Neural State Classification for Hybrid Systems

Dung Phan
Department of Computer
Science, Stony Brook University, USA

Nicola Paoletti
Department
of Computer Science, Royal

Timothy Zhang
Department of Computer
Science, Stony Brook University, USA

Holloway, University of London, UK

Radu Grosu

Department of Computer Engineering,
Technische Universitat Wien, Austria

CCS CONCEPTS

« Theory of computation — Timed and hybrid models; Verifi-
cation by model checking; » Computing methodologies — Neural
networks.

ACM Reference Format:

Dung Phan, Nicola Paoletti, Timothy Zhang, Radu Grosu, Scott A. Smolka,
and Scott D. Stoller. 2019. Neural State Classification for Hybrid Systems. In
The Fifth International Workshop on Symbolic-Numeric methods for Reasoning
about CPS and IoT (SNR ’19), April 15, 2019, Montreal, QC, Canada. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3313149.3313372

Paper appeared in: Dung Phan, et al. Neural state classification for hy-
brid systems. In International Symposium on Automated Technology
for Verification and Analysis, LNCS 11138, pp. 422-440, 2018.

EXTENDED ABSTRACT

Model checking of hybrid systems is usually expressed in terms of
the following reachability problem for hybrid automata (HA) [6]:
given an HA M, a set of initial states I, and a set of unsafe states U,
determine whether there exists a trajectory of M starting in an initial
state and ending in an unsafe state. The time-bounded version of this
problem considers trajectories that are within a given time bound T.

We introduce the State Classification Problem (SCP), a generaliza-
tion of the model checking problem for hybrid systems. Let B={0,1}
be the set of Boolean values. Given an HA M with state space S(M),
time bound T, and set of unsafe states U C S(M), the SCP problem is
to find a function F* : S(M)— B such that for all s € S(M), F*(s)=1if
M |=Reach(U,s,T), i.e., if it is possible for M, starting in s, to reach
a state in U within time T; F*(s) = 0 otherwise. A state s € S(M) is
called positive if F*(s) = 1. Otherwise, s is negative. We call such a
function a state classifier.

State classification is also useful in at least two other contexts.
First, due to random disturbances, a hybrid system may restart in
arandom state outside the initial region, and we may wish to check
the system’s safety from that state. Secondly, a classifier can be used
for online model checking [10], where in the process of monitoring

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

SNR ’19, April 15, 2019, Montreal, QC, Canada

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6697-7/19/04. ..$15.00
https://doi.org/10.1145/3313149.3313372

Scott A. Smolka

Department of Computer
Science, Stony Brook University, USA

Scott D. Stoller
Department of Computer
Science, Stony Brook University, USA

a system’s behavior, one would like to determine, in real-time, the
fate of the system going forward from the current (non-initial) state.

This paper shows how deep neural networks (DNNs) can be used
for state classification, an approach we refer to as Neural State Clas-
sification (NSC). An NSC classifier is subject to false positives (FPs)
and, more importantly, false negatives (FNs). An FP occurs when a
state s is deemed positive when it is actually negative, and, likewise,
an FN occurs when s is deemed negative when it is actually positive.

A well-trained NSC classifier offers high accuracy, runs in con-
stant time (approx. 1 ms in our experiments), and takes constant
space (e.g., a DNN with [hidden layers and n neurons only requires
functions of dimension [n for its encoding). This makes NSC classi-
fiers very appealing for applications such as online model checking,
a type of analysis subject to strict time and space constraints.

Our approach can also classify states of parametric HA by encod-
ing each parameter as an additional input to the classifier. This makes
NSC more versatile than state-of-the-art hybrid system reachability
tools, which provide little or no support for parametric analysis [3, 4].

The NSC method is summarized in Figure 1. We train the state
classifier using supervised learning, where the training examples
are derived by sampling the state and parameter spaces according
to some distribution. Reachability values for the examples are com-
puted by invoking an oracle, i.e., an hybrid system model checker [4]
or a simulator when the system is deterministic.

M(p) l(U. T)
Sampling Performance Statistical
[(s,p) Oracle H Test Data [evaluation guarantees
Training - . Threshold
‘ Data H Classifier(M (p), U, T) [Adaptation] L selection

Figure 1: Overview of the NSC approach.

We evaluate a trained state classifier by estimating its accuracy,
false-positive rate, and false-negative rate (together with their con-
fidence intervals) on a test dataset of fresh samples. This allows us
to quantify how well the classifier extrapolates to unseen states, i.e.,
the probability that it correctly predicts reachability for any state.

Inspired by statistical model checking [8], we also provide sta-
tistical guarantees through sequential hypothesis testing to certify
(up to some confidence level) that the classifier meets prescribed
accuracy levels on unseen data.

