
Fast Distributed Evaluation of Stateful

Attribute-Based Access Control Policies
?

Thang Bui, Scott D. Stoller, and Shikhar Sharma

Department of Computer Science, Stony Brook University, USA

Abstract. Separation of access control logic from other components of
applications facilitates uniform enforcement of policies across applica-
tions in enterprise systems. This approach is popular in attribute-based
access control (ABAC) systems and is embodied in the XACML stan-
dard. For this approach to be practical in an enterprise system, the ac-
cess control decision engine must be scalable, able to quickly respond
to access control requests from many concurrently running applications.
This is especially challenging for stateful (also called history-based) ac-
cess control policies, in which access control requests may trigger state
updates. This paper presents an policy evaluation algorithm for stateful
ABAC policies that achieves high throughput by distributed processing,
using a specialized multi-version concurrency control scheme to deal with
possibly con�icting concurrent updates. The algorithm is especially de-
signed to achieve low latency, by minimizing the number of messages on
the critical path of each access control decision.

1 Introduction

Separation of access control logic from other components of applications facili-
tates uniform enforcement of policies across applications in enterprise systems.
This approach is adopted in the ISO standard for access control in open systems
[13] and the XACML standard1. Servers that run the access control policy eval-
uation algorithm and provide access control decisions to applications are called
policy decision points (PDPs) in XACML terminology. In this paper, we refer to
them simply as servers, since we do not discuss other kinds of server.

For this approach to be practical in an enterprise system, the policy eval-
uation algorithm must be scalable, able to quickly respond to access control
requests from many concurrently running applications. To scale beyond the ca-
pacity of a single server, distributed policy evaluation algorithms are needed, to
coordinate concurrent processing of requests on multiple servers. This is rela-
tively straightforward if the policy and the information it references are static.

? This material is based on work supported in part by NSF Grants CNS-1421893,
and CCF-1414078, ONR Grant N00014-15-1-2208, AFOSR Grant FA9550-14-1-0261,
and DARPA Contract FA8650-15-C-7561. Any opinions, �ndings, and conclusions
or recommendations expressed in this material are those of the authors and do not
necessarily re�ect the views of these agencies.

1 http://www.oasis-open.org/committees/xacml/

http://www.oasis-open.org/committees/xacml/

However, this is challenging for stateful (also called state-modifying, dynamic, or
history-based) access control policies, in which access control requests may trigger
state updates, i.e., updates to information referenced by the policy. The classi-
cal examples of stateful access control policies are dynamic separation-of-duty
(DSOD) policies, such as the Chinese wall policy [5] and DSOD in role-based
access control (RBAC) [2]. Another classic category of stateful access control
policies are usage control policies [20], such as policies that limit the number
of times a user can view a video or the number of videos that a user with a
particular type of subscription can view each month. The research literature
contains numerous additional examples of stateful access control policies, pol-
icy models, and policy evaluation algorithms [10,11,6,3,4,17,12,19,14,8,22,18]. In
the context of Attribute-Based Access Control (ABAC), the updated state is
typically attribute data.

The main challenge in distributed policy evaluation algorithms for state-
ful policies is ensuring serializability, as in concurrent transaction processing in
databases [21]. Processing of each access control request, including its reads of
attribute data and its updates to attribute data, should be serializable with
respect to processing of other requests. Since concurrent requests may read or
write the same attribute data, a concurrency control mechanism is needed to
ensure this.

To illustrate the importance of serializability in this context, consider a typ-
ical Chinese wall policy in which companies A and B are in the same con�ict
of interest (COI) class, so user who has accessed documents of one them cannot
access documents of the other. When a server allows a request for access to doc-
uments of either company, it updates a user attribute to re�ect this. Suppose a
devious user concurrently submits an access request for a document of company
A to one server, and an access request for a document of company B to another
server. In a non-serializable execution in which both requests are evaluated in
the initial state (where the user has not accessed any documents), both requests
could be permitted, violating the intended policy. In a serializable execution, the
result must be equivalent to a serial execution, where one of the requests sees the
e�ect of the update performed by the other request, causing the second request
to be denied, as it should be.

