less than \(y\)
- \(x>y: x\) is greater than \(y\)

These relations operate on values of arbitrary type. For the base types in this chapter, the comparison is what you would expect. For values of other types, the value is implementation-dependent.

The logical operators are also defined: \&\& is conjunction, and || is disjunction. Both operators are the "short-circuit" versions: the second clause is not evaluated if the result can be determined from the first clause. For example, in the following expression, the clause \(3>4\) is not evaluated (which makes no difference at this point, but will make a difference when we add side-effects).
```


1<2 || 3 > 4;;

- : bool = true

```

There is also a conditional operator if \(b\) then \(e_{1}\) else \(e_{2}\).
```


if 1 < 2 then

 3+7
 else
 4;;
 _ : int = 10

```

\subsection*{2.2 Compiling your code}

If you wish to compile your code, you should place it in a file with the .m7 suffix. There are two compilers: ocam1c compiles to byte-code, and ocamlopt compiles to native machine code. The native code is roughly three times faster, but compile time is longer. The usage is similar to cc. The double-semicolon terminators are not necessary in the source files; you may omit them if the source text is unambiguous.
- To compile a single file, use ocam1c -g -c file.m7. This will produce a file file.cmo. The ocamlopt programs produces a file file.cmx. The -g option includes debugging information in the output file.
- To link together several files into a single executable, use ocam1c to link the .cmo files. Normally, you would also specify the -o program_file option to specify the output file (the default is a.out). for example, if you have to program files \(x . c m o\) and \(y . c m o\), the command would be:
```

<kenai 165>ocam1c -g -o program x.cmo y.cmo
<kenai 166>./program

```

There is also a debugger ocam7debug that you can use to debug your programs. The usage is a lot like gdb, with one major exception: execution can go backwards. The back command will go back one instruction.

\subsection*{2.3 The OCaml type system}

The ML languages are strictly typed. In addition, every expression has a exactly one type. In contrast, C is a weakly-typed language: values of one type can be coerced to a value of any other type, whether the coercion makes sense or not. Lisp is not an explicitly typed language: the compiler (or interpreter) will accept any program that is syntactically correct; the types are checked at run time. The type system is not necessarily related to safety: both Lisp and ML are safe languages, while C is not.

What is "safety?" There is a formal definition based on the operational semantics of the programming language, but an approximate definition is that a valid program will never fault because of an invalid machine operation. All memory accesses will be valid. ML guarantees safety by guaranteeing that every correctly-typed value is valid, and Lisp guarantees it by checking for validity at run time. One surprising (some would say annoying) consequence is that ML has no nil values; again, all correctly type values are valid.

As you learn OCaml, you will initially spend a lot of time getting the OCaml type checker to accept your programs. Be patient, you will eventually find that the type checker is one of your best friends. It will help you figure out which programs are bogus. If you make a change, the type checker will help track down all the parts of your program that are affected.

In the meantime, here are some rules about type checking.
1. Every expression has exactly one type.
2. When an expression is evaluated, one of four things may happen:
(a) it may evaluate to a value of the same type as the expression,
(b) it may raise an exception (we'll discuss exceptions in Chapter 7),
(c) it may not terminate,
(d) it may exit.

One of the important points here is that there are no "pure commands." Even assignments produce a value (although the value has the trivial unit type).

To begin to see how this works, let's look at the conditional expression.
```

<kenai 229>cat -b x.m7
1 if 1<2 then
2 1
3 else
4 1.3
<kenai 230>ocam1c -c x.m7
File "x.ml", line 4, characters 3-6:
This expression has type float but is here used with type int

```

This error message seems rather cryptic: it says that there is a type error on line 4, characters 3-6 (the expression 1.3). The conditional expression evaluates the test. If the test is true, it evaluates the first branch. Otherwise, it evaluates the second branch. In general, the compiler doesn't try to figure out the value of the test during type checking. Instead, it requires that both branches of the conditional have the same type (so that the value will have the same type no matter how the test turns out). Since the expressions 1 and 1.3 have different types, the type checker generates an error.

One other issue: the e1se branch is not required in a conditional. If it is omitted, the conditional is treated as if the e1se case returns the () value. The following code has a type error.
```

<kenai 236>cat -b y.m7
1 if 1< 2 then
2 1
<kenai 237>ocam1c -c y.m1
File "y.m7", line 2, characters 3-4:
This expression has type int but is here used with type unit

```

In this case, the expression 1 is flagged as a type error, because it does not have the same type as the omitted else branch.

\subsection*{2.4 Comment convention}

In OCaml, comments are enclosed in matching (* and *) pairs. Comments may be nested, and the comment is treated as white space.

\section*{Chapter 3}

\section*{Variables and Functions}

So far, we have only considered simple expressions not involving variables. In ML, variables are names for values. In a purely functional setting, it is not possible to tell the difference between a variable and the value it stands for.

Variable bindings are introduced with the 1et keyword. The syntax of a simple top-level declaration is as follows.
\[
\text { 1et name }=\text { expr }
\]

For example, the following code defines two variables \(x\) and \(y\) and adds them together to get a value for \(z\).
```


1et x = 1;;

val x : int = 1

1et y = 2;;

val y : int = 2

let z = x + y;;

val z : int = 3

```

Definitions using let can also be nested using the in form.
\[
\text { 1et name }=\text { expr1 in expr2 }
\]

The expression expr2 is called the body of the 1et. The variable name is defined as the value of expr1 within the body. If there is only one definition for name, the variable name is defined only in the body expr 2 and not expr1 (or anywhere else).

Lets with a body are expressions; the value of a let expression is the value of the body.
```


let x = 1 in

 1et y = 2 in
 x + y;;
 - : int = 3

let z =

 1et x = 1 in
 1et y = 2 in
 x + y;;
 va1 z : int = 3

```

Binding is static (lexical scoping): if there is more than one definition for a variable, the value of the variable is defined by the most recent let definition for the variable. The variable is bound only in the body of the let; or, for toplevel definitions, the rest of the file.
```


let x = 1 in

 1et x = 2 in
 let y = x + x in
 x + y;;
 _ : int = 6

```

What is the value of \(z\) in the following definition?
```


1et x = 1;;

va1 x : int = 1

let z =

 1et x = 2 in
 1et x = x + x in
 x + x;;
 va1 z : int = 8

x;;

- : int = 1

```

\subsection*{3.1 Functions}

Functions are defined with the fun keyword. The fun is followed by a sequence of variables that name the arguments, the -> separator, and then the body of the function. By default, functions are not named. In ML, functions are values like any other. They may be constructed, passed as arguments, and applied to arguments. Like any other value, they may be named by using a 1 et.
```


let incr = fun i -> i + 1;;

va1 incr : int -> int = <fun>

```

Note the type int -> int for the function. The -> is for a function type. The type before the arrow is the type of the function's argument, and the type after the arrow is the type of the result. The incr function takes an integer argument, and returns an integer.

The syntax for function application (function call) is concatenation: the function is followed by its arguments. The precedence of function aplication is higher than most operators. Parentheses are needed for arguments that are not simple expressions.
```


incr 2;;

- : int = 3

incr 2 * 3;;

- : int = 9

incr (2 * 3);;

- : int = 7

```

Functions may also be defined with multiple arguments. For example, a function to compute the sum of two integers can be defined as follows.
```


let sum = fun i j -> i + j;;

val sum : int -> int -> int = <fun>

sum 3 4;;

- : int = 7

```

Note the type for sum: int -> int -> int. The arrow associates to the right, so this could also be written int-> (int -> int). That is, sum is a function that takes a single integer argument, and returns a function that takes another integer argument and returns an integer. Strictly speaking, all functions in ML take a single argument; multiple-argument functions are implemented as nested functions (this is called "Currying", after Haskell Curry, a famous logician who had a significant impact on the design and interpretation of programming languages). The definition of sum above is equivalent to the following explicitly-curried definition.
```


let sum = (fun i -> (fun j -> i + j));;

val sum : int -> int -> int = <fun>

```

The application of sum to only one argument is called a "partial application."
```


let incr = sum 1;;

val incr : int -> int = <fun>

incr 5;;

- : int = 6

```

Since named functions are so common, OCaml provides an alternate syntax for functions using a let definition. The formal parameters of the function are listed after to the function name, before the equality symbol.
```


let sum i j =

 i + j;;
 val sum : int -> int -> int = <fun>

```

\subsection*{3.1.1 Scoping and nested functions}

Functions may be arbitrarily nested. They may also be defined and passed as arguments. The rule for scoping uses static binding: the value of a variable is determined by the code in which a function is defined-not by the code in which a function is evaluated. For example, another way to define sum is as follows.
```


let sum i =

 1et sum2 j =
 i + j
 in
 sum2;;
 val sum : int -> int -> int = <fun>

sum 3 4;;

- : int = 7

```

To illustrate the scoping rules, let's consider the following definition.
```


1et i = 5;;

va1 i : int = 5

let addi j =

 i + j;;
 va1 addi : int -> int = <fun>

let i = 7;;

va1 i : int = 7

addi 3;;

_ : val = 8

```

In the addi function, the value of \(i\) is defined by the previous definition of \(i\) as 5 . The second definition of \(i\) has no effect on the definition for addi, and the application of addi to the argument 3 results in \(3+5=8\).

\subsection*{3.1.2 Recursive functions}

Suppose we want to define a recursive function: that is, a function that is used in its own function body. In functional languages, recursion is used to express repetition and looping. For example, the "power" function that computes \(x^{i}\) would be defined as follows.
```


let rec power i x =

 if i = 0 then
    ```
```

 1.0
 else
 x *. (power (i - 1) x);;
 val power : int -> float -> float = <fun>

power 5 2.0;;

- : float = 32

```

Note the use of the rec modifier after the let keyword. Normally, the function is not defined in its own body. The following definition is very different.
```


let power_broken i x =

 (float_of_int i) +. x;;
 val power_broken : int -> float -> float = <fun>

let power_broken i x =

 if i = 0 then
 1.0
 else
 x *. (power_broken (i - 1) x);;
 val power_broken : int -> float -> float = <fun>

power_broken 5 2.0;;

- : float = 12

```

Mutually recursive definitions (functions that call one another) can be defined using the and keyword to connect several let definitions.
```


let rec f i j =

 if i = 0 then
 j
 else
 g (j - 1)
 and g j =
 if j mod 3 = 0 then
 j
 else
 f (j - 1) j;;
 val f : int -> int -> int = <fun>
val g : int -> int = <fun>

g 5;;

- : int = 3

```

\subsection*{3.1.3 Higher order functions}

Let's consider a definition where a function is passed as an argument, and another function is returned. Given an arbitrary function \(f\) on the real numbers, a numerical derivative is defined approximately as follows.
```

\# 1et dx = 1e-10; ;
val dx : float = 1e-10
\# let deriv $f=$
(fun $x->(f(x+. d x)-. f x) / . d x) ;$;
val deriv : (float $->$ float) -> float -> float $=$ <fun>

```

Remember, the arrow associates to the right, so another way to write the type is (float -> float) -> (float -> float). That is, the derivative is a function that takes a function as an argument, and returns a function.

Let's apply this to the power function defined above, partially applied to the argument 3.
```


let f = power 3;;

val f : float -> float = <fun>

f 10.0;;

- : float = 1000

let f' = deriv f;;

va1 f' : float -> float = <fun>

f' 10.0;;

_ : float = 300.000237985

f, 5.0;;

_ : float = 75.0000594962

f' 1.0;;

- : float = 3.00000024822

```

As we would expect, the derivative of \(x^{3}\) is approximately \(3 x^{2}\). To get the second derivative, we apply the deriv function to \(f\) '.
```


let f', = deriv f';;

val f', : float -> float = <fun>

f', 0.0;;

- : float = 6e-10

f', 1.0;;

- : float = 0

f', 10.0;;

- : float = 0

```

The second derivative, which we would expect to be \(6 x\), is way off! Ok , there are some numerical errors here. Don't expect functional programming to solve all your problems.
```


let g x = 3.0 %. x *. x;;

val g : float -> float = <fun>

let g' = deriv g;;

val g' : float -> float = <fun>

g' 1.0;;

_ : float = 6.00000049644

g' 10.0;;

- : float = 59.9999339101

```

\subsection*{3.2 Variable names}

As you may have noticed in the previous section, the ' character is a valid character in a variable name. In general, a variable name may contain letters (lower and upper case), digits, and the ' and _ characters. but it must begin with a lowercase letter or the underscore character, and it may not the the - all by itself.

In OCaml, sequences of characters from the infix operators, like \(+,-, *, /, \ldots\) are also valid names. The normal prefix version is obtained by enclosing them in parentheses. For example, the following code is a proper entry for the Obfuscated ML contest. Don't use this code in class.
```


1et (+) = (*)

 and (-) = (+)
 and (*) = (/)
 and (/) = (-);;
 val + : int -> int -> int = <fun>
val - : int -> int -> int = <fun>
val * : int -> int -> int = <fun>
val / : int -> int -> int = <fun>

5 + 4 / 1;;

- : int = 15

```

Note that the * operator requires space within the parenthesis. This is because of comment conventions: comments start with (* and end with *).

The redefinition of infix operators may make sense in some contexts. For example, a program module that defines arithmetic over complex numbers may wish to redefine the arithmetic operators. It is also sensible to add new infix operators. For example, we may wish to have an infix operator for the power construction.
```


let (**) x i = power i x;;

val ** : float -> int -> float = <fun>

10.0 ** 5;;

- : float = 100000

```

\section*{Chapter 4}

\section*{Basic Pattern Matching}

One of the more powerful features of ML is that it uses pattern matching to define functions by case analysis. Pattern matching is performed by the match expression, which has the following general form.
```

match expr with
patt}\mp@subsup{|}{1 -> expr}{1
| patt 2 -> expr 2
\vdots
| patt n -> expr}

```

A pattern is an expression made of constants and variables. When the pattern matches with an argument, the variables are bound to the corresponding values in the argument.

For example, Fibonacci numbers can be defined succinctly using pattern matching. Fibonacci numbers are defined inductively: fib \(0=0\), fib \(1=1\), and for all other natural numbers \(i\), fib \(i=\mathrm{fib}(i-1)+\mathrm{fib}(i-2)\).
```


let rec fib i =

 match i with
 0 -> 0
 | 1 -> 1
 | j -> fib (j - 2) + fib (j - 1);;
 val fib : int -> int = <fun>

fib 1;;

- : int = 1

fib 2;;

_ : int = 1

fib 3;;