We also consider two tuning methods that can reduce and virtually
eliminate false negatives: a new method called falsification-guided
adaptation that iteratively re-trains the classifier with false negatives

https://doi.org/10.1145/3313149.3313372
https://doi.org/10.1145/3313149.3313372

SNR 19, April 15,2019, Montreal, QC, Canada

found through adversarial sampling; and threshold selection, which
adjusts the NN’s classification threshold to favor FPs over FNs.

We have applied NSC to six nonlinear hybrid system benchmarks,
achieving an accuracy of 99.25% to 99.98%, and a false-negative rate
0f 0.0033 to 0, which we further reduced to 0.0015 to 0 after tuning
the classifier. We believe that this level of accuracy is acceptable in
many practical applications, and that these results demonstrate the
promise of the NSC approach.

In the rest of this extended abstract, we provide more details about
the NSC approach and discuss experimental results.

Generation of Training Data and Test Data

We consider three sampling methods for generation of training data
and test data. Note that we do not sample states in U, which are
trivially positive.

Uniform sampling, where every state is equi-probable.
Dynamics-aware sampling, which samples a state according to the
estimated probability that the state is visited in any time-bounded
evolution of the system. This approach estimates a state distribution
through isotropic random walks of the HA; i.e., by choosing uni-
formly at random, at each step of the simulation, the next transition
from those available.

Balanced sampling, which seeks to improve accuracy by drawing
a balanced number of positive and negative states. This method is
especially useful when the set of unsafe states U is a small portion of
the overall state space. In this case, uniform sampling would produce
imbalanced datasets with an insufficient number of positive sam-
ples, leading to a classifier with poor accuracy. For this purpose, we
introduce a method for generating arbitrarily large sets of positive
samples based on the construction and subsequent simulation of
reverse hybrid automata (discussed below).

Oracles

Given a state (sample) s of an HA M, an NSC oracle is a procedure
for labeling s; i.e., for deciding whether M |=Reach(U.,s,T).
Reachability checker. For nonlinear HA, NSC uses dReal [4], an SMT
solver that supports bounded model checking of such HA. dReal pro-
vides sound unsatisfiability proofs, but satisfiability is approximated
up to a user-defined precision (J-satisfiability).

Simulator. For deterministic systems, we implemented a simulator
based on MATLAB’s ode45 variable-step ODE solver.

Backwards simulator. This is not an oracle per se, but is central to the
balanced sampling method. For backwards simulation, we first need

—
to construct the reverse HA M of M. This construction is based on a
novel definition of reverse HA which generalizes the one for rectan-
gular HAs given in [6] and ensures that reverse trajectories obtained

by simulating M are consistent with M. See [9] for further details.
To generate a positive sample in the context of balanced sampling,
we then just need to invoke the backwards simulator starting from
an unsafe state.

A-posteriori Statistical Guarantees

Given the infeasibility of training machine-learning models with
guaranteed accuracy on unseen data, we provide statistical guaran-
tees a posteriori, i.e., after training. Inspired by statistical approaches

Phanet al.

to model checking [8], we employ hypothesis testing, Wald’s se-
quential probability ratio test (SPRT) in particular, to certify that our
classifiers meet prescribed levels of accuracy and FN/FP rates.

We provide guarantees of the form Pp > 0, (i.e., the true accuracy
value is above 0p), PeN < Opn and Prp < Opp (i.e., the true rate of
FNs and FPs are below 0y and 6pp, respectively). Because of their
statistical nature, such guarantees are precise up to arbitrary bounds
on the probability of Type-I error and Type-II errors, respectively
denoted by a,f €(0,1).

Reducing False Negatives Via Falsification

For NSC, it is important to reduce the rate of FNs, the most serious
errors from a safety- critical perspective. One approach is based on
tuning the classification threshold of the NN. We introduce another,
more systematic, approach that works by retraining the classifier
with unseen FN samples found in the test stage, thereby making
the classifier more conservative. For this purpose, we devised a
whitebox falsification-guided adaptation algorithm that, at each it-
eration, searches for FNs using adversarial sampling; i.e., by solving
an optimization problem that maximizes the disagreement between
NN-predicted and true reachability values. The optimization prob-
lem exploits the knowledge of an NN classifier function (whitebox
approach). FNs found in this way are used to retrain the classifier.
The algorithm iterates until the falsifier cannot find any more FNs or
until a maximum number of iterations is reached. In our experiments,
we used genetic algorithms to solve this optimization problem, but
other nonlinear optimization methods are equally supported.

In [9], we proved that under some assumptions about the perfor-
mance of the classifier and the falsifier, our algorithm converges to
an empty set of FNs. Although it may be difficult in practice to guar-
antee that these assumptions are satisfied, our algorithm performs
reasonably well in practice, as shown in the next section.

