CSE526: Principles of Programming Languages Scott Stoller hw3: Hoare logic version: 5pm,1feb2004 due: 26 feb 2004 Answer

Yiping Han

1st March 2004

1 Problem

1. Prove correctness of the following program for computing integer square roots in linear time. Specifically, prove

$${x \ge 0}r := 0$$
; while $x \ge (r+1)^2$ do $r := r+1{r^2 <= x < (r+1)^2}$

As indicated on [Reynolds, page 57], you do not need to prove predicate-logic assertions (such as x < x + 1) that occur in the proof, but the assertions should be valid.

You may structure your proof in the linear format described in [Reynolds, chapter 3] or as a proof tree (if you are comfortable with that concept).

2 Proof 1:

1.
$$\{x \ge 0\}r := 0\{x \ge r^2\}$$
 (AS)

- 2. $\{x \ge (r+1)^2\}r := r+1\{x \ge r^2\}$ (AS)
- 3. $x \ge r^2 \land x \ge (r+1)^2 \iff x \ge (r+1)^2$
- 4. $\{x \ge r^2 \land x \ge (r+1)^2\}r := r + 1\{x \ge r^2\}$ (SP,2,3)
- 5. $\{x \ge r^2\}$ while $x >= (r+1)^2$ do r := r+1 $\{x \ge r^2 \land x < (r+1)^2\}$ (WHP,4)
- 6. $\{x \ge 0\}$ r := 0; while $x \ge (r+1)^2$ do r := r+1 $\{x \ge r^2 \land x < (r+1)^2\}$ (SQ,1,5)

END OF PROOF

3 Proof 2:

- 1. $\{x \ge 0\}r := 0\{x \ge r^2\}$ (AS) 2. $\{x \ge r^2\} \iff \{(x \ge r^2 \land x < (r+1)^2) \lor (x \ge r^2 \land x \ge (r+1)^2)\}$
- 3. $\{ x \ge r^2 \land x < (r+1)^2 \land x \ge (r+1)^2 \}$ r:=r+1 $\{ x \ge r^2 \land x < (r+1)^2 \}$

$$\begin{array}{ll} \text{4. } \{x \geq r^2 \wedge x < (r+1)^2\} \\ \text{while } x >= (r+1)^2 \ \text{do } r := r+1 \\ \{x \geq r^2 \wedge x < (r+1)^2\} \end{array} (\text{WHP,3}) \end{array}$$

5.
$$\{x \ge r^2 \land x \ge (r+1)^2\}r := r+1\{x \ge r^2\}$$
 (AS)

- 6. $\{x \ge r^2 \land x \ge (r+1)^2 \}$ while $x >= (r+1)^2 \text{ do } r := r+1$ $\{x \ge r^2 \land x < (r+1)^2 \}$ (WHP,5)
- 7. $\{x \ge r^2\}$ while $x >= (r+1)^2$ do r := r+1 $\{x \ge r^2 \land x < (r+1)^2\}$ (DA,2,4,6)

8.
$$\{x \ge 0\}$$

 $r := 0$; while $x >= (r+1)^2$ do $r := r+1$
 $\{x \ge r^2 \land x < (r+1)^2\}$ (SQ,1,7)

END OF PROOF