- : int = 2

```
```


fib 6;;

```
- : int = 8

In this code, the argument \(i\) is compared against the constants 0 and 1 . If either of these cases match, the return value is \(i\). The final pattern is the variable \(j\), which matches any argument. When this pattern is reached, \(j\) takes on the value of the argument, and the body fib (j - 2) + fib (j - 1) computes the returned value.

Note that the variables in a pattern are binding occurrences unrelated to any previous definition of the variable. For example, the following code produces a result you might not expect. The first case matches all expressions, returning the value matched. The toploop issues warning for the second and third cases.
```


let zero = 0;;

let one = 1;;

let rec fib i =

 match i with
 zero -> zero
 | one -> one
 | j -> fib (j - 2) + fib (j - 1);;
 Warning: this match case is unused.
Warning: this match case is unused.
val fib : int -> int = <fun>

fib 1;;

- : int = 1

fib 10;;

- : int = 10

fib 2002;;

- : int = 2002

```

The general form of matching, where the function body is a match expression applied to the function argument, is quite common in ML programs. OCaml defines an equivalent syntactic form to handle this case, using the function keyword (instead of fun). A function definition is like a fun, where a single argument is used in a pattern match. The fib definition using function is as follows.
```


let rec fib = function

 0 -> 0
 | 1 -> 1
 | i -> fib (i - 1) + fib (i - 2);;
 val fib : int -> int = <fun>

fib 1;;

- : int = 1

fib 6;;

- : int = 8

```

Patterns can also be used with values having the other basic types, like characters, strings, and Boolean values. In addition, multiple patterns without variables can be used for a single body. For example, one way to check for capital letters is with the following function definition.
```


let is_uppercase = function

 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H'
 | 'I' | 'J' | 'K' | 'L' | 'M' | 'N' | 'O' | 'P'
 | 'Q' | 'R' | 'S' | 'T' | 'U' | 'V' | 'W' | 'X'
 | 'Y' | 'Z' ->
 true
 | c ->
 false;;
 val is_uppercase : char -> bool = <fun>

is_uppercase 'M';;

- : bool = true

is_uppercase 'm';;

- : bool = false

```

It is rather tedious to specify all the letters one at a time. OCaml also allows pattern ranges \(c_{1} . . c_{2}\), where \(c_{1}\) and \(c_{2}\) are character constants.
```


let is_uppercase = function

 'A' .. 'Z' -> true
 | c -> false;;
 val is_uppercase : char -> bool = <fun>

is_uppercase 'M';;

- : bool = true

is_uppercase 'm';;

_ : bool = false

```

Note that the pattern variable \(c\) in these functions acts as a "wildcard" pattern to handle all non-uppercase characters. The variable itself is not used in the body false. This is another commonly occurring structure, and OCaml provides a special pattern for cases like these. The _ pattern (a single underscore character) is a wildcard pattern that matches anything. It is not a variable (so it can't be used in an expression). The is_uppercase function would normally be written this way.
```


let is_uppercase = function

 'A' .. 'Z' -> true
 | _ -> false;;
 val is_uppercase : char -> bool = <fun>

is_uppercase 'M';;

- : bool = true

is_uppercase 'm';;

- : bool = false

```

\subsection*{4.1 Incomplete matches}

You might wonder about what happens if all the cases are not considered. For example, what happens if we leave off the default case in the is_uppercase function?
```


let is_uppercase = function

 'A' .. 'Z' -> true;;
 Characters 19-49:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
'a'
va1 is_uppercase : char -> bool = <fun>

```

The OCaml compiler and toploop are verbose about inexhaustive patterns. They warn when the pattern match is inexhaustive, and even suggest a case that is not matched. An inexhaustive set of patterns is usually an error-what would happen if we applied the is_uppercase function to a non-uppercase character?
```


is_uppercase 'M';;

- : bool = true

is_uppercase 'm';;

Uncaught exception: Match_failure("", 19, 49)

```

Again, OCaml is fairly strict. In the case where the pattern does not match, it raises an exception (we'll see more about exceptions in Chapter 7 . In this case, the exception means that an error occurred during evaluation (a pattern matching failure).

A word to the wise, heed the compiler warnings! The compiler generates warnings for possible program errors. As you build and modify a program, these warnings will help you find places in the program text that need work. In some cases, you may be tempted to ignore the compiler. For example, in the following function, we know that a complete match is not needed if the is_odd function is always applied to nonnegative numbers.
```


let is_odd i =

 match i mod 2 with
 0 -> false
 | 1 -> true;;
 Characters 18-69:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
2
val is_odd : int -> bool = <fun>

is_odd 3;;

- : bool = true

```
```


is_odd 12;;

- : bool = false

```

However, do not ignore the warning! If you do, you will find that you begin to ignore all the compiler warnings-both real and bogus. Eventually, you will overlook real problems, and your program will become hard to maintain. For now, you should add the default case that raises an exception manually. The Invalid_argument exception is designed for this purpose. It takes a string argument that identifies the name of the place where the failure occurred. You can generate an exception with the raise construction.
```


let is_odd i =

 match i mod 2 with
 0 -> false
 | 1 -> true
 | _ -> raise (Invalid_argument "is_odd");;
 va1 is_odd : int -> bool = <fun>

is_odd 3;;

- : bool = true

is_odd (-1);;

Uncaught exception: Invalid_argument("is_odd")

```

\subsection*{4.2 Patterns are everywhere}

It may not be obvious at this point, but patterns are used in all the binding mechanisms, including the 1et and fun constructions. The general forms are as follows.
```

1et patt = expr
1et name patt ... patt = expr
fun patt -> expr

```

These aren't much use with constants because the pattern match will always be inexhaustive (except for the () pattern). However, they will be handy when we introduce tuples and records in the next chapter.
```


let is_one = fun 1 -> true;;

Characters 13-26:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
O
va1 is_one : int -> bool = <fun>

let is_one 1 = true;;

Characters 11-19:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:

```
```

0
val is_one : int -> bool = <fun>

is_one 1;;

- : bool = true

is_one 2;;

Uncaught exception: Match_failure("", 11, 19)

let is_unit () = true;;

val is_unit : unit -> bool = <fun>

is_unit ();;

- : bool = true

```

\section*{Chapter 5}

\section*{Tuples, Lists, and Polymorphism}

In the chapters leading up to this one, we have seen simple expressions involving numbers, characters, strings, functions and variables. This language is already Turing complete-we can code arbitrary data types using numbers and functions. Of course, in practice, this would not only be inefficient, it would also make it very hard to understand our programs. For efficient, and readable, data structure implementations we need aggregate types.

OCaml provides a rich set of aggregate types, including tuples, lists, disjoint unions (also called tagged unions, or variant records), records, and arrays. In this chapter, we'll look at the simplest part: tuples and lists. We'll discuss unions in Chapter 6, and we'll leave the remaining types for Chapter 8, when we introduce side-effects.

\subsection*{5.1 Polymorphism}

At this point, it is also appropriate to introduce polymorphism. The ML languages provide parametric polymorphism. That is, types may be parameterized by type variables. For example, the identity function in ML can be expressed with a single function.
```


let identity x = x;;

val identity : 'a -> 'a = <fun>

identity 1;;

- : int = 1

identity "Hello";;

- : string = "He11o"

```

Type variables are lowercase identifiers preceded by a single quote ('). A type variable represents an arbitrary type. The typing identity : 'a -> 'a says that the identity function takes an argument of some arbitrary type 'a and returns a value of the same type 'a. If the identity function is applied to an int, then it returns an int; if it is applied to a string, then it returns a string. The identity function can even be applied to function arguments.
```


let succ i = i + 1;;

val succ : int -> int = <fun>

identity succ;;

- : int -> int = <fun>

(identity succ) 2;;

- : int = 3

```

In this case, the (identity succ) expression returns the succ function itself, which can be applied to 2 to return 3 .

\subsection*{5.1.1 Value restriction}

What happens if we apply the identity to a polymorphic function type?
```


let identity' = identity identity;;

va1 identity' : '_a -> '_a = <fun>

identity' 1;;

- : int = 1

identity';;

- : int -> int = <fun>

identity' "He11o";;

Characters 10-17:
This expression has type string
but is here used with type int

```

This doesn't quite work as we expect. Note the type assignment identity' : '_a -> '_a. The type variables '_a are now preceded by an underscore. These type variables specify that the identity' function takes an argument of some type, and returns a value of the same type. This is a form of delayed polymorphism. When we apply the identity' function to a number, the type '_a is assigned to be int; the identity' function can no longer be applied to a string.

This behavior is due to the value restriction: for an expression to be truly polymorphic, it must be a value. Values are immutable expressions that evaluate to themselves. For example, numbers and characters are values. Functions are also values. Function applications, like identity identity are not values, because they can be simplified (the identity identity expression evaluates to identity).

The normal way to get around the value restriction is to use etaexpansion, which is the technical term for adding extra arguments to the function. We know that identity' is a function; we can add its argument explicitly.
```


let identity' x = (identity identity) x;;

va1 identity' : 'a -> 'a = <fun>

identity' 1;;

- : int = 1

identity' "He1lo";;

- : string = "Hello"

```

The new version of identity' computes the same value, but now it is properly polymorphic. Why does OCaml have this restriction? It probably seems silly, but the value restriction is a simple way to maintain correct typing in the presence of side-effects; it would not be necessary in a purely functional language. We'll revisit this in Chapter 8 .

\subsection*{5.1.2 Comparison with other languages}

Polymorphism can be a powerful tool. In ML, a single identity function can be defined that works on all types. In a non-polymorphic language like C, a separate identity function would have to be defined for each type.
```

int int_identity(int i)
{
return i;
}
struct complex { float real; float imag; };
struct complex complex_identity(struct complex x)
{
return x;
}

```

Another kind of polymorphism is overloading (also called ad-hoc polymorphism). Overloading allows several functions to have the same name but different types. When that function is applied, the compiler selects the appropriate function by checking the type of the arguments. For example, in Java we could define a class that includes several definitions of addition for different types (note that the + operator is already overloaded).
```

class Adder {
static int Add(int i, int j) {
return i + j;
}

```
```

static float Add(float x, float y) {
return x + y;
}
static String Add(String s1, String s2) {
return s1.concat(s2);
}

```
\}

The expression \(\operatorname{Adder} . \operatorname{Add}(5,7)\) would evaluate to 12 , while the expression Adder.Add("He11o ", "wor1d") would evaluate to the string "Hello world".

OCaml does not provide overloading. There are probably two main reasons. One is technical: it is hard to provide both type inference and overloading at the same time. For example, suppose the + function were overloaded to work both on integers and floating-point values. What would be the type of the following add function? Would it be int -> int -> int, or float -> float -> float?
```

1et add x y =
x + y;;

```

The best solution would probably to have the compiler produce two instances of the add function, one for integers and another for floating point values. This complicates the compiler, and with a sufficiently rich type system, type inference would become undecidable. That would be a problem.

The second reason for the omission is that overloading can make it more difficult to understand programs. It may not be obvious by looking at the program text which one of a function's instances is being called, and there is no way for a compiler to check if all the function's instances do "similar" things \({ }^{17}\).

\subsection*{5.2 Tuples}

Tuples are the simplest aggregate type. They correspond to the ordered tuples you have seen in mathematics, or set theory. A tuple is a collection of values of arbitrary types. The syntax for a tuple is a sequence of expressions separated by commas. For example, the following tuple is a pair containing a number and a string.
```


1et p = 1, "Hel1o";;

val p : int * string = 1, "Hello"

```

\footnotetext{
\({ }^{1}\) The second reason is weaker. Properly used, overloading reduces namespace clutter by grouping similar functions under the same name. True, overloading is grounds for obfuscation, but OCaml is already ripe for obfuscation by allowing arithmetic functions like + to be redefined!
}

The syntax for the type of a tuple is a * delimited list of the types of the components. In this case, the type of the pair is int * string.

Tuples can be deconstructed using pattern matching, with any of the pattern matching constructs like let, match, fun, or function. For example, to recover the parts of the pair in the variables \(x\) and \(y\), we might use a let form.
```


let x, y = p;;

val x : int = 1
va1 y : string = "He11o"

```

The built-in functions fst and snd return the components of a pair, defined as follows.
```


let fst (x, _) = x;;

val fst : 'a * 'b -> 'a = <fun>

let snd (_, y) = y;;

va1 snd : 'a * 'b -> 'b = <fun>

fst p;;

- : int = 1

snd p;;

_ : string = "Hello"

```

Tuple patterns in a function argument must be enclosed in parentheses. Note that these functions are polymorphic. The fst and snd functions can be applied to a pair of any type 'a * 'b; fst returns a value of type 'a, and snd returns a value of type 'b.

There are no similar built-in functions for tuples with more than two elements, but they can be defined.
```


1et t = 1, "He11o", 2.7;;

val t : int * string * float = 1, "He11o", 2.7

let fst3 (x, _, _) = x;;

va1 fst3 : 'a * 'b * 'c -> 'a = <fun>

fst3 t;;

- : int = 1

```

Note also that the pattern assignment is simultaneous. The following expression swaps the values of \(x\) and \(y\).
```


let x = 1;;

val x : int = 1

let y = "Hello";;

val y : string = "Hello"

let x, y = y, x;;

val x : string = "He1lo"
val y : int = 1

```

Since the components of a tuple are unnamed, tuples are most appropriate if they have a small number of well-defined components. For example, tuples would be an appropriate way of defining Cartesian coordinates.
```


let make_coord x y = x, y;;

val make_coord : 'a -> 'b -> 'a * 'b = <fun>

let x_of_coord = fst;;

va1 x_of_coord : 'a * 'b -> 'a = <fun>

let y_of_coord = snd;;

val y_of_coord : 'a * 'b -> 'b = <fun>

```

However, it would be awkward to use tuples for defining database entries, like the following. For that purpose, records would be more appropriate. Records are defined in Chapter 8 .
```


(* Name, Height, Phone, Salary *)

 let jason = ("Jason", 6.25, "626-395-6568", 50.0);;
 val jason : string * float * string * float =

let name_of_entry (name, _, _, _) = name;;

val name_of_entry : 'a * 'b * 'c * 'd -> 'a = <fun>
"Jason", 6.25, "626-395-6568", 50

name_of_entry jason;;

- : string = "Jason"

```

\subsection*{5.3 Lists}

Lists are also used extensively in OCaml programs. A list contains a sequence of values of the same type. There are two constructors: the [] expression is the empty list, and the \(e_{1}:: e_{2}\) expression is the cons of expression \(e_{1}\) onto the list \(e_{2}\).
```


1et 1 = "He11o" :: 'World" :: [];;

val 1 : string list = ["Hello"; "World"]

```

The bracket syntax \(\left[e_{1} ; \ldots ; e_{n}\right]\) is an alternate syntax for the list containing the values computed by \(e_{1}, \ldots, e_{n}\).

The syntax for the type of a list with elements of type \(t\) is \(t\) list. The list type is a of a parameterized type. An int list is a list containing integers, a string list is a list containing strings, and an 'a list is a list containing elements of some type 'a (but all the elements have to have the same type).

Lists can be deconstructed using pattern matching. For example, here is a function that adds up all the numbers in an int list.
```


let rec sum = function

 [] -> 0
    ```
```

 | i :: 1 -> i + sum 1;;
 val sum : int list -> int = <fun>

sum [1; 2; 3; 4];;

- : int = 10

```

These functions can also be polymorphic. The function to check if a value \(x\) is in a list 1 could be defined as follows.
```


let rec mem x 1 =

 match 1 with
 [] -> false
 | y :: 1 -> x = y || mem x 1;;
 val mem : 'a -> 'a list -> bool = <fun>

mem 5 [1; 7; 3];;

_ : bool = false

mem "do" ["I’m"; "afraid"; "I"; "can't";

 "do"; "that"; "Dave"];;
 - : bool = true

```

This function takes an argument of any type ' \(a\), and checks if the element is in the 'a list.