Experimental Evaluation

We evaluated our NSC approach on six hybrid-system benchmarks:
spiking neuron [2], inverted pendulum, a quadcopter system [5],
a cruise controller [2], a powertrain model [7], and a helicopter
model [1]. These case studies represent a broad spectrum of hybrid
systems and varying degrees of complexity (deterministic, nonde-
terministic, nonlinear dynamics, 2—-29 variables, 1-6 modes, 1-11
transitions). We used MATLAB’s train function to learn the NSC
neural networks.

We considered the following types of classifiers: sigmoid DNNs
(DNN-S) with 3 hidden layers of 10 neurons each; shallow sigmoid
NNs (SNN), with one hidden layer of 20 neurons; ReLU DNNs (DNN-
R), with 3 hidden layers of 10 neurons each and rectified linear unit
(ReLU) activation function for the hidden layers; support vector ma-
chines with radial kernel (SVM); binary decision trees (BDT); and
a simple nearest neighbor classifier (NBOR).

We learned the classifiers from relatively small datasets, using
training sets of 20K samples and test sets of 10K samples, except
where noted otherwise. The NN architecture (numbers of layers and
neurons) was chosen empirically. To avoid overfitting, we did not
tune the architecture to optimize the performance for our data.
Performance evaluation. Table 1 shows accuracy and FN rate for all
classifiers and case studies, using uniform and balanced sampling.
We obtain very high classification accuracy for neuron, pendulum,

Neural State Classification for Hybrid Systems

SNR’19, April 15,2019, Montreal, QC, Canada

Neuron Pendulum Quadcopter Cruise Powertrain Helicopter
Acc FN Acc FN Acc FN Acc FN Acc FN Acc FN
DNN-S | 99.81 0.1 99.98 0 99.83 0.1 99.95 0.01 | 96.68 128 | 98.49 0.84
DNN-R | 99.52 0.29 99.93 0.04 | 99.89 0.06 | 99.98 0 96.21 1.08 98 0.96 g
SNN 99.17 0.43 99.81 0 99.85 0.08 99.84 0.15 | 96.02 1.37 97.69 1.25 g"
SVM 98.73 0.75 99.84 0 97.33 0.69 99.88 0.1 92.26 3.48 95.58 2.42 5
BDT 99.3 0.37 99.6 0.17 99.52 0.2 99.84 0.08 | 95.59 2.19 80.07 9.8
NBOR | 97.03 1.22 99.69 0.14 | 99.53 0.25 99.49 033 | 7144 1451 | 67.39 16.98
Acc FN Acc FN Acc FN Acc FN Acc FN Acc FN
DNN-S | 99.83 0.12 | 99.89 0 99.82 0.04 99.94 0 97.2 0.86 | 98.24 0.79 -
DNN-R | 99.48 0.24 99.63 0.01 99.67 0.09 99.95 0 96.07 1.24 97.91 1.2 &
SNN 98.89 0.69 99.2 0 99.49 0.01 99.6 0 95.21 1.79 97.58 1.16 g
SVM 98.63 0.78 99.37 0 96.93 0.2 99.61 0 91.84 33 95.36 1.85 1
BDT | 99.07 0.45 99.46 0.05 99.36 0.22 99.9 0.03 | 95.86 24 79.03 1026 =
NBOR | 96.95 1.62 99.51 0.04 | 99.11 0.56 99.47 011 | 71.33 13.99 | 65.18 17.48

Table 1: Empirical accuracy (Acc) and FN rate of the state classifiers for each case study, classifier type, and sampling method. Values are in
percentages. For each measure and sampling method, the best result is highlighted in bold.

quadcopter and cruise. For these case studies, DNN-based classi-
fiers registered the best performance, with accuracy values ranging
between 99.48 % and 99.98 %, and FN rates between 0.24% and 0%.

In contrast, the accuracy for the helicopter and powertrain mod-
els is poor if we use only 20K training samples. These models are
indeed particularly challenging, owing to their high dimensionality
(helicopter) and highly nonlinear dynamics (powertrain). Using 1M
samples instead of 20K for the helicopter case study, the accuracy
jumps from 98.49% to 99.92%, and the FN rate decreases from 0.84%
(20K) to 0.04%. For powertrain, the accuracy increases from 96.68%
t0 99.25%, and the FN rate decreases from 1.28% to 0.33%.

In general, we found that the NN-based classifiers have superior
accuracy compared to support vector machines and binary decision
trees. As expected, the nearest-neighbor method demonstrated poor
prediction capabilities.

We omit results for dynamics-aware sampling, because using
dynamics-aware sampling alone yields unbalanced datasets unsuit-
able for training. Thus, to evaluate this sampling method, we gener-
ated training data with a combination of dynamics-aware sampling
and either uniform or balanced sampling. Test data consists exclu-
sively of dynamics-aware samples. With these settings, we obtained
results similar to Table 1.