A straightforward approach to this problem is to use a distributed replicated
database that supports serializability for multi-row transactions, and to evaluate
each request in a transaction. However, this requirement eliminates well-known
scalable NoSQL databases, such as Bigtable [7], Cassandra2, and MongoDB3,
which achieve scalability in part by supporting only single-row transactions.
Master-slave replication in SQL databases, such as MySQL4, allows multi-row
transactions, but has limited scalability, because all read-write transactions must
be submitted to a single master server, and provides inadequate consistency guar-
antees, because slaves can return slightly out-of-date data. Multi-phase commit

2 http://cassandra.apache.org/
3 https://www.mongodb.com/
4 https://dev.mysql.com/

http://cassandra.apache.org/
https://www.mongodb.com/
https://dev.mysql.com/

protocols, such as in Oracle, IBM DB2, and Microsoft SQL Sever, allow multi-
row tranasctions and ensure serializability, but are less scalable.

Decat et al. present a distributed policy evaluation algorithm for stateful
ABAC policies [8] that is more scalable than multi-phase commit protocols, by
exploiting the fact that evaluation of an ABAC request involves at most two
objects (i.e., two rows), typically called the subject and the resource. Their algo-
rithm uses a specialized scheme for optimistic concurrency control [21, Section
15.5]. Their experimental results demonstrate that their algorithm scales well in
terms of throughput. However, their algorithm incurs a signi�cant increase in
latency, since processing of each request involves a chain of 6 messages (including
the messages to and from the client).

This paper presents a new distributed policy evaluation algorithm for state-
ful ABAC policies. The algorithm is called FACADE (Fast Access Control Algo-
rithm with Distributed Evaluation). It uses a specialized scheme for multiversion
timestamp ordering concurrency control [21, Section 15.6] that simultaneously
achieves low latency by minimizing the length of the message chain on the crit-
ical path (i.e., the message chain ending with the result sent to the client). Low
latency is of obvious importance for interactive applications: developers struggle
to keep the latency of the application's core functionality within limits acceptable
to users, especially for multi-tier enterprise applications, where many requests
involve processing by multiple servers (web servers, application servers, database
servers, etc.), and latency contributions from non-core functionality such as ac-
cess control are acceptable only if they are low. Low latency is also important
for batch applications. These applications often process large amounts of data,
hence requiring many access control checks. If the latency of these checks is not
kept very low, the repeated delays in the core application processing will cause
poor system utilization. Reducing the number of messages per request has the
additional bene�t of reducing the required network capacity.

FACADE processes read-only requests di�erently than read-write requests,
in contrast to Decat et al.'s algorithm, which processes all requests the same
way. This, together with use of multiversion timestamp ordering concurrency
control, enables FACADE to use especially short message chains for read-only
requests. Multiversion timestamp ordering concurrency control has the desirable
property that read-only requests never abort. This helps FACADE use a shorter
critical path than Decat et al.'s algorithm for read-only requests.

FACADE also uses shorter message chains than Decat et al.'s algorithm for
read-write requests. This is achieved partly by use of multiversion concurrency
control and partly by specialization to requests that update at most one object.
This specialization is motivated by the observation that in every stateful policy
given as an example in every paper cited above, each request updates the state
of at most one object. FACADE can be extended to handle requests that update
two objects, but that extension is not described in this paper.

FACADE is more �exible than Decat et al.'s algorithm, in that FACADE
allows an object to be a subject and a resource, while Decat et al.'s algorithm
requires the sets of subjects and resources to be disjoint [8, Section 3.4]

We ran experiments, described in Section 3, to compare the performance of
FACADE and Decat et al.'s algorithm. Our experiments show that FACADE
has signi�cantly lower average latency, uses signi�cantly fewer network messages
per request, and has slightly higher throughput than Decat et al.'s algorithm in
many cases.