The standard map function, List.map, can be defined as follows.
```


let rec map f = function

 [] -> []
 | x :: 1 -> f x :: map f 1;;
 va1 map : ('a -> 'b) -> 'a list -> 'b list = <fun>

map succ [1; 2; 3; 4];;

- : int list = [2; 3; 4; 5]

```

The map function takes a function of type ' \(a->\) ' \(b\) (this argument function takes a value of type 'a and returns a value of type ' \(b\) ), and a list containing elements of type 'a. It returns a 'b 1ist. Equivalently,
\[
\operatorname{map} f\left[v_{1} ; \ldots ; v_{n}\right]=\left[f \quad v_{1} ; \ldots ; f v_{n}\right] .
\]

Lists are commonly used to represent sets of values or key-value relationships. The List library contains many list functions. The List. assoc function returns the value for a key in a list.
```


let entry =

 [("name", "Jason");
 ("height", "6' 3',");
 ("phone", "626-395-6568");
 ("salary", "$50")];;
 val entry : (string * string) list =
["name", "Jason"; "height", "6' 3',";

```
"phone", "626-345-9692"; "salary", "\$50"]
\# List.assoc "phone" entry;;
- : string = "626-395-6568"

Note that the comma separates the elements of the pairs in the list, and the semicolon separates the items of the list.

\section*{Chapter 6}

\section*{Unions}

Disjoint unions, also called tagged unions or variant records, are ubiquitous in OCaml programs. A disjoint union represents a set of cases of a particular type. For example, we may say that a binary tree contains nodes that are either interior nodes or leaves. Suppose that the interior nodes have a label of type 'a. In OCaml, this would be expressed as a type definition using the type keyword. The type is recursively defined, and it contains a type parameter 'a for the type of elements.
```


type 'a btree =

 Node of 'a * 'a btree * 'a btree
 | Leaf;;
 type 'a btree = | Node of 'a * 'a btree * 'a btree | Leaf

```

The name of the type is btree, and the type parameterization uses prefix notation 'a btree. The cases are separated by a vertical dash (the । character). Each case has a name and an optional set of values. The name must begin with an uppercase letter. In this case, the type of the definition is 'a btree, and the interior node Node has three values: a label of type 'a, a left child of type 'a btree, and a right child of type 'a btree.

The names (like Node and Leaf) are called constructors. Constructors can be viewed as functions that inject values into the disjoint union. Thus, the Node constructor would be a function of type ('a * 'a btree * 'a btree) -> 'a btree. For technical reasons, OCaml does not allow constructors with arguments to be used as values.
```


Leaf;;

_ : 'a btree = Leaf

Node (1, Leaf, Leaf);;

_ : int btree = Node (1, Leaf, Leaf)

Node;;

```

The constructor Node expects 3 argument (s), but is here applied to 0 argument(s)

A value with a union type is a value having one of the cases. The value can be recovered through pattern matching. For example, a function that counts the number of interior nodes in a value of type 'a btree would be defined as follows.
```


let rec cardinality = function

 Leaf -> 0
 | Node (_, left, right) ->
 cardinality left + cardinality right + 1;;
 val cardinality : 'a btree -> int = <fun>

cardinality (Node (1, Node (2, Leaf, Leaf), Leaf));;

- : int = 2

```

\subsection*{6.1 Unbalanced binary trees}

To see how this works, lets build a simple data structure for unbalanced binary trees that represent sets of values of type 'a.

The empty set is just a Leaf. To add an element to a set s, we create a new Node with a Leaf as a left-child, and \(s\) as the right child.
```


let empty = Leaf;;

va1 empty : 'a btree = Leaf

let insert x s = Node (x, Leaf, s);;

val insert : 'a -> 'a btree -> 'a btree = <fun>

let rec set_of_list = function

 [] -> empty
 | x :: 1 -> insert x (set_of_list 1);;
 val set_of_list : 'a list -> 'a btree = <fun>

let s = set_of_list [3; 5; 7; 11; 13];;

val s : int btree =
Node
(3, Leaf,
Node (5, Leaf,
Node (7, Leaf,
Node (11, Leaf, Node (13, Leaf, Leaf)))))

```

The membership function is defined by induction on the tree: an element \(x\) is a member of a tree iff the tree is a Node and \(x\) is the label, or \(x\) is in the left or right subtrees.
```


let rec mem x = function

 Leaf -> false
 | Node (y, left, right) ->
    ```
```

 x = y || mem x left || mem x right;;
 va1 mem : 'a -> 'a btree -> bool = <fun>

mem 11 s;;

- : bool = true

mem 12 s;;

_ : bool = false

```

\subsection*{6.2 Unbalanced, ordered, binary trees}

One problem with the unbalanced tree is that the complexity of the membership operation is \(O(n)\), where \(n\) is cardinality of the set. We can improve this slightly by ordering the nodes in the tree. The invariant we maintain is the following: for any interior node Node (x, 1eft, right), all the labels in the left child are smaller than \(x\), and all the labels in the right child are larger than \(x\). To maintain this invariant, we need to modify the insertion function.
```


let rec insert x = function

 Leaf -> Node (x, Leaf, Leaf)
 | Node (y, left, right) ->
 if x < y then
 Node (y, insert x left, right)
 else if x > y then
 Node (y, left, insert x right)
 else
 Node (y, left, right);;
 val insert : 'a -> 'a btree -> 'a btree = <fun>

let rec set_of_list = function

 [] -> empty
 | x :: 1 -> insert x (set_of_list 1);;
 val set_of_list : 'a list -> 'a btree = <fun>

let s = set_of_1ist [7; 5; 9; 11; 3];;

val s : int btree =
Node
(3, Leaf,
Node (11,
Node (9,
Node (5, Leaf, Node (7, Leaf, Leaf)), Leaf), Leaf))

```

Note that this insertion function does not build balanced trees. If elements are inserted in order, the tree will be maximally unbalanced, with all the elements inserted along the right branch.

For the membership function, we can take advantage of the set ordering during the search.
```


let rec mem x = function

```
```

 Leaf -> false
 | Node (y, left, right) ->
 if x < y then
 mem x left
 else if x > y then
 mem x right
 else (* x = y *)
 true;;
 va1 mem : 'a -> 'a btree -> bool = <fun>

mem 5 s;;

- : bool = true

mem 9 s;;

- : bool = true

mem 12 s;;

- : bool = false

```

The complexity of this membership function is \(O(l)\) where \(l\) is the maximal depth of the tree. Since the insert function does not guarantee balancing, the complexity is still \(O(n)\), worst case.

\subsection*{6.3 Balanced red-black trees}

For a more advanced example of pattern matching on unions, consider the implementation of balanced trees as red-black trees. This section may be skipped by the reader who is already familiar with advanced pattern matching.

We'll use a functional implementation of red-black trees due to Chris Okasaki [5]. Red-black trees add a label, either Red or B7ack to each of the interior nodes. Several new invariants are maintained.
1. Every leaf is colored black.
2. All children of every red node are black.
3. Every path from the root to a leaf has the same number of black nodes as every other path.
4. The root is always black.

These invariants guarantee the balancing. Since all the children of a red node are black, and each path from the root to a leaf has the same number of black nodes, the longest path is at most twice as long as the shortest path.

The type definitions are similar to the unbalanced binary tree; we just need to add a red/black label.
```

type color =
Red
| B7ack
type 'a btree =
Node of color * 'a btree * 'a * 'a btree
| Leaf

```

The membership function also has to be redefined for the new type.
```

let rec mem x = function
Leaf -> false
| Node (_, a, y, b) ->
if x < y then mem x a
else if x > y then mem x b
else true

```

The insert function must maintain the invariants during insertion. This can be done in two parts. First find the location where the node is to be inserted. If possible, add the new node with a Red label because this would preserve invariant 3. This may, however, violate invariant 2 because the new Red node may have a Red parent. If this happens, the balance function migrates the Red label upward in the tree.
```


let balance = function

 Black, Node (Red, Node (Red, a, x, b), y, c), z, d ->
 Node (Red, Node (Black, a, x, b), y, Node (Black, c, z, d))
 | Black, Node (Red, a, x, Node (Red, b, y, c)), z, d ->
 Node (Red, Node (Black, a, x, b), y, Node (Black, c, z, d))
 | Black, a, x, Node (Red, Node (Red, b, y, c), z, d) ->
 Node (Red, Node (Black, a, x, b), y, Node (Black, c, z, d))
 | Black, a, x, Node (Red, b, y, Node (Red, c, z, d)) ->
 Node (Red, Node (Black, a, x, b), y, Node (Black, c, z, d))
 | a, b, c, d ->
 Node (a, b, c, d)
 1et insert x s =
let rec ins = function
Leaf -> Node (Red, Leaf, x, Leaf)
| Node (color, a, y, b) as s ->
if x < y then balance (color, ins a, y, b)
else if x > y then balance (color, a, y, ins b)
else s
in
match ins s with (* guaranteed to be non-empty *)
Node (_, a, y, b) -> Node (Black, a, y, b)
| Leaf -> raise (Invalid_argument "insert");;

```
```

va1 balance : color * 'a btree * 'a * 'a btree -> 'a btree = <fun>
val insert : 'a -> 'a btree -> 'a btree = <fun>

```

Note the use of nested patterns in the balance function. The balance function takes a 4-tuple, with a color, two btrees, and an element, and it splits the analysis into five cases: four of the cases are for violations of invariant 2 (nested Red nodes), and the final case is the case where the tree does not need rebalancing.

Since the longest path from the root is at most twice as long as the shortest path, the depth of the tree is \(O(\log n)\). The balance function takes constant time. This means that the insert and mem functions both take time \(O(\log n)\).
```


let empty = Leaf;;

va1 empty : 'a btree = Leaf

let rec set_of_list = function

 [] -> empty
 | x :: 1 -> insert x (set_of_1ist 1);;
 val set_of_list : 'a list -> 'a btree = <fun>

let s = set_of_1ist [3; 9; 5; 7; 11];;

val s : int btree =
Node
(Black, Node (Black, Node (Red, Leaf, 3, Leaf), 5, Leaf), 7,
Node (Black, Node (Red, Leaf, 9, Leaf), 11, Leaf))

mem 5 s;;

- : bool = true

mem 6 s;;

- : bool = false

```

\subsection*{6.4 Some common built-in unions}

A few of the types we have already seen are defined as unions. The builtin Boolean type is defined as a union (the true and false keywords are treated as capitalized identifiers).
```


type bool =

 true
 | false
 type bool = | true | false

```

The list type is similar: once again, the compiler treats the [] and : : identifiers as capitalized identifiers 1 .

\footnotetext{
\({ }^{1}\) At the time of writing using OCaml 2.04, this definition was accepted literally. In OCaml 3.04 this usage is deprecated, and the [] produces a syntax error.
}
```


type 'a list = [] | :: of 'a * 'a list;;

type 'a list = | [] | :: of 'a * 'a list

```

Although it is periodically suggested on the OCaml mailing list, OCaml does not have a NIL value that can be assigned to a variable of any type. Instead, the built-in 'a option type is used in this case.
```


type 'a option =

 None
 | Some of 'a;;
 type 'a option = | None | Some of 'a

```

The None case is intended to represent a NIL value, while the Some case handles non-default values.

\section*{Chapter 7}

\section*{Exceptions}

Exceptions are used in OCaml as a control mechanism, either to signal errors, or to control the flow of execution. When an exception is raised, the current execution is aborted, and control is thrown to the most recently entered active exception handler, which may choose to handle the exception, or pass it through to the next exception handler.

Exceptions were designed as a more elegant alternative to explicit error handling in more traditional languages. In Unix/C, for example, most system calls return -1 on failure, and 0 on success. System code tends to be cluttered with explicit error handling code that obscures the intended operation of the code. In the OCaml Unix module, the system call stubs raise an exception on failure, allowing the use of a single error handler for a block of code. In some ways, this is like the setjmp/longjmp interface in C, but OCaml exceptions are safe.

To see how this works, consider the List. assoc function, which is defined as follows.
```


let rec assoc key = function

 (k, v) :: 1 ->
 if k = key then
 v
 else
 assoc key 1
 | [] ->
 raise Not_found;;
 val assoc : 'a -> ('a * 'b) list -> 'b = <fun>

let 1 = [1, "Hello"; 2, "World"];;

va1 1 : (int * string) list = [1, "He1lo"; 2, "World"]

assoc 2 1;;

- : string = "World"

```
```


assoc 3 1;;

Uncaught exception: Not_found

"Hello" ^ assoc 2 1;;

- : string = "HelloWorld"

"He1lo" ^ assoc 3 1;;

Uncaught exception: Not_found

```

In the first case, assoc 2 , the key is found in the list and its value is returned. In the second case, assoc 3 1, the key 3 does not exist in the list, and the exception Not_found is raised. There is no explicit exception handler, and the toploop default handler is invoked.

Exceptions are declared with the exception keyword, and their syntax has the same form as a constructor declaration in a union type. Exceptions are raised with the raise function.
```


exception Abort of int * string;;

exception Abort of int * string

raise (Abort (1, "GNU is not Unix"));;