Parametric analysis. We show that NSC is an effective approach
for parametric systems, being able to classify states in models with
parameter values not seen during training. For this purpose, we
modified the neuron model by introducing different numbers of
parameters. Using DNN-S and 110K training samples, we achieve
very high accuracy (> 99.7%) for up to two parameters. For three to
five parameters, the accuracy decreases but remains relatively high
(around 98%), suggesting that larger training sets are required for
these cases. Indeed, the input space grows exponentially in the num-
ber of parameters, while we kept the size of the training set constant.
Statistical guarantees. We use SPRT (with a = f =0.01) to provide
statistical guarantees for our case studies. We assess two properties
certifying that the true (not the empirical) accuracy and FNs meet
given performance levels: Pp >99.7%, and PpN < 0.2%.

We found that the only classifier that guarantees these perfor-
mance levels for all case studies is the sigmoid DNN. We also deter-
mined that a small number of samples suffices to obtain statistical

-
20 20 3 ot
+ % b +
+ + ot
o o + X
3
. + f
> 20 b | > 20| + b * f.
+ . + o+ %
-0 | . 40| 4 + i
L +
. s Lo+
-60 o o -60 oo 1y
0 5 10 15 20 25 [5 10 15 20 25
u u
(a) Before adaptation (b) After adaptation

Figure 2: Effects of adaptation on the DNN-S for the neuron case
study. The white region is the predicted negative region. The yellow
region is the predicted positive region. Red dots are FN samples.
Crosses are FP samples.

guarantees with the given strength: only 6.25% of the tests needed
more than 10K samples to decide the property.

Falsification-guided adaptation. We evaluate the benefits of adapta-
tion by incrementally adapting the trained NNs with FN samples. To
measure the impact of adaptation, we tested the DNNs on 10K sam-
ples after each iteration of adaptation. For the neuron, quadcopter,
and helicopter case studies, our algorithm effectively reduces the FN
rate to 0% after only 5-10 iterations, at the cost of a slight increase in
the FP rate. For powertrain, the falsifier needs more iterations (150)
to reduce the FN rate, which decreases from 0.33% to 0.15%.

Figure 2 visualizes the effects of adaptation on the DNN-S classi-
fier for the neuron case study. Fig. 2 (a) shows the predictions of the
DNN after training with 20K samples. Fig. 2 (b) shows the predictions
of the DNN after adaptation. We see that adaptation expands the
predicted positive region so as to enclose all previous FN samples;
i.e., they are correctly re-classified as positive. The enlarged positive
region also means the adapted DNN is more conservative, producing
more FPs as shown in Fig. 2 (b).

ACKNOWLEDGMENTS

AFOSR GrantFA9550-14-1-0261, NSF Grants CPS-1446832,11S-1447549,
CNS-1445770,CNS-1421893, and CCF-1414078, FWF-NFN RiSE Award,
and ONR Grant N00014-15-1-2208.

REFERENCES
n

Stanley Bak and Parasara Sridhar Duggirala. 2017. Rigorous simulation-based

analysis of linear hybrid systems. In TACAS. Springer, 555-572.

[2] Xin Chen etal. 2015. A benchmark suite for hybrid systems reachability analysis.
In NFM. Springer, 408-414.

[3] Goran Frehse et al. 2011. SpaceEx: Scalable verification of hybrid systems. In CAV.

Springer, 379-395.

SNR 19, April 15,2019, Montreal, QC, Canada

Sicun Gao, Soonho Kong, and Edmund M Clarke. 2013. dReal: An SMT solver
for nonlinear theories over the reals. In International Conference on Automated
Deduction. Springer, 208-214.

Andrew Gibiansky. 2012. Quadcopter dynamics and
http://andrew.gibiansky.com/blog/physics/quadcopter-dynamics/
Thomas A. Henzinger et al. 1995. What’s Decidable About Hybrid Automata?.
In STOC. 373-382.

Xiaoqing Jin et al. 2014. Powertrain control verification benchmark. In HSCC.
253-262.

simulation.

Phanet al.

[8] Axel Legay, Benoit Delahaye, and Saddek Bensalem. 2010. Statistical Model

[

[10

]

Checking: An Overview. In RV. Springer, 122-135.

Dung Phan, Nicola Paoletti, Timothy Zhang, Radu Grosu, Scott A Smolka, and
Scott D Stoller. 2018. Neural state classification for hybrid systems. In International
Symposium on Automated Technology for Verification and Analysis. Springer,
422-440.

Koushik Sen, Grigore Rosu, and Gul Agha. 2004. Online efficient predictive safety
analysis of multithreaded programs. In TACAS, Vol. 2988. Springer, 123-138.

http://andrew.gibiansky.com/blog/physics/quadcopter-dynamics/

	Acknowledgments
	References