2 Algorithm

System Architecture. We adopt the system architecture in [8]. There are two
types of hosts: clients and servers. Each client runs applications and a small
client-side stub that interacts with the access control servers. Each server runs
three kinds of processes: a coordinator, which receives requests from clients and
is responsible for concurrency control, a database, which stores a copy of the
attribute data used by the policy, and one or more workers, which evaluate
requests based on the access control policy and send the result to the coordinator
and/or client.

Each worker reads attribute data from the co-located replica of the database.
Workers never update the database. The set of objects is partitioned across
the set of coordinators. Thus, for each object x, there is a unique coordinator,
denoted coord(x), responsible for x; we also say that coord(x) manages x. Only
coord(x) submits updates of x to the master database (this is done using a
standard database connector, such as ODBC or JDBC, regardless of whether
the master database is on the same server or a di�erent server). Coordinators
never read the database.

Multiversion timestamp ordering concurrency control. Before presenting our al-
gorithm, we brie�y review multiversion timestamp ordering concurrency control
[21, Section 15.6], with a change in terminology: we refer to �requests� in place
of �transactions�. A sequence of versions is associated with each data item. In
FACADE, we treat each attribute of each object as a data item. Each version v
has a value v.value, a write timestamp v.wts (the timestamp of the request that
created v), and a read timestamp v.rts (the largest timestamp of any request
that successfully read v). Each request req is assigned a timestamp req.ts. Let
v denote the most recent version of x.attr whose timestamp is at most req.ts. A
read of x.attr by req returns v.value. A write by req requires a con�ict check: if
req.ts < v.rts, then req aborts and restarts; if req.ts == v.wts, then the value of
v is overwritten; otherwise (if req.ts > v.rts), a new version of x.attr is created.
Note that reads never cause aborts, and read-only transactions always commit.

To support con�ict checking, each coordinator maintains a data structure
containing the read timestamp and write timestamp of every version of an at-
tribute created during the coordinator's current session (i.e., since the coordi-
nator process started running). This data structure does not store the value of
each version, since it is not needed for con�ict checking. Entries for old versions
can be garbage-collected; details are straightforward and omitted. Although this
data structure has some information overlap with cachedUpdates, we keep the
two data structures separate for clarity, because they serve di�erent purposes.

This data structure is accessed using two functions. getVersion(x,attr,ts) re-
turns the most recent version of x.attr written at or before ts; if no such version
exists, it returns a special version v with v.wts=0 and v.rts=0, representing the
last version written in the previous session (any timestamp guaranteed to pre-
cede all timestamps generated in the current session is safe; 0 is a convenient
choice). addVersion(x,attr,ts) creates and stores a version of x.attr with write
timestamp and read timestamp equal to ts.

Database. To avoid use of a heavyweight multi-phase commit protocol in the
database, we assume a database that supports master-slave (also called primary-
secondary) replication, in which updates are committed at one replica, called
the master or primary, and the updates are visible at the other replicas, called
slaves or secondaries, within a known time limit, called the database latency.
This assumption is satis�ed by the replication schemes in popular databases,
such as primary-secondary replication in MongoDB and master-slave replication
in MySQL. Loose bounds on the database latency are su�cient: the size of the
database latency has little e�ect on FACADE's performance, mainly a�ecting
how long updates are cached by coordinators. Since distributed concurrency con-
trol is provided by the coordinators, it does not matter what, if any, centralized
concurrency control scheme is used by the master replica of the database.

FACADE masks the database latency in the same way as Decat et al.'s
algorithm. Each coordinator maintains a LRU cache of recent committed updates
to objects it manages, and it piggybacks on each request (when forwarding the
request to a coordinator or worker) the cached updates for objects it manages
that are involved in the request. Each cached update speci�es a write timestamp
as well as an attribute and its new value. A cached update is never evicted before
the current time exceeds the update's write timestamp plus the database latency.
The cache is accessed using the function cachedUpdates(x), which returns the
set of cached updates to x.

FACADE needs to store multiple versions of objects in the database. This can
easily be done in any database, by including a �version� column in the database
schema. Our implementation using MySQL works this way.