Uncaught exception: Abort(1, "GNU is not Unix")

```

Exception handlers have the same form as a match pattern match, using the try keyword. The syntax is as follows:
```

try e with
p_1 -> e_1
| p_2 -> e_2
\vdots
| p_n -> e_n

```

First, \(e\) is evaluated. If it does not raise an exception, its value is returned as the result of the try statement. Otherwise, if an exception is raised during evaluation of \(e\), the exception is matched against the patterns \(p_{1}, \ldots, p_{n}\). If the first pattern the exception matches is \(p_{i}\), the expression \(e_{i}\) is evaluated and returned as the result. Otherwise, if no pattern matches, the exception is propagated to the next exception handler.
```


try "He1lo" ^ assoc 2 1 with

 Abort (i, s) -> s
 Not_found -> "Not_found";;
 - : string = "HelloWor1d"

try "Hello" ^ assoc 3 1 with

 Abort (i, s) -> s
 | Not_found -> "Not_found";;
 - : string = "Not_found"

try "Hello" ^ assoc 3 1 with

 Abort (i, s) -> s;;
 Uncaught exception: Not_found

```

Exceptions are also used to manage control flow. For example, consider the binary trees in the previous chapter.
```


type 'a btree =

 Node of 'a btree * 'a * 'a btree
 | Leaf;;
 type 'a btree = | Node of 'a btree * 'a * 'a btree | Leaf

```

Suppose we wish to build a replace function that replaces a value in the set. The expression replace x y s should replace value x with y in tree \(s\), or raise the exception Not_found if the value does not exist.
```


let rec replace x y = function

 Leaf -> raise Not_found
 | Node (left, z, right) ->
 let left, mod_left =
 try replace x y left, true with
 Not_found -> left, false
 in
 let right, mod_right =
 try replace x y right, true with
 Not_found -> right, false
 in
 if z = x then
 Node (left, y, right)
 else if mod_left || mod_right then
 Node (left, x, right)
 else
 raise Not_found;;
 va1 replace : 'a -> 'a -> 'a btree -> 'a btree = <fun>

```

In this function, the left and right subtrees are recursively modified. The mod_1eft and mod_right flags are set iff the corresponding branches were modified. If neither branch is modified, the Not_found exception is raised.

\section*{Chapter 8}

\section*{Records, Arrays, and Side-Effects}

In this chapter we discuss the remaining data types, all of which allow side-effects. A record can be viewed as a tuple with labeled fields. An array is a fixed-size vector of items with constant time access to each element. There are operations to modify some of the fields in a record, and any of the elements in an array.

\subsection*{8.1 Records}

A record is a labeled collection of values of arbitrary types. The syntax for a record type is a set of field type definitions surrounded by braces, and separated by semicolons. Fields are declared as 1abe1 : type, where the label is an identifier that must begin with a lowercase letter or an underscore. For example, the following record redefines the database entry from Chapter 5.2.
```


type db_entry =

 { name : string;
 height : float;
 phone : string;
 salary : float
 };;
 type db_entry = { name: string; height: float;
phone: string; salary: float }

```

The syntax for a value is similar to the type declaration, but the fields are defined as labe \(1=\) expr. Here is an example database entry.
```


let jason =

 { name = "Jason";
 height = 6.25;
 phone = "626-395-6568";
 salary = 50.0
 };;
 va1 jason : db_entry =
{name="Jason"; height=6.25;
phone="626-395-6568"; salary=50}

```

There are two ways to access the fields in a record. The projection operation \(r .1\) returns the field labeled 1 in record \(r\).
```


jason.height;;

- : float = 6.25

jason.phone;;

- : string = "626-395-6568"

```

Pattern matching can also be used to access the fields of a record. The syntax for a pattern is like a record value, but the fields contain a label and a pattern labe1 \(=\) patt. Not all of the fields have to be included. Note that the binding occurrences of the variables n and h occur to the right of the equality symbol in their fields.
```


let { name = n; height = h } = jason;;

va1 n : string = "Jason"
val h : float = 6.25

```

There is a functional update operation that produces a copy of a record with new values for the specified fields. The syntax for functional update uses the with keyword in a record definition.
```


let dave = { jason with name = "Dave"; height = 5.9 };;

val dave : db_entry =
{name="Dave"; height=5.9; phone="626-395-6568"; salary=50}

jason;;

- : db_entry = {name="Jason"; height=6.25;
phone="626-395-6568"; salary=50}

```

\subsection*{8.1.1 Imperative record updates}

Record fields can also be modified by assignment, but only if the record field is declared as mutable. The syntax for a mutable field uses the mutable keyword before the field label. For example, if we wanted to allow salaries to be modified, we would re-declare the record entry as follows.
```


type db_entry =

 { name : string;
 height : float;
 phone : string;
 mutable salary : float
 };;
 type db_entry =
{ name: string;
height: float;
phone: string;
mutable salary: float }

let jason =

 { name = "Jason";
 height = 6.25;
 phone = "626-395-6568";
 salary = 50.0
 };;
 va1 jason : db_entry =
{name="Jason"; height=6.25; phone="626-395-6568"; salary=50}

```

The syntax for a field update is r. labe 1 <- expr. For example, if we want to give jason a raise, we would use the following statement.
```


jason.salary <- 150.0;;

- : unit = ()

jason;;

- : db_entry = {name="Jason"; height=6.25;
phone="626-395-6568"; salary=150}

```

Note that the assignment statement itself returns the canonical unit value (). That is, it doesn't return a useful value, unlike the functional update. A functional update creates a completely new copy of a record; assignments to the copies will be independent.
```


let dave = { jason with name = "Dave" };;

val dave : db_entry =
{name="Dave"; height=6.25; phone="626-395-6568"; salary=150}

dave.salary <- 180.0;;

- : unit = ()

dave;;

- : db_entry = {name="Dave"; height=6.25;
phone="626-395-6568"; salary=180}

jason;;

- : db_entry = {name="Jason"; height=6.25;
phone="626-395-6568"; salary=150}

```

\subsection*{8.1.2 Field label namespace}

One important point: the namespace for toplevel record field labels is flat. This is important if you intend to declare records with the same field names. If you do, the original labels will be lost! For example, consider the following sequence.
```


type rec1 = { name : string; height : float };;

type rec1 = { name: string; height: float }

let jason = { name = "Jason"; height = 6.25 };;

va1 jason : rec1 = {name="Jason"; height=6.25}

type rec2 = { name : string; phone : string };;

type rec2 = { name: string; phone: string }

let dave = { name = "Dave"; phone = "626-395-6568" };;

va1 dave : rec2 = {name="Dave"; phone="626-395-6568"}

jason.name;;

Characters 0-5:
This expression has type rec1 but is here used with type rec2

dave.name;;

- : string = "Dave"

let bob = { name = "Bob"; height = 5.75 };;

Characters 10-41:
The label height belongs to the type rec1
but is here mixed with labels of type rec2

```

In this case, the name field was redefined. At this point, the original rec1. name label is lost, making it impossible to access the name field in a value of type rec1, and impossible to construct new values of type rec1. It is, however, permissible to use the same label names in separate files, as we will see in Chapter 11 .

\subsection*{8.2 References}

Variables are never mutable. However, reference cells are common enough in OCaml programs that a special form is defined just for this case. Reference cells are created with the ref function.
```


let i = ref 1;;

va1 i : int ref = {contents=1}

```

The built-in type 'a ref is defined using a regular record definition; the normal operations can be used on this record.
```

type 'a ref = { mutable contents : 'a }

```

Dereferencing uses the ! operator, and assignment uses the := infix operator.
```


!i;;

- : int = 1;;

i := 17;;

- : unit = ()

!i;;

- : int = 17

```

Don't get confused with the ! operator in C here. The following code can be confusing.
```


let flag = ref true;;

val flag : bool ref = {contents=true}

if !flag then 1 else 2;;

- : int = 1

```

You may be tempted to read if ! flag then ... as testing if the flag is false. This is not the case; the! operator is more like the * operator in C.

\subsection*{8.2.1 Value restriction}

As we mentioned in Section 5.1.1, mutability and side-effects interact with type inference. For example, consider a "one-shot" function that saves a value on its first call, and returns that value on all future calls. This function is not properly polymorphic because it contains a mutable field. We can illustrate this using a single variable.
```


let x = ref None;;

va1 x : '_a option ref = {contents=None}

let one_shot y =

 match !x with
 None ->
 x := Some y;
 y
 | Some z ->
 z;;
 val one_shot : ,_a -> '_a = <fun>

one_shot 1;;

- : int = 1

one_shot;;

```
```

val one_shot : int -> int = <fun>

one_shot 2;;

- : int = 1

one_shot "He11o";;

Characters 9-16:
This expression has type string but is here used with type int

```

The value restriction requires that polymorphism be restricted to values. Values include functions, constants, constructors with fields that are values, and immutable records with fields that are values. A function application is not a value, and a record with mutable fields is not a value. By this definition, the \(x\) and one_shot variables cannot be polymorphic, as the type constants , _a indicate.

\subsection*{8.3 Arrays and strings}

Arrays are fixed-size vectors of values. All of the values must have the same type. The fields in the array can be accessed and modified in constant time. Arrays can be created with the [ \(\left|e_{1} ; \ldots ; e_{n}\right|\) ] syntax, which creates an array of length \(n\) initialized with the values computed from the expressions \(e_{1}, \ldots, e_{n}\).
```


let a = [|1; 3; 5; 7|];;

val a : int array = [|1; 3; 5; 7|]

```

Fields can be accessed with the a. (i) construction. Array indices start from 0 . Arrays are bounds-checked.
```


a.(0);;

- : int = 1

a.(1);;

- : int = 3

a.(5);;

Uncaught exception: Invalid_argument("Array.get")

```

Fields are updated with the a.(i) <- e assignment statement.
```


a.(2) <- 9;;

- : unit = ()

a;;

- : int array = [l1; 3; 9; 7|]

```

The Array library module defines additional functions on arrays. Arrays of arbitrary length can be created with the Array. create function, which requires a length and initializer argument. The Array. length function returns the number of elements in the array.
```


1et a = Array.create 10 1;;

val a : int array = [|1; 1; 1; 1; 1; 1; 1; 1; 1; 1|]

Array.1ength a;;

- : int = 10

```

The Array.blit function can be used to copy elements destructively from one array to another. The b1it function requires five arguments: the source array, a starting offset into the array, the destination array, a starting offset into the destination array, and the number of elements to copy.
```


Array.blit [| 3; 4; 5; 6 |] 1 a 3 2;;

- : unit = ()

a;;

- : int array = [|1; 1; 1; 4; 5; 1; 1; 1; 1; 1|]

```

In OCaml, strings are a lot like packed arrays of characters. The access and update operations use the syntax s.[i] ands.[i] <- c.
```


let s = "Jason";;

va1 s : string = "Jason"

s.[2];;

- : char = 's'

s.[3] <- 'y';;

- : unit = ()

s;;

- : string = "Jasyn"

```

The String module defines additional functions, including the String. 1 length and String.blit functions that parallel the corresponding Array operations. The String.create function does not require an initializer. It creates a string with arbitrary contents.
```


String.create 10;;

- : string = "\000\011\000\000,\200\027@\000\000"

String.create 10;;

- : string = "\196\181\027@\001\000\000\000\000\000"

```

\subsection*{8.4 Sequential execution and looping}

Sequential execution is not useful in a functional language-why compute a value and discard it? In an imperative language, including a language like OCaml, sequential execution is used to compute by side-effect.

Sequential execution is defined using the semicolon operator. The expression \(e_{1} ; e_{2}\) evaluates \(e_{1}\), discards the result ( \(e_{1}\) probably has a sideeffect), and evaluates \(e_{2}\). Note that the semicolon is a separator (as in

Pascal), not a terminator (as in C). The compiler produces a warning if expression \(e_{1}\) does not have type unit. As usual, heed these warnings! The ignore : 'a -> unit function can be used if you really want to discard a non-unit value.

There are two kinds of loops in OCaml, a for loop, and a while loop. The while loop is simpler; we'll start there.

\subsection*{8.4.1 while loops}

The while loop has the syntax while \(e_{1}\) do \(e_{2}\) done. The expression \(e_{1}\) must have type bool. When a while loop is evaluated, the expression \(e_{1}\) is evaluated first. If it is false, the while loop terminates. Otherwise, \(e_{2}\) is evaluated, and the loop is evaluated again.

Here is an example to check if a value x is in an array a.
```


let array_mem x a =

 let len = Array.length a in
 let flag = ref false in
 let i = ref 0 in
 while !flag = false && !i < len do
 if a.(!i) = x then
 flag := true;
 i := ! i + 1
 done;
 !f7ag;;
 val array_mem : 'a -> 'a array -> bool = <fun>

array_mem 1 [| 3; 5; 1; 6|];;

- : bool = true

array_mem 7 [| 3; 5; 1; 6|];;

- : bool = false

```

\subsection*{8.4.2 for loop}

The for loop iterates over a finite range of integers. There are two forms, one to count up, and one to count down. The syntax of these two operations is as follows.
\[
\begin{aligned}
& \text { for } v=e_{1} \text { to } e_{2} \text { do } e_{3} \text { done } \\
& \text { for } v=e_{1} \text { downto } e_{2} \text { do } e_{3} \text { done }
\end{aligned}
\]

The for loops first evaluate \(e_{1}\) and \(e_{2}\), which must have type int. The to form evaluates the body \(e_{3}\) for values of \(v\) counting up from \(e_{1}\) to \(e_{2}\), and the downto form evaluates the body for values counting down from \(e_{1}\) to \(e_{2}\). Note that the final value \(e_{2}\) is included in the evaluation.

The following code is a simpler expression for computing membership in an array (although it is somewhat less efficient).
```


let array_mem x a =

 let flag = ref false in
 for i = 0 to Array.length a - 1 do
 if a.(i) = x then
 flag := true
 done;
 !f7ag;;
 val array_mem : 'a -> 'a array -> bool = <fun>

array_mem 1 [| 3; 5; 1; 6|];;

- : bool = true

array_mem 7 [| 3; 5; 1; 6|];;

