CSE526 Spring 2004 Homework Two Problem 3

Yiping Han

23rd February 2004

1 Problem

Using the direct denotational semantics in Sections 2.2-2.4, prove that the equation above equation (2.2) on [Reynolds, p. 28] holds, i.e.,

[[while b do c]]
$$\sigma = [[\text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else skip}]] \sigma$$

In other words, when we have defined the meaning of "while" loops using equation (2.4) on [Reynolds, p. 36], we should be able to prove that the above equation holds, as a way of checking that equation (2.4) has the desired meaning.

2 Proof:

$$RHS = \text{if } [[b]] \sigma \text{ then } [[c; \text{ while } b \text{ do } c]] \sigma \text{ else } \sigma$$
 (1)

= if
$$[[b]] \sigma$$
 then $([[\text{while } b \text{ do } c]])_{\perp\perp}([[c]] \sigma)$ else σ (2)

= if
$$[[b]]$$
 σ then $(Y_{\Sigma \to \Sigma_{\perp}} F)_{\perp \perp} ([[c]] \sigma)$ else σ (3)

where $F f \sigma = \text{if } [[b]] \sigma \text{ then } f_{\perp \perp}([[c]] \sigma) \text{ else } \sigma.$

While for the left-hand-side, we have:

$$LHS = [[\text{while } b \text{ do } c]]\sigma \tag{4}$$

$$= Y_{\Sigma \to \Sigma_{\perp}} F \sigma \tag{5}$$

where, $Ff\sigma = \text{if } [[b]] \ \sigma \ \text{then} f_{\perp\perp}([[c]] \ \sigma) \ \text{else} \ \sigma.$

Note that we have Y_D F $\sigma = F$ $(Y_D$ F) σ , therefore,

$$LHS = F(Y_{\Sigma \to \Sigma_{\perp}} F) \sigma \tag{6}$$

= if
$$[[b]]$$
 σ then $(Y_{\Sigma \to \Sigma_{\perp}} F)_{\perp \perp} ([[c]] \sigma)$ else σ (7)

where, $Ff\sigma=$ if [[b]] σ then $f_{\perp\perp}([[c]]$ $\sigma)$ else σ . Hence, RHS=LHS. Proved.

END OF PROOF