Request objects. We model requests as objects with �elds subject, resource, ts
(timestamp), cachedUpdates[i] (i=1 and i=2 for piggybacked cached updates
to subject and resource, respectively), worker (worker selected to evaluate this
request), and evalResult (result of evaluating the request, described below).

Policy language. FACADE is independent of the details of the policy language.
Any ABAC policy language can be used, provided it can express updates. For ex-
ample, XACML can be used, with updates expressed as obligations, as in [20,8].
Details of the policy language are abstracted behind an interface containing a
single function evaluateRequest(policy,request) that returns an EvalResult ob-
ject with these �elds: decision (permit or deny), readAttr[i] (i=1 and i=2 for the
set of attributes of the subject and resource, respectively, read during evaluation

of the request), updatedObj (the index of the updated object, if any, other-
wise -1), rdonlyObj (if updatedObj > 0, this is the index of the other object,
otherwise -1), and updates (set of attribute-value pairs, specifying updates to
updatedObj). The index values are interpreted as: 1=subject, 2=resource. eval-
uateRequest evaluates the request using attribute values current as of req.ts,
reading values from req.cachedUpdates when they exist, otherwise reading val-
ues from the database using queries with timestamp req.ts.

Bounds on attribute accesses. Our algorithm can exploit bounds on attribute
read and written by requests, when available, to improve performance. In par-
ticular, for a request r, for each object x that might be accessed by r (namely,
the subject and resource), the client stub provides (1) a lower bound on the set
of attributes of x that will de�nitely be read by r, (2) an upper bound on the set
of attributes of x that might be read by r, and (3) an upper bound on the set of
attributes of x that might be updated by the request. It is always safe to use the
trivial bounds, i.e., the empty set for (1) and the set of all attributes for (2) and
(3). When tighter bounds are available for (1), the algorithm can sometimes use
them to conclude that a request de�nitely con�icts with an in-progress request
r, without waiting to learn the exact set of attributes read by r. When tighter
bounds are available for (2) and (3), the algorithm can sometimes use them to
conclude that two requests involving the same object access disjoint sets of at-
tributes and hence cannot con�ict, without waiting to learn the exact sets of
attributes they accessed. Note that these situations arise only in the typically
small fraction of cases that two concurrent requests access the same object, and
at least one of the requests is not known to be read-only.

Tighter bounds can often be obtained from basic knowledge about the request
and the policy. The code or rules de�ning these bounds could be written manually
for small systems or generated by a straightforward static analysis of the access
control policy, based on the types of object and type of action in each rule and
the names of the attributes read and written by each rule. For example, consider
an access control system for an online video service, in which requests to play
a video are subject to usage control to limit the number of views, and all other
requests (browsing the video catalog, paying for a video, account maintenance,
etc.) are not. In this system, a client can identify a request as read-only if the
resource type is not �video� or the action is not �play�.

These bounds are provided by de�ning (possibly using trivial bounds) the
following policy-speci�c functions, where x is req.subject or req.resource.

� defReadAttr(x, req) is a set of attributes of x de�nitely read by req.
� mightReadAttr(x, req) is an upper bound on the set of attributes of x that
might be read by req (including de�nitely read attributes).

� mightWriteAttr(x, req) is an upper bound on the set of attributes of x that
might be updated by req.

Sequence Diagrams. We give brief overviews of Decat et al.'s algorithm and our
algorithm, focusing on the message patterns shown in the sequence diagrams in

Figure 1. The sequence diagrams show the common case in which the request
does not restart due to a con�ict and the two objects accessed by the request
are managed by coordinators on di�erent servers. Accesses to the database are
not shown; they are the same for Decat et al.'s algorithm and FACADE.

client coordS coordR worker
request request, … request, …

decision

conflict
check

result
conflict
checkoutcome

result

client coord1 coord2 worker
request request, … request, …
decision

readAttr
readAttr

client coordR coordW worker
request request, … request, …

decision
readAttr

result
conflict
check

client coordW coordR worker
request request, … request, …

decision
readAttr

result
conflict
check

Fig. 1. Sequence diagrams. Top left: Decat et al.'s algorithm. Top right: FACADE
for read-only request. Thick and thin solid lines are non-local and local messages,
respectively, on the critical path. Dashed lines are messages not on the critical path.
Bottom left: FACADE for read-write request, when client correctly predicts a read-only
object. Bottom right: FACADE for read-write request, when client incorrectly predicts
a read-only object.