- : bool = false

```

\section*{Chapter 9}

\section*{Input and Output}

The I/O library in OCaml is fairly expressive, including a Unix library that implements most of the portable Unix system calls. In this chapter, we'll cover many of the standard built-in I/O functions.

The I/O library uses two data types: the in_channe1 is the type of I/O channels from which characters can be read, and the out_channel is an I/O channel to which characters can be written. I/O channels may represent files, communication channels, or some other device; the exact operation depends on the context.

At program startup, there are three channels open, corresponding to the standard file descriptors in Unix.
```

val stdin : in_channel
val stdout : out_channe1
val stderr : out_channe1

```

\subsection*{9.1 File opening and closing}

There are two functions to open an output file: the open_out function opens a file for writing text data, and the open_out_bin opens a file for writing binary data. These two functions are identical on a Unix system. On a Macintosh or Windows system, the open_out function performs line termination translation (why do all these systems use different line terminators?), while the open_out_bin function writes the data exactly as written. These functions raise the Sys_error exception if the file can't be opened; otherwise they return an out_channe1.

A file can be opened for reading with the functions open_in and open_in_bin.
val open_out : string -> out_channe1
```

val open_out_bin : string -> out_channel
val open_in : string -> in_channel
val open_in_bin : string -> in_channel

```

The open_out_gen and open_in_gen functions can be used to perform more sophisticated file opening. The function requires an argument of type open_flag that describes exactly how to open the file.
```

type open_flag =
Open_rdon7y | Open_wron7y | Open_append
| Open_creat | Open_trunc | Open_exc1
| Open_binary | Open_text | Open_nonblock

```

These opening modes have the following interpretation.
Open rdonly open for reading
Open_wronly open for writing
Open_append open for appending
Open_creat create the file if it does not exist
Open_trunc empty the file if it already exists
Open_excl fail if the file already exists
Open_binary open in binary mode (no conversion)
Open_text open in text mode (may perform conversions)
Open nonblock open in non-blocking mode
The open_in_gen and open_out_gen functions have types
```

val open_in_gen : open_flag list -> int -> string -> in_channel.
val open_out_gen : open_flag list -> int -> string -> out_channel.

```

The open_flag list describe how to open the file, the int argument describes the Unix mode to apply to the file if the file is created, and the string argument is the name of the file.

The closing operations close_out and close_in close the channels. If you forget to close a file, the garbage collector will eventually close it for you. However, it is good practice to close the channel manually when you are done with it.
```

val close_out : out_channel -> unit
val close_in : in_channe1 -> unit

```

\subsection*{9.2 Writing and reading values on a channel}

There are several functions for writing values to an out_channe1. The output_char writes a single character to the channel, and the output_string writes all the characters in a string to the channel. The output function can be used to write part of a string to the channel; the int arguments are the offset into the string, and the length of the substring.
```

val output_char : out_channel -> char -> unit
val output_string : out_channel -> string -> unit
val output : out_channel -> string -> int -> int -> unit

```

The input functions are slightly different. The input_char function reads a single character, and the input_1ine function reads an entire line, discarding the line terminator. The input functions raise the exception End_of_file if the end of the file is reached before the entire value could be read.
```

va1 input_char : in_channe1 -> char
val input_line : in_channel -> string
val input : in_channel -> string -> int -> int -> int

```

There are also several functions for passing arbitrary OCaml values on a channel opened in binary mode. The format of these values is implementation specific, but it is portable across all standard implementations of OCaml. The output_byte and input_byte functions write/read a single byte value. The output_binary_int and input_binary_int functions write/read a single integer value.

The output_value and input_value functions write/read arbitrary OCaml values. These functions are unsafe! Note that the input_value function returns a value of arbitrary type 'a. OCaml makes no effort to check the type of the value read with input_value against the type of the value that was written with output_value. If these differ, the compiler will not know, and most likely your program will generate a segmentation fault.
```

val output_byte : out_channel -> int -> unit
va1 output_binary_int : out_channe1 -> int -> unit
val output_value : out_channe1 -> 'a -> unit
va1 input_byte : in_channe1 -> int
val input_binary_int : in_channel -> int
val input_value : in_channel -> 'a

```

\subsection*{9.3 Channel manipulation}

If the channel is a normal file, there are several functions that can modify the position in the file. The seek_out and seek_in function change the
file position. The pos_out and pos_in function return the current position in the file. The out_channel_length and in_channel_length return the total number of characters in the file.
```

val seek_out : out_channel -> int -> unit
val pos_out : out_channel -> int
val out_channe1_1ength : out_channe1 -> int
val seek_in : in_channe1 -> int -> unit
val pos_in : in_channel -> int
va1 in_channe1_1ength : in_channel -> int

```

If a file may contain both text and binary values, or if the mode of the the file is not know when it is opened, the set_binary_mode_out and set_binary_mode_in functions can be used to change the file mode.
val set_binary_mode_out : out_channe1 -> bool -> unit
val set_binary_mode_in : in_channe1 -> bool -> unit
The channels perform buffered I/O. By default, the characters on an out_channe 1 are not all written until the file is closed. To force the writing on the buffer, use the flush function.
val flush : out_channe1 -> unit

\subsection*{9.4 Printf}

The regular functions for I/O can be somewhat awkward. OCaml also implements a printf function similar to the printf in Unix/C. These functions are defined in the library module Printf. The general form is given by fprintf.
```

va1 fprintf: out_channe1 -> ('a, out_channe1, unit) format -> 'a

```

Don't be worried if you don't understand this type definition. The format type is a built-in type intended to match a format string. The normal usage uses a format string. For example, the following statement will print a line containing an integer \(i\) and a string \(s\).
```

fprintf stdout "Number = %d, String = %s\n" i s

```

The strange typing of this function is because OCaml checks the type of the format string and the arguments. For example, Ocaml analyzes the format string to tell that the following fprintf function should take a float, int, and string argument.
\# let \(f=\) fprintf stdout "Float \(=\%\), Int \(=\% d\), String \(=\% s\) n";;
Float = val f : float -> int -> string -> unit = <fun>

The format specification corresponds roughly to the C specification. Each format argument takes a width and length specifier that corresponds to the C specification.
d or i convert an integer argument to signed decimal
u convert an integer argument to unsigned decimal
\(\mathbf{x}\) convert an integer argument to unsigned hexadecimal, using lowercase letters.
\(\mathbf{X}\) convert an integer argument to unsigned hexadecimal, using uppercase letters
s insert a string argument
c insert a character argument
f convert a floating-point argument to decimal notation, in the style dddd.ddd
e or E convert a floating-point argument to decimal notation, in the style d.ddd e+-dd (mantissa and exponent)
g or G convert a floating-point argument to decimal notation, in style \(f\) or \(e, E\) (whichever is more compact)
b convert a Boolean argument to the string true or false
a user-defined printer. It takes two arguments; it applies the first one to the current output channel and to the second argument. The first argument must therefore have type out_channel \(\rightarrow\) ' 'b -> unit and the second one has type ' \(b\). The output produced by the function is therefore inserted into the output of fprintf at the current point.
t same as \%a, but takes only one argument (with type out_channe1 -> unit) and applies it to the current out_channe1.
\% takes no argument and output one \% character.
The Printf module also provides several additional functions for printing on the standard channels. The printf function prints in the channel stdout, and eprintf prints on stderr.
let printf \(=\) fprintf stdout
let eprintf \(=\) fprintf stderr
The sprintf function has the same format specification as printf, but it prints the output to a string and returns the result.
val sprintf: ('a, unit, string) format -> 'a

\subsection*{9.5 String buffers}

The Buffer library module provides string buffers. The string buffers can be significantly more efficient that using the native string operations. String buffers have type Buffer.t. The type is abstract, meaning that the implementation of the buffer is not specified. Buffers can be created with the Buffer. create function.
```

type t (* Abstract type of string buffers *)

```
val create : unit -> t

There are several functions to examine the state of the buffer. The contents function returns the current contents of the buffer as a string. The length function returns the total number of characters stored in the buffer. The clear and reset function remove the buffer contents; the difference is that reset also deallocates the internal storage used to save the current contents.
```

val contents : t -> string
val length : t -> int
val clear : t -> unit
val reset : t -> unit

```

There are also several functions to add values to the buffer. The add_char function appends a character to the buffer contents. The add_string function appends a string to the contents; there is also an add_substring function to append part of a string. The add_buffer function appends the contents of another buffer, and the add_channe 1 reads input off a channel and appends it to the buffer.
```

val add_char : t -> char -> unit
val add_string : t -> string -> unit
val add_substring : t -> string -> int -> int -> unit
val add_buffer : t -> t -> unit
val add_channe1 : t -> in_channe1 -> int -> unit

```

The output_buffer function can be used to write the contents of the buffer to an out_channel.
val output_buffer : out_channe1 -> t -> unit
The Printf module also provides formatted output to a string buffer. The bprintf function takes a printf-style format string, and formats output to a buffer.
val bprintf: Buffer.t -> ('a, Buffer.t, unit) format -> 'a

\section*{Chapter 10}

\section*{Files, Compilation Units, and Programs}

One of the principles of modern programming is data hiding using encapsulation. An abstract data type (ADT) is a program unit that defines a data type and functions (also called methods) that operate on that data type. An ADT has two parts: a signature (or interface) that declares the accessible data structures and methods, and an implementation that defines concrete implementations of the objects declared in the signature. The implementation is hidden: all access to the ADT must be through the methods defined in the signature.

There are several ideas behind data hiding using ADTs. First, by separating a program into distinct program units (called modules), the program may be easier to understand. Ideally, each module encapsulates a single concept needed to address the problem at hand.

Second, by hiding the implementation of a program module, dependencies between program modules become tightly controlled. Since all interactions must be through a module's methods, the implementation of the module can be changed without affecting the correctness of the program (as long as the behavior of the methods is preserved).

OCaml provides a module system that makes it easy to use the concepts of encapsulation and data hiding. In fact, in OCaml every program file acts as an abstract module, called a compilation unit in the OCaml terminology. A signature for the file can be defined in a. m 7 i file with the same name. If there is no . m 7 i file, the default signature includes all type and functions defined in the .m7 file.

\subsection*{10.1 Signatures}

In OCaml, a signature contains type definitions and function declarations for the visible types and methods in the module. To see how this works, let's revisit the binary trees we defined in Chapter 6. A binary tree defines a simple, distinct concept, and it is an ideal candidate for encapsulation.

A module signature usually contains three parts:
1. Data types used by the module.
2. Exceptions used by the module.
3. Method type declarations for all the externally visible methods defined by the module.

For the binary tree, the signature will need to include a type for binary trees, and type declarations for the methods for operating on the tree. First, we need to choose a filename for the compilation unit. The filename should reflect the function of the data structure defined by the module. For our purposes, the binary tree is a data structure used for defining a finite set of values, and an appropriate filename for the signature would be fset.m7i.

The data structure defines a type for sets, and three methods: an empty set, a mem membership function, and an insert insertion function. The complete signature is defined below; we'll discuss each of the parts in the following sections.
```

(* The abstract type of sets *)
type 'a t
(* Empty set *)
val empty : 'a t
(* Membership function *)
val mem : 'a -> 'a t -> bool
(* Insertion is functiona1 *)
val insert : 'a -> 'a t -> 'a t

```

\subsection*{10.1.1 Type declarations}

Type declarations in a signature can be either transparent or abstract. An abstract type declaration declares a type without giving the type definition; a transparent type declaration includes the type definition.

For the binary tree, the declaration type 'a \(t\) is abstract because the type definition is left unspecified. In this case, the type definition won't be visible to other program units; they will be forced to use the methods if they
want to operate on the data type. Note that the abstract type definition is polymorphic: it is parameterized by the type variable 'a.

Alternatively, we could have chosen a transparent definition that would make the type visible to other program modules. For example, if we intend to use the unbalanced tree representation, we might include the following type declaration in the signature.
```

type 'a t =
Node of 'a t * 'a * 'a t
| Leaf

```

By doing this, we would make the binary tree structure visible to other program components; they can now use the type definition to access the binary tree directly. This would be undesirable for several reasons. First, we may want to change the representation later (by using red-black trees for example). If we did so, we would have to find and modify all the other modules that accessed the unbalanced structure directly. Second, we may be assuming that there are some invariants on values in the data structure. For example, we may be assuming that the nodes in the binary tree are ordered. If the type definition is visible, it would be possible for other program modules to construct trees that violate the invariant, leading to errors that may be difficult to find.

\subsection*{10.1.2 Method declarations}

The method declarations include all the functions and values that are visible to other program modules. For the Fset module, the visible methods are the empty, mem, and insert methods. The signature gives only the type declarations for these methods.

It should be noted that only these methods will be visible to other program modules. If we define helper functions in the implementation, these functions will be private to the implementation and inaccessible to other program modules.

\subsection*{10.2 Implementations}

The module implementation is defined in a . m 7 file with the same base name as the signature file. The implementation contains parts that correspond to each of the parts in the signature.
1. Data types used by the module.
2. Exceptions used by the module.

\section*{3. Method definitions.}

The definitions do not have to occur in the same order as declarations in the signature, but there must be a definition for every item in the signature.

\subsection*{10.2.1 Type definitions}

In the implementation, definitions must be given for each of the types in the signature. The implementation may also include other types. These types will be private to the implementation; they will not be visible outside the implementation.

For the Fset module, let's use the red-black implementation of balanced binary trees. We need two type definitions: the definition of the Red and B7ack labels, and the tree definition itself.
```

type color =
Red
| Black
type 'a t =
Node of color * 'a t * 'a * 'a t
| Leaf

```

The color type is a private type, the 'a type gives the type definition for the abstract type declaration type 'a \(t\) in the signature.

\subsection*{10.2.2 Method definitions}

In the implementation we need to implement each of the methods declared in the signature. The empty method is easy: the Leaf node is used to implement the empty set.
```

1et empty = Leaf

```

The mem method performs a search over the binary tree. The nodes in the tree are ordered, and we can use a binary search.
```

let rec mem x = function
Leaf -> false
| Node (_, a, y, b) ->
if x < y then mem x a
else if x > y then mem x b
else true

```

The implement the insert method we need two methods: one is the actual insert function, and another is the helper function balance that keeps the tree balanced. We can include both functions in the implementation. The balance function will be private, since it is not declared in the signature.
```

let balance = function
Black, Node (Red, Node (Red, a, x, b), y, c), z, d ->
Node (Red, Node (Black, a, x, b), y, Node (Black, c, z, d))
| Black, Node (Red, a, x, Node (Red, b, y, c)), z, d ->
Node (Red, Node (Black, a, x, b), y, Node (Black, c, z, d))
| Black, a, x, Node (Red, Node (Red, b, y, c), z, d) ->
Node (Red, Node (Black, a, x, b), y, Node (Black, c, z, d))
| Black, a, x, Node (Red, b, y, Node (Red, c, z, d)) ->
Node (Red, Node (Black, a, x, b), y, Node (Black, c, z, d))
| a, b, c, d ->
Node (a, b, c, d)
1et insert x s =
let rec ins = function
Leaf -> Node (Red, Leaf, x, Leaf)
| Node (color, a, y, b) as s ->
if x < y then balance (color, ins a, y, b)
else if x > y then balance (color, a, y, ins b)
else s
in
match ins s with (* guaranteed to be non-empty *)
Node (_, a, y, b) -> Node (Black, a, y, b)
| Leaf -> raise (Invalid_argument "insert")

```

\subsection*{10.3 Building a program}

Once a compilation unit is defined, the types and methods can be used in other files by prefixing the names of the methods with the capitalized file name. For example, the empty set can be used in another file with the name Fset.empty.

Let's define another module to test the Fset implementation. This will be a simple program with an input loop where we can type in a string. If the string is not in the set, it is added; otherwise, the loop will print out a message that the string is already added. To implement this program, we need to add another file; we'll call it test.m1.

The Test compilation unit has no externally visible types or methods. By default, the test.mli file should be empty. The Test implementation should contain a function that recursively:
1. prints a prompt
2. reads a line from stdin
3. checks if the line is already in the set
4. if it is, then print a message
5. repeat

We'll implement this as a loop method.
```

1et loop () =
let set = ref Fset.empty in
try
while true do
output_string stdout "set> ";
flush stdout;
let line = input_line stdin in
if Fset.mem line !set then
Printf.printf "%s is already in the set\n" line
else
Printf.printf "%s added to the set\n" line;
set := Fset.insert line !set
done
with
End_of_file ->
()
1et _ = loop ()

```

There are a few things to note. First, we need to catch the End_of_file exception that is raised when the end of the input file is reached. In this case, we exit without comment. To run the loop, we include the line let _ = loop (). The let _ = \(\ldots\) may seem strange: it tells the OCaml parser that this is a new top level expression. Another way to accomplish this is by adding the ; ; terminator after the last () expression in the loop function.

\subsection*{10.4 Compiling the program}

Once the files for the program are defined, the next step is to compile them using ocam1c. The usage of ocam1c is much like cc. Normally, the files are compiled separately and linked into an executable. Signatures must be compiled first, followed by the implementations.

For the fset module, the signature can be compiled with the following command.
\% ocam1c -c fset.mpi

If there are no errors in the signature, this step produces a file called fset.cmi.

The implementations are compiled with the following command.
```

% ocamlc -c fset.m7
% ocamlc -c test.m7

```

If this step is successful, the compiler produces the files fset. cmo and test.cmo.

The modules can now be linked into a complete program using the ocam1c linker. The command is as follows.
```

% ocamlc -o test fset.cmo test.cmo

```

The linker requires all of the . cmo files to be included in the program. The order of these files is important! Each module in the link line can refer only to the modules listed before it. If we reverse the order of the modules on the link line, we will get an error.
```

% ocamlc -o test test.cmo fset.cmo
Error while linking test.cmo: Reference to undefined global 'Fset'
Exit 2

```

Once the program is linked, we can run it.
```

% ./test
set> he1lo
he1lo added to the set
set> world
world added to the set
set> hello
hello is already in the set
set> x
x added to the set
set> world
world is already in the set

```

\subsection*{10.4.1 Where is the "main" function?}

Unlike C programs, OCaml program do not have a "main" function. When an OCaml program is evaluated, all the statements in the files in the program are evaluated in the order specified on the link line. Program files contain type and method definitions. They can also contain arbitrary expressions to be evaluated. The let \({ }^{-}\)loop () statement in the test.m7 file is an example: it evaluates the loop function. Informally, this is the main loop; it is the last expression to be executed in the program.

\subsection*{10.4.2 Some common errors}

When a .m7 file is compiled, the compiler compares the implementation with the signature in the .cmi file. If a definition does not match the signature, the compiler will print an error and refuse to compile the file.

\section*{Type errors}

For example, suppose we had reversed the order of arguments in the Fset.insert function so that the set argument is first.
```

1et insert s x =

```

When we compile the file, we get an error. The compiler prints the types of the mismatched values, and exits with an error code.
```

% ocam7c -c fset.m1
The implementation fset.ml does not match the interface fset.cmi:
Values do not match:
val insert : 'a t -> 'a -> 'a t
is not included in
val insert : 'a -> 'a t -> 'a t
Exit 2

```

\section*{Missing definition errors}

Another common error occurs when a method declared in the signature is not defined in the implementation. For example, suppose we had defined an add method rather than an insert method. In this case, the compiler prints the name of the missing method, and exits with an error code.
```

% ocam7c -c fset.m7
The implementation fset.ml does not match the interface fset.cmi:
The field 'insert' is required but not provided
Exit 2

```

\section*{Type definition mismatch errors}

Transparent type definitions in the signature can also cause an error if the type definition in the implementation does not match. Suppose we were to export the definition for type 'a \(t\). We need to include exactly the same definition in the implementation. A correct fset.m7i file would contain the following definition.
type color
```

type 'a t =
Node of color * 'a t * 'a * 'a t
| Leaf

```

Note that we must include a type definition for color, since it is used in the definition of the set type 'a \(t\). The type definition for color may be transparent or abstract.

Now, suppose we reorder the constructors in the interface definition for 'a t by placing the Leaf constructor first.
```

type color

```
```

type 'a t =
Leaf
| Node of color * 'a t * 'a * 'a t

```

When we compile the file, the compiler will produce an error with the mismatched types.
```

% ocamlc -c fset.mli
% ocamlc -c fset.m7
The implementation fset.m7 does not match the interface fset.cmi:
Type declarations do not match:
type 'a t = | Node of color * 'a t * 'a * 'a t | Leaf
is not included in
type 'a t = | Leaf | Node of color * 'a t * 'a * 'a t
Exit 2

```

\section*{Compile dependency errors}

The compiler will also produce errors if the compile state is inconsistent. Each time an interface is compile, all the files that uses that interface must be recompiled. For example, suppose we update the fset.m7i file, and recompile it and the test. m 1 file (but we forget to recompile the fset.m1 file). The compiler produces the following error.
```

% ocamlc -c fset.m1i
% ocamlc -c test.m1
% ocamlc -o test fset.cmo test.cmo
Files test.cmo and fset.cmo make inconsistent
assumptions over interface Fset
Exit 2

```

It takes a little work to detect the cause of the error. The compiler says that the files make inconsistent assumptions for interface Fset. The interface is defined in the file fset. cmi, and so this error message states that at least one of fset. m 1 or test. cmo needs to be recompiled. In general, we don't know which file is out of date, and the best solution is to recompile them all.

\subsection*{10.5 Using open to expose a namespace}

Using the full name Modu7e_name.method_name to refer to the methods in a module can get tedious. The open Modu7e_name statement can be used to "open" a module interface, which will allow the use of unqualified names for types, exceptions, and methods. For example, the test. m 1 module can be somewhat simplified by using the open statements for the Printf and Fset modules.
```

open Printf
open Fset
1et loop () =
1et set $=$ ref empty in
try
while true do
output_string stdout "set> ";
flush stdout;
let line = input_line stdin in
if mem line !set then
printf "\%s is already in the set n " line
else
printf "\%s added to the set\n" 1ine;
set := insert line !set
done
with
End_of_file ->
()
1et _ = loop ()

```

Sometimes multiple opened modules will define the same name. In this case, the last module with an open statement will determine the value of that symbol. Fully qualified names (of the form Modu7e_name. name) may still be used even if the module has been opened. Fully qualified names can be used to access values that may have been hidden by an open statement.

\subsection*{10.5.1 A note about open}

Be careful with the use of open. In general, fully qualified names provide more information, specifying not only the name of the value, but the name of the module where the value is defined. For example, the Fset and List modules both define a mem function. In the Test module we just defined,
it may not be immediately obvious to a programmer that the mem symbol refers to Fset.mem, not List.mem.

In general, you should use open statement sparingly. Also, as a matter of style, it is better not to open most of the library modules, like the Array, List, and String modules, all of which define methods (like create) with common names. Also, you should never open the Unix, Obj, and Marsha1 modules! The functions in these modules are not completely portable, and the fully qualified names identify all the places where portability may be a problem (for instance, the Unix grep command can be used to find all the places where Unix functions are used).

The behavior of the open statement is not like an \#include statement in C. An implementation file mod.m1 should not include an open Mod statement. One common source of errors is defining a type in a .m7i interface, then attempting to use open to "include" the definition in the .m7 implementation. This won't work-the implementation must include an identical type definition. True, this is an annoying feature of OCaml. But it preserves a simple semantics: the implementation must provide a definition for each declaration in the signature.

\subsection*{10.6 Debugging a program}

The ocam7debug program can be used to debug a program compiled with ocam1c. The ocam1debug program is a little like the GNU gdb program; it allows breakpoints to be set. When a breakpoint is reached, control is returned to the debugger so that program variables can be examined.

To use ocam7debug, the program must be compiled with the -g flag.
```

% ocamlc -c -g fset.m7i
% ocamlc -c -g fset.m1
% ocamlc -c -g test.m1
% ocam1c -o test -g fset.cmo test.cmo

```

The debugger is invoked using by specifying the program to be debugged on the ocam1debug command line.
```

% ocam7debug ./test
Objective Caml Debugger version 2.04
(ocd) help
List of commands :
cd complete pwd directory kill help quit run reverse step
backstep goto finish next start previous print display source
break delete set show info frame backtrace bt up down last
list load_printer instal1_printer remove_printer

```
(ocd)
There are several commands that can be used. The basic commands are run, step, next, break, list, print, and goto.
run Start or continue execution of the program.
break @ module linenum Set a breakpoint on line linenum in module module.
list display the lines around the current execution point.
print expr Print the value of an expression. The expression must be a variable.
goto time Execution of the program is measured in time steps, starting from 0 . Each time a breakpoint is reached, the debugger will print the current time. The goto command may be used to continue execution to a future time, or to a previous timestep.
step Go forward one time step.
next If the current value to be executed is a function, evaluate the function, a return control to the debugger when the function completes. Otherwise, step forward one time step.

For debugging the test program, we need to know the line numbers. Let's set a breakpoint in the loop function, which starts in line 27 in the Test module. We'll want to stop at the first line of the function.
```

(ocd) break @ Test 28
Loading program... done.
Breakpoint 1 at 24476 : file Test, line 28 column 4
(ocd) run
Time : 7 - pc : 24476 - module Test
Breakpoint : 1
28 <|b|>let set = ref Fset.empty in
(ocd) n
Time : 8 - pc : 24488 - module Test
29 <|b|>try
(ocd) p set
set : string Fset.t ref = {contents=Fset.Leaf}

```

Next, let's set a breakpoint after the next input line is read and continue execution to that point.
```

(ocd) list
27 let loop () =
28 let set = ref Fset.empty in
29 <|b|>try
30 while true do
31 output_string stdout "set> ";
32 flush stdout;
33 let line = input_line stdin in
34 if Fset.mem line !set then
35 Printf.printf "%s is already in the set\n" line
36
3 7 ~ P r i n t f . p r i n t f ~ " \% s ~ a d d e d ~ t o ~ t h e ~ s e t \ n " ~ l i n e ;
38 set := Fset.insert line !set
39 done
(ocd) break @ 34
Breakpoint 2 at 24600 : file Test, line 33 column 40
(ocd) run
set> hello
Time : 22 - pc : 24604 - module Test
Breakpoint : 2
34 <|b|>if Fset.mem line !set then
(ocd) p line
1ine : string = "he11o"

```

When we run the program, the evaluation prompts us for an input line, and we can see the value of the line in the line variable. Let's continue and view the set after the line is added.
```

(ocd) n
Time : 24 - pc : 24628 - module Test
34 if Fset.mem line !set<|a|> then
(ocd) n
Time : 25 - pc : 24672 - module Test
37 <|b|>Printf.printf "%s added to the set\n" line;
(ocd) n
Time : 135 - pc : 24700 - module Test
37 Printf.printf "%s added to the set\n" line<|a|>;
(ocd) n
Time : 141 - pc : 24728 - module Test
38 set := Fset.insert line !set<|a|>
(ocd) n
Time : 142 - pc : 24508 - module Test
31 <|b|>output_string stdout "set> ";
(ocd) p set
set : string Fset.t ref =
{contents=Fset.Node (<abstr>, Fset.Leaf, "hello", Fset.Leaf)}
(ocd)

```

This value seems to be correct. Next, suppose we want to go back a descend into the Fset.mem function. We can go back to time 22 (the time just before the Fset.mem function is called), and use the step command to descend into the membership function.
```

(ocd) goto 22
set> hello
Time : 22 - pc : 24604 - module Test
Breakpoint : 7
34 <|b|>if Fset.mem line !set then
(ocd) s
Time : 23-pc : 22860 - module Fset
39 Leaf -> <|b|>false
(ocd) s
Time : 24 - pc : 24628 - module Test
34 if Fset.mem line !set<|a|> then
(ocd)

```

Note that when we go back in time, the program prompts us again for an input line. This is due to way time travel is implemented in ocam1debug. Periodically, the debugger takes a checkpoint of the program (using the Unix fork () system call). When reverse time travel is requested, the debugger restarts the program from the closest checkpoint before the time requested. In this case, the checkpoint was taken sometime before the call to input_line, and the program resumption requires another input value.

When we step into the Fset.mem function, we see that the membership is false (the set is the Leaf empty value). We can continue from here, examining the remaining functions and variables. You may wish to explore the other features of the debugger. Further documentation can be found in the OCaml reference manual.

\section*{Chapter 11}

\section*{The OCaml Module System}

The compilation units discussed in the Chapter 10 are not the only way to create modules. OCaml provides a general module system where modules can be created explicitly using the module keyword. There are three key parts in the module system: signatures, structures, and functors.

Module signatures correspond to the signatures defined in a .m7i file, and module structures correspond to the implementations defined in a . m 7 file. There is one major difference. Each compilation unit has at most one signature, defined by the .m7i file. The module system is more general: a single signature can be used to specify multiple structures; and a structure can have multiple signatures.

This ability to share signatures and structures can have important effects on code re-use. For example, in Chapter 6 we introduced three implementations of finite sets (using unbalanced, ordered, and balanced binary trees). All three of these implementations can be expressed as structures having the same signature. Any of the three implementations can be used in a context that requires an implementation of finite sets.

The ability to assign multiple signatures to a structure becomes useful in larger programs composed of multiple components each spread over multiple files. The structures within a program component may make their implementations visible to one another (like a "friend" declaration in a C++ class, or a protected declaration for a Java method). Outside the program component, a new signature may be assigned to hide the implementation details (making them private).

The OCaml module system also includes functors, or parameterized structures. A functor is a function that computes a structure given a structure argument. Functors provide a simple way to generalize the implementation of a structure.

In the following sections, we'll describe the three different parts of the module system by developing the finite set example in the context of the
module system.

\subsection*{11.1 Module signatures}

A module signature is declared with a module type declaration.
module type Name \(=\) sig signature end
The name of the signature must begin with an uppercase letter. The signature can contain any of the items that can occur in an interface . mli file, including any of the following.
- type declarations
- exception definitions
- method type declarations, using the val keyword
- open statements to open the namespace of another signature
- include statements that include the contents of another signature
- nested signature declarations

Signatures can be defined in an interface, implementation, or in the OCaml toploop. A signature is like a type declaration-if a .m7i file defines a signature, the same signature must also be defined in the . m 1 file.

For the finite set example, the signature should include a type declaration for the set type, and method declarations for the empty, mem, and insert methods. For this example, we'll return to the OCaml toploop, which will display the types of the modules we define.
```


module type FsetSig =

 sig
 type 'a t
 val empty : 'a t
 va1 mem : 'a -> 'a t -> bool
 val insert : 'a -> 'a t -> 'a t
 end;;
 modu7e type FsetSig =
sig
type 'a t
va1 empty : 'a t
val mem : 'a -> 'a t -> bool
val insert : 'a -> 'a t -> 'a t
end

```

The include statement can be used to create a new signature that extends an existing signature. For example, suppose we would like to define a signature for finite sets that includes a delete function to remove an element of a set. One way to be to re-type the entire signature for finite sets followed by the delete declaration. The include statement performs this inclusion automatically.
```


module type FsetDSig =

 sig
 include Fset
 val delete : 'a -> 'a t -> 'a t
 end;;
 module type FsetDSig =
sig
type 'a t
val empty : 'a t
val mem : 'a -> 'a t -> bool
val insert : 'a -> 'a t -> 'a t
val delete : 'a -> 'a t -> 'a t
end

```

\subsection*{11.2 Module structures}

Module structures are defined with the module keyword.
```

modu7e Name = struct implementation end

```

Once again, the module name must begin with an uppercase letter. The implementation is exactly the same as the contents of a. m 7 file. It can include any of the following.
- type definitions
- exception definitions
- method definitions, using the 1 et keyword
- open statements to open the namespace of another module
- include statements that include the contents of another module
- signature declarations
- nested structure definitions

Let's try this with the balanced binary tree example (the complete definitions for the balance and insert functions are given in Section 10.2.2.
```


module Fset =

 struct
 type color =
 Red
 | Black
 type 'a t =
 Node of color * 'a t * 'a * 'a t
 | Leaf
 1et empty = Leaf
 1et rec mem x = function
 Leaf -> false
 | Node (_, a, y, b) ->
 if x < y then mem x a
 else if x > y then mem x b
 else true
 let balance = ...
 1et insert x s = ...
 end;;
 module Fset :
sig
type color = | Red | Black
and 'a t = | Node of color * 'a t * 'a * 'a t | Leaf
val empty : 'a t
val mem : 'a -> 'a t -> bool
val balance : color * 'a t * 'a * 'a t -> 'a t
val insert : 'a -> 'a t -> 'a t
end

Fset.empty;;

- : 'a Fset.t = Fset.Leaf

Fset.balance;;

- : Fset.color * 'a Fset.t * 'a * 'a Fset.t -> 'a Fset.t = <fun>

```

\subsection*{11.2.1 Assigning a signature}

Note that the default signature assigned to the structure exposes all of the types and functions in the structure, including the type definitions for the color and 'a types, as well as the balance function, which would normally be hidden. To assign a signature to a structure, we include a type constraint using a : modifier of the following form.
module Name : SigName = struct implementation end

In the finite set example, we want to assign the FsetSig signature to the module.
```


module Fset : FsetSig =

 struct
 type color =
 Red
 | B7ack
 type 'a t =
 Node of color * 'a t * 'a * 'a t
 | Leaf
 1et empty = Leaf
 let rec mem x = ...
 let balance = ...
 let insert x s = ...
 end;;
 module Fset : FsetSig

Fset.empty;;

_ : 'a Fset.t = <abstr>

Fset.balance;;

Characters 0-12:
Unbound value Fset.balance

```

When we assign this signature, the type definition for 'a \(t\) becomes abstract, and the balance function is no longer visible outside the module definition.

\subsection*{11.3 Functors}

One problem with the implementation of finite sets that we have been using is the use of the built-in < comparison operation to compare values in the set. The definition of the < operator is implementation-specific, and it may not always define the exact ordering that we want.

To fix this problem, we can define our own comparison function, but we will need to define a separate finite set implementation for each different element type. For this purpose, we can use functors. A functor is a function on modules; the function requires a module argument, and it produces a module. Functors can be defined with the functor keyword, or with a more common alternate syntax.
```

module Name = functor (ArgName : ArgSig) ->
struct implementation end
module Name (Arg : ArgSig)=
struct implementation end

```

For the finite set example, we'll need to define an argument structure that includes a type elt of elements, and a comparison function compare. We'll have the compare function return one of three kinds of values:
- a negative number if the first argument is smaller than the second,
- zero if the two arguments are equal,
- a positive number if the first argument is larger than the second.
```

modu7e type EltSig =
sig
type elt
val compare : elt -> elt -> int
end

```

The finite set signature FsetSig must also be modified to used a specific element type elt. Note that the set itself is no longer polymorphic, it is defined for a specific type of elements.
```

module type FsetSig =
sig
type elt
type t
val empty : t
val mem : elt -> t -> bool
val insert : elt -> t -> t
end

```

Next, we redefine the set implementation as a functor. The implementation must be modified to include a type definition for the elt type, and the mem and insert functions must be modified to make use of the comparison function from E1t.
```


module MakeFset (Elt : EltSig) =

 struct
 type elt = Elt.elt
 type color = ...
 type t =
 Node of color * t * elt * t
 | Leaf
 1et empty = Leaf
 let rec mem x = function
 Leaf -> false
 | Node (_, a, y, b) ->
    ```
```

 let i = Elt.compare x y in
 if i < O then mem x a
 else if i > O then mem x b
 else true
 let balance = ...
 1et insert x s =
 let rec ins = function
 Leaf -> Node (Red, Leaf, x, Leaf)
 | Node (color, a, y, b) as s ->
 let i = Elt.compare x y in
 if i < O then balance (color, ins a, y, b)
 else if i > O then balance (color, a, y, ins b)
 else s
 in
 match ins s with (* guaranteed to be non-empty *)
 Node (_, a, y, b) -> Node (Black, a, y, b)
 | Leaf -> raise (Invalid_argument "insert")
 end;;
 modu7e MakeFset :
functor(Elt : EltSig) ->
sig
type e7t = Elt.e7t
and color = | Red | Black
and t = | Node of color * t * elt * t | Leaf
val empty : t
val mem : Elt.elt -> t -> bool
val balance : color * t * elt * t -> t
val insert : elt -> t -> t
end

```

Note the return type. The argument type is right: the functor takes an argument module E1t with signature E1tSig. But the returned module makes the implementation fully visible. To fix this problem, we need to add a type constraint using the : modifier.
```


module MakeFset (Elt : EltSig) : FsetSig =

 struct
 type e7t = Elt.e7t
 type color = ...
 type t = ...
 let empty = ...
 let rec mem x = ...
 let balance = ...
 let insert x s = ...
    ```
end; ;
module MakeFset : functor(E1t : EltSig) -> FsetSig

\subsection*{11.3.1 Using a functor}

To use the module produced by the functor, we need to apply it to a specific module implementating the E1tSig signature. Let's define a comparison function for a finite set of integers. The comparison function is straightforward.
```


module Int =

 struct
 type elt = int
 let compare i j =
 if i < j then
 -1
 else if i > j then
 1
 else (* i = j *)
 0
 end;;
 module Int : sig type elt = int val compare : int -> int -> int end

Int.compare 3 5;;

- : int = -1

```

We must not give the Int module the signature E1tSig. In the E1tSig signature, the e7t type is abstract. Since there is no way to create a value of the abstract type e7t, it would become impossible to use the compare function, and the module would become useless.
```


module Int' = (Int : EltSig);;

module Int' : EltSig

Int'.compare 3 5;;

Characters 13-14:
This expression has type int but is here used with type Int'.elt

```

A functor is applied to an argument with the syntax Functor_name (Arg_name). To build a finite set of integers, we apply the MakeFset functor to the Int module.
```


module IntSet = MakeFset (Int);;

module IntSet :
sig
type elt = MakeFset(Int).elt
and t = MakeFset(Int).t
val empty : t
val mem : elt -> t -> bool

```
```

 val insert : elt -> t -> t
 end

IntSet.empty;;

- : IntSet.t = <abstr>

```

Note the type definitions for elt and t : both types are abstract.

\subsection*{11.3.2 Sharing constraints}

In its current state, the IntSet module is actually useless. Once again, the problem is with type abstraction: the elt type is defined as an abstract type in the FsetSig signature. The OCaml compiler remembers that the type of elements elt is produced by an application of the functor, but it doesn't know that the argument type in the Int module was int.
```


IntSet.insert 5 IntSet.empty;;

Characters 14-15:
This expression has type int but is here used with type
IntSet.e7t = MakeFset(Int).elt

```

To fix this problem, we can't add a type definition in the FsetSig module, since we want to be able to construct finite sets with multiple different element types. The only way to fix this problem is to add a constraint on the functor type that specifies that the e1t type produced by the functor is the same as the elt type in the argument.

\subsection*{11.3.3 An implementation that works}

These kind of type constraints are called sharing constraints. The argument and value of the MakeFset functor "share" the same elt type. Sharing constraints are defined by adding a with type constraint to a signature. The corrected definition of the MakeFset functor is as follows.
```


module MakeFset (Elt : EltSig)

 : FsetSig with type elt = Elt.elt =
 struct
 type e7t = Elt.elt
 type color = ...
 type t = ...
 let empty = ...
 let rec mem x = ...
 let balance = ...
 let insert x s = ...
 end;;
 module MakeFset :
functor(Elt : EltSig) ->

```
```

sig
type elt = Elt.elt
and t
val empty : t
val mem : elt -> t -> bool
val insert : elt -> t -> t
end

```

The toploop now displays the correct element specification. When we redefine the IntSet module, we get a working version of finite sets of integers.
```


module IntSet = MakeFset (Int);;

module IntSet :
sig
type elt = Int.e7t
and t = MakeFset(Int).t
val empty : t
val mem : elt -> t -> bool
val insert : elt -> t -> t
end

IntSet.empty;;

- : IntSet.t = <abstr>

open IntSet;;

let s = insert 3 (insert 5 (insert 1 empty));;

val s : IntSet.t = <abstr>

mem 5 s;;

- : bool = true

mem 4 s;;

- : bool = false

```

\section*{Chapter 12}

\section*{The OCaml Object System}

OCaml includes a unique object system with classes, parameterized classes, and objects, and the usual features of inheritance and subclassing. Objects are perhaps not as frequently used in OCaml as in other languages like C++ or Java, because the module system provides similar features for code re-use. However, classes and objects are often appropriate in programs where extensibility is desirable.

\subsection*{12.1 The basic object system}

The OCaml object system differs in one major way from the classes defined in many other languages: the object system includes both class types as well as class expressions. The two are separate, just as module signatures are separate from module structures. There are three construct in the OCaml object system: class type are signatures for classes, classes are initial specifications for objects, and objects are instances of classes created with the new keyword.

\subsection*{12.1.1 Class types}

A class type is defined using a class type definition. The syntax of a class type declaration is as follows.
\[
\text { class type name }=\text { object declarations end }
\]

The name of the class type should begin with a lowercase letter or an underscore. The declarations can include any of the following.
- Inheritance directives with the inherit keyword.
- Values, declared with the val keyword.
- Methods, declared with the method keyword.
- Type constraints, declared with the constraint keyword.

To illustrate the object system, let's use the canonical object example: a one-dimensional movable point. The point should have methods to return and modify the position of the point.

The class type for the point includes two methods: one to get the position of the point, and another to set the position of the point. We will also include areset function to return the point to the origin.
```


class type point_type =

 object
 method get : int
 method set : int -> unit
 method reset : unit
 end;;
 class type point_type = object
method get : int
method set : int -> unit
method reset : unit
end

```

\subsection*{12.1.2 Class expressions}

A class expression gives the definition of a class. The syntax for an class expression uses the class keyword.
object implementation end
The implementation can include any of the following.
- Values, defined with the val keyword.
- Methods, defined with the method keyword.
- Type constraints, defined with the constraint keyword.
- Initializers, defined with the initializer keyword.

We can build a class of the point_type class type by implementing each of the fields in the class type. To implement the point, we will need to include a pos field that specifies the position of the point. The get method should return the pos value, and the move method should add an offset to the position.
```


class point =

 object
 va1 mutable pos = 0
 method get = pos
 method set pos' = pos <- pos'
 method reset = pos <- 0
 end;;
 class point : object
val mutable pos : int
method get : int
method reset : unit
method set : int -> unit
end

```

The pos <- pos + off is a side-effect: the value of pos is updated by adding the offset argument.

Note that the pos field is visible in the class type. To get the correct class type, we need to add a type constraint.
```


class point : point_type =

 object
 val mutable pos = 0
 method get = pos
 method set pos' = pos <- pos'
 method reset = pos <- 0
 end;;
 class point : point_type

```

Class expressions are templates, like function bodies. The expressions in a class expression are not evaluated when the class is defined; they are evaluated when the class is instantiated as an object.

\subsection*{12.1.3 Objects}

Objects are the values created from classes using the new keyword. The methods in the object can be accessed by using the \# operator.
```


let p = new point;;

val p : point = <obj>

p\#get;;

- : int = 0

p\#set 7;;

- : unit = ()

p\#get;;

- : int = 7

1et p2 = new point;;

```
```

va1 p2 : point = <obj>

p2\#get;;

- : int = 0

```

\subsection*{12.1.4 Parameterized class expressions}

Class expressions can be parameterized in OCaml, using a fun expression. For example, suppose we want to specify the initial position of the point as an argument to the class expression.
```


class make_point_class (initial_pos : int) =

 object
 va1 mutable pos = initial_pos
 method get = pos
 method set pos' = pos <- pos'
 method reset = pos <- 0
 end;;
 class make_point_class : int ->
object
val mutable pos : int
method get : int
method reset : unit
method set : int -> unit
end

```

We have to constrain the argument initial_pos to be an int: otherwise the object would be polymorphic. Specific classes can be defined by application.
```


class point7 = make_point_class 7;;

class point7 : make_point_class

let p = new point7;;

val p : point7 = <obj>

p\#get;;

- : int = 7

p\#reset;;

- : unit = ()

p\#get;;

- : int = 0

```

A parameterized class can also include let definitions in the function body. For example, we can lift the pos field out of the class and use a reference cell instead.
```


class make_point_class (initial_pos : int) =

 let pos = ref initial_pos in
 object
    ```
```

 method get = !pos
 method set pos' = pos := pos'
 method reset = pos := 0
 end;;
 class make_point_class : int ->
object
method get : int
method reset : unit
method set : int -> unit
end

```

The body of the class definition is not evaluated initially-it is evaluated at object instantiation time. All point objects will have separate positions.
```


let p1 = new point7;;

val p1 : point7 = <obj>

let p2 = new point7;;

va1 p2 : point7 = <obj>

p1\#set 5;;

- : unit = ()

p2\#get;;

- : int = 7

```

\subsection*{12.2 Polymorphism}

Class types, class expressions, and methods can also be polymorphic. For example, consider the parameterized class make_point_class we just defined. If we do not constrain the type of argument, we get a type of reference cells. The syntax of a polymorphic class includes the type parameters in square brackets after the class keyword.
```


class ['a] make_ref_ce11 (x : 'a) =

 object
 va1 mutable contents = x
 method get = contents
 method set x = contents <- x
 end;;
 class ['a] make_ref_ce11 :
'a ->
object
val mutable contents : 'a
method get : 'a
method set : 'a -> unit
end

class int_ref = [int] make_ref_ce11 0;;

class int_ref : [int] make_ref_ce11

```
```


let p = new int_ref;;

val p : int_ref = <obj>

p\#set 7;;

- : unit = ()

p\#get;;

- : int = 7

class string_ref = [string] make_ref_ce11 "";;

class string_ref : [string] make_ref_cel1

let s = new string_ref;;

val s : string_ref = <obj>

s\#set "He11o";;

- : unit = ()

s\#get;;

- : string = "Hello"

```

\subsection*{12.3 Inheritance}

Inheritance allows classes to be defined by extension. For example, suppose we wish to define a new point class that includes a move method that moves the point by a relative offset. The move method can be defined using the get and set methods. To be able to access these methods, we need a self parameter (like the this object in C++ or Java).

The self parameter is defined after the object keyword. We make a new class movable_point using the inherit keyword to inherit the point class definition.
```


class movable_point =

 object (self)
 inherit point
 method move off =
 self#set (self#get + off)
 end;;
 class movable_point :
object
method get : int
method move : int -> unit
method reset : unit
method set : int -> unit
end

let p = new movable_point;;

val p : movable_point = <obj>

p\#set 7;;

- : unit = ()

p\#get;;

- : int = 7

```
```


p\#move 5;;

- : unit = ()

p\#get;;

- : int = 12

```

\subsection*{12.3.1 Multiple inheritance}

Classes can also be defined by inheriting from multiple classes. For example, let's define a point class that also has a color. The color class can be defined in the normal way.
```


type color = Black | Red | Green | Blue;;

type color = | Black | Red | Green | Blue

class color =

 object
 val mutable color = Black
 method get_color = color
 method set_color color' = color <- color'
 method reset = color <- Black
 end;;
 class color :
object
val mutable color : color
method get_color : color
method reset : unit
method set_color : color -> unit
end

let c = new color;;

val c : color = <obj>

c\#set_color Green;;

- : unit = ()

c\#get_color;;

- : color = Green

```

To define a colored point we inherit from both classes. Objects in this class will have the methods and values defined in both classes.
```


class colored_point =

 object
 inherit point
 inherit color
 end;;
 Characters 63-74:
Warning: the following methods are overriden
by the inherited class: reset
class colored_point :

```
```

 object
 val mutable color : color
 method get : int
 method get_color : color
 method reset : unit
 method set : int -> unit
 method set_color : color -> unit
 end

let cp = new colored_point;;

val cp : colored_point = <obj>

cp\#get;;

- : int = 0

cp\#get_color;;

```

Note that the compiler produced a warning message when the colored point is created. The point and color both define a method called reset. Which definition does the colored point use?
```


cp\#set 7;;

- : unit = ()

cp\#set_color Red;;

- : unit = ()

cp\#reset;;

- : unit = ()

cp\#get;;

- : int = 7

cp\#get_color;;

- : color = Black

```

As usual, the compiler chooses the last definition of the method.
The correct version of the colored point should call both the point and color reset functions. The colored_point method must override the definition. To do this, we need to include a name for the object in each of the inherit declarations.
```

class colored_point =
object
inherit point as p
inherit color as c
method reset =
p\#reset;
c\#reset
end;;
Characters 64-69:
Warning: the following methods are overriden by the inherited class:
reset
class colored_point :

```
```

 object
 val mutable color : color
 val mutable pos : int
 method get : int
 method get_color : color
 method reset : unit
 method set : int -> unit
 method set_color : color -> unit
 end

let cp = new colored_point;;

val cp : colored_point = <obj>

cp\#set 5;;

- : unit = ()

cp\#set_color Red;;

- : unit = ()

cp\#reset;;

- : unit = ()

cp\#get;;

- : int = 0

cp\#get_color;;

- : color = Black

```

The compiler still produces a warning message, but this time the reset method works correctly.

\subsection*{12.3.2 Virtual methods}

Virtual methods can be used to postpone the implementation of methods for definition in subclasses. For example, suppose we wish to make a point that includes a method move to move the object by a relative offset. One way would be to inheritance to define a new class movable_point based on the point class. Another, more general, way is to define a separate movable class that can be combined by multiple inheritance with any class that implements the get and set methods. This class must be declared as virtual because it can't be instantiated (the get and set methods are not implemented).
```


class virtual movable =

 object (se\f)
 method virtual get : int
 method virtual set : int -> unit
 method move off =
 self#set (self#get + off)
 end;;
 class virtual movable :
object

```
```

 method virtual get : int
 method move : int -> unit
 method virtual set : int -> unit
 end

let m = new movable;;

Characters 8-19:
One cannot create instances of the virtual class movable

```

Now to create the class movable_point, we combine the classes by multiple inheritance.
```


class movable_point =

 object
 inherit point
 inherit movable
 end;;
 class movable_point :
object
val mutable pos : int
method get : int
method move : int -> unit
method reset : unit
method set : int -> unit
end

let p = new movable_point;;

val p : movable_point = <obj>

p\#set 7;;

- : unit = ()

p\#move 5;;

- : unit = ()

p\#get;;

- : int = 12

```

Note that a virtual method in OCaml does not mean the same thing as a virtual declaration in C++. In C++, the virtual declaration means that a method can be overridden in subclasses. In OCaml, all methods are virtual in this sense. The OCaml virtual declaration just means that the method definition is omitted.

\subsection*{12.3.3 Subclassing}

The inherit declarations in a class definition define an inheritance hierarchy. In OCaml an object can be coerced to a class type of any of its ancestors. Coercions in OCaml must be made explicitly using the :> operator, which requires two class types: the type of the object, and the type of the object after the coercion.
```


let p = (cp : colored_point :> point);;

val p : point = <obj>

p\#get;;

- : int = 0

p\#get_color;;

Characters 0-1:
This expression has type point
It has no method get_color

```

If the class type can be inferred, the first type can be omitted.
```


let p = (cp :> point);;

val p : point = <obj>

```

In OCaml, objects can also be coerced to any class type that has fewer methods. For example, suppose we want a "read only" colored point without the set and set_color methods.
```


class type read_on7y_point =

 object
 method get : int
 method get_color : color
 end;;
 class type read_on7y_point =
object
method get : int
method get_color : color
end

let ro_p = (cp : colored_point :> read_only_point);;

val ro_p : funny_point = <obj>

ro_p\#get;;

- : int = 0

ro_p\#get_color;;

- : color = Red

ro_p\#set 5;;

Characters 0-4:
This expression has type read_only_point
It has no method set

```

\subsection*{12.3.4 Superclassing, or typecase}

In OCaml, there is no operator to coerce an object to a superclass (there is no "typecase" operator, or instanceof predicate like in Java). So for instance, once we coerce a colored_point to a point, there is no corresponding operator for recovering the colored_point.

This kind of problem can arise frequently in some contexts, especially when binary functions are defined over two objects. For example, suppose
we wish to implement an equality relation on points. The point_equal function should take two objects. If both objects have type point, and both have the same position, the point_equal function should return true. If both are colored_points, and have the same position and color, it should also return true. Otherwise, it should return false.

How can we define this function? One thing is clear, the point_equa1 function must have type point \(->\) point \(->\) bool because the type of point is not known beforehand. If the argument is of type point, how can we tell if it is actually a colored_point?

The easiest way to solve this problem is to use a "trick." For each class, we add a new method that uses an exception to return the actual value. We will call this method typecase, and it will have type unit (since it returns the result by exception). The point class implements the typecase method as follows.
```


class type point_type =

 object
 method get : int
 method set : int -> unit
 method reset : unit
 method typecase : unit
 end;;
 class type point_type =
object
method get : int
method reset : unit
method set : int -> unit
method typecase : unit
end

exception Point of point_type;;

exception Point of point_type

class point =

 object (self)
 va1 mutable pos = 0
 method get = pos
 method set pos' = pos <- pos'
 method reset = pos <- 0
 method typecase = raise (Point (self :> point_type))
 end;;
 class point :
 object
 val mutable pos : int
 method get : int
 method reset : unit
 method set : int -> unit
 method typecase : unit
    ```
end
The typecase method raises the Point exception. Note that the self parameter must be coerced to point_type.

For the colored_point, we perform a similar operation. First, we define the type of colored points, and the exception.
```


class type colored_point_type =

 object
 inherit point
 inherit color
 end;;
 class type colored_point_type =
object
val mutable color : color
val mutable pos : int
method get : int
method get_color : color
method reset : unit
method set : int -> unit
method set_color : color -> unit
method typecase : unit
end

exception ColoredPoint of colored_point_type;;

exception ColoredPoint of colored_point_type

```

Next, we define the class, and override the typecase method.
```


class colored_point =

```
    object (self)
        inherit point as \(p\)
        inherit color as c
        method reset \(=\)
            p\#reset;
            c\#reset
        method typecase \(=\)
            raise (ColoredPoint (self :> colored_point_type))
    end; ;
Characters 77-82:
Warning: the following methods are overriden by the inherited class:
    reset
class colored_point :
    object
        val mutable color : color
        val mutable pos : int
        method get : int
        method get_color : color
```

 method reset : unit
 method set : int -> unit
 method set_color : color -> unit
 method typecase : unit
 end
    ```

Now, the typecase method can be used to determine the class type of a point.
```


let p1 = new point;;

val p1 : point = <obj>

let p2 = new colored_point;;

va1 p2 : colored_point = <obj>

let p3 = (p2 :> point);;

val p3 : point = <obj>

p1\#typecase;;

Uncaught exception: Point(_)

p2\#typecase;;

Uncaught exception: ColoredPoint(_)

p3\#typecase;;

Uncaught exception: ColoredPoint(_)

```

At this point, we can define the point_print printing function.
```


let point_print p =

 try p#typecase with
 Point p ->
 printf "Point: position = %d\n" p#get
 | ColoredPoint p ->
 let color =
 match p#get_color with
 Black -> "black"
 | Red -> "red"
 | Green -> "green"
 | Blue -> "blue"
 in
 printf "ColoredPoint: position = %d, color = %s\n" p#get color
 | _ ->
 raise (Invalid_argument "point_print");;
 val point_print : < typecase : unit; .. > -> unit = <fun>

p1\#set 7;;

- : unit = ()

p2\#set_color Green;;

- : unit = ()

List.iter point_print [p1; (p2 :> point); p3];;

Point: position = }
ColoredPoint: position = 0, color = green

```

ColoredPoint: position \(=0\), color \(=\) green
- : unit = ()

There are two things to note. First, the point_print function takes any object with a typecase method-no just points. Second, we include a default exception case: if the typecase method returns some other exception, the argument is invalid.

\subsection*{12.4 Functional objects}

In all of the examples we have given so far, the methods work by side-effect. OCaml can also be used to implement functional objects, where method updates produce new values by copying the self object. The syntax for a functional update uses the
```

{< ... > }

```
notation to produce a copy of the current object with the same type as the current object, with updated fields. The use of the update operator is important-it is the only way to preserve the current object's type.

Let's build a functional version of points. We include the pos field, which the set method replaces.
```


class point =

 object
 val pos = 0
 method get = pos
 method set pos' = {< pos = pos' >}
 end;;
 class point :
object ('a)
va1 pos : int
method get : int
method set : int -> 'a
end

let p1 = new point;;

val p1 : point = <obj>

p1\#get;;

- : int = 0

let p2 = p1\#set 5;;

val p2 : point = <obj>

p2\#get;;

- : int = 5

```

Note the type of the set method: on an object of type 'a, it takes an integer argument, and returns a new object of type 'a.

The color class can also be modified so that it is functional.
```


class color =

 object
 val color = Black
 method get_color = color
 method set_color color' = {< color = color' >}
 method reset = {< color = Black >}
 end;;
 class color :
object ('a)
val color : color
method get_color : color
method reset : 'a
method set_color : color -> 'a
end

```

What about the colored_point example? For the reset function, we need to invoke the reset method from both the point and color superclasses. There is no syntax to do this directly; for this purpose, we will need to make use of private methods, so that we can name the reset functions.
```


class colored_point =

 object (self)
 inherit point as p
 inherit color as c
 method private p_reset = p#reset
 method private c_reset = c#reset
 method reset = self#p_reset#c_reset
 end;;
 Characters 75-80:
Warning: the following methods are overriden by the inherited class:
reset
class colored_point :
object ('a)
val color : color
val pos : int
method c_reset : 'a
method get : int
method get_color : color
method private p_reset : 'a
method reset : 'a
method set : int -> 'a
method set_color : color -> 'a
end

```

The resulting object has the expected behavior.
\# let p1 = new colored_point;
```

val p1 : colored_point = <obj>

let p2 = p1\#set 7;;

val p2 : colored_point = <obj>

let p3 = p2\#set_color Blue;;

val p3 : colored_point = <obj>

p3\#get;;

- : int = 7

p3\#get_color;;

_ : color = Blue

p2\#get_color;;

- : color = Black

let p4 = p3\#reset;;

val p4 : colored_point = <obj>

p4\#get;;

- : int = 0

p4\#get_color;;

- : color = Black

```

\section*{Bibliography}
[1] L. Damas and R. Milner. Principal type schemes for functional programs, 1982.
[2] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized Logic of Computation, volume 78. Springer Verlag, 1979. Lecture Notes in Computer Science.
[3] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF: a mechanized logic of computation, Lecture Notes in Computer Science, Vol. 78. Springer-Verlag, NY, 1979.
[4] Xavier Leroy. The Objective Caml System: Documentation and User's Manual, 2002. With Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. Availiable from www. ocam1.org.
[5] Chris Okasaki. Red-black trees un a functional setting. Journal of Functional Programming, 9(4):471-477, May 1999.
[6] Didier Rémy and Jérôme Vouillon. Objective ML: A simple objectoriented extension of ML. In ACM Symposium on Principles of Programming Languages, pages 40-53, 1997.```