Overview of Decat et al.'s algorithm. In Decat et al.'s algorithm, the client sends
the request to coordS, the coordinator for the subject of the request. coordS
updates data structures used for con�ict detection and then forwards the request
(with piggybacked cached committed updates) to coordR, the coordinator for
the resource of the request, which does the same and then forwards to the request
to a worker on the same server. The worker evaluates the request and then sends
the result to coordS. coordS checks for con�icts involving the subject; speci�cally,
it checks whether any attribute of the subject read by the request was updated
after it forwarded the request to coordR (any such update was not piggybacked
on the request and hence might not have been used in its evaluation). If there
is no con�ict, it forwards the result to coordR, which performs a similar con�ict
check and, if there is no con�ict, commits the updates (if any) to the resource,
and then sends the outcome of the con�ict check to coordS. coordS commits
the updates to the subject and then sends the decision to the client. If either

coordinator detects a con�ict, the request is restarted. After coordS sends the
result to coordR and before it receives the outcome of coordR's con�ict check,
it treats the request's updates to the subject specially, as tentative updates; for
details, see [8].

Overview of FACADE for read-only requests. The client sends the request to
coord1, the coordinator for one of the objects accessed by the request (either
one is �ne). coord1 updates data structures used for con�ict detection and then
forwards the request (with piggybacked cached committed updates) to coord2,
the coordinator for the other object accessed by the request. coord2 updates its
data structures and forwards the request to the worker. The worker evaluates the
request, sends the decision to the client, and sends the sets of read attributes of
the subject and resource to their respective coordinators, which update the read
timestamps of the read versions. It is safe for the worker to send the decision
directly to the client, because read-only requests never abort in FACADE.

Note that this message pattern is used for any request that turns out to
be read-only, regardless of whether this is known in advance, i.e., regardless of
whether mightWriteAttr is empty for either object involved in the request.

Overview of FACADE for read-write requests. When the client sends the request
to the coordinator for an object not updated by the request, we say that the
client correctly predicts a read-only object for the request. This is guaranteed
if mightWriteAttr returns an empty set for at least one object involved in the
request, and has 50% probability otherwise. It is preferable for the client to
send the request to such a coordinator, denoted coordR, because the worker
sends the evaluation result to the coordinator for the updated object, denoted
coordW, and that result message is local if the worker is co-located with coordW,
which happens if coordR receives the request from the client and forwards it to
coordW. If mightWriteAttr returns a non-empty set for both objects, then the
client arbitrarily selects a coordinator to which to send the request. If that turns
out to be coordW, we say that the client incorrectly predicts a read-only object

for the request. The only consequence is that the worker's result message is a
network message instead of a local message.

When the client correctly predicts a read-only object for the request, the
client sends the request to the coordinator for that object, denoted coordR.
coordR updates data structures used for con�ict detection and then forwards the
request (with piggybacked cached committed updates) to coordW. The worker
evaluates the request and sends the result, including the decision and the sets
of read and written attributes of the subject and resource, to coordW. coordW
checks for con�icts; speci�cally, it checks whether any attribute updated by
this request was read by a request with a later timestamp. Even if there is no
con�ict yet, a con�ict could arise later, involving a request with a later timestamp
that has already been forwarded and might read the attribute. A set of such
requests, called �pending might read requests�, is associated with each version
of an attribute. The worker waits until there are no such pending might read
requests and then checks for con�icts again. If there is no con�ict, it commits

the updates, sends the decision to the client, and sends the set of read attributes
of the other object to the other coordinator.

When the client incorrectly predicts a read-only object for the request, the
message pattern is the same, except that coordW receives the request �rst and
then forwards it to coordR, and the evaluation result message from the worker
to coordW is a network message instead of a local message.

Handling of requests known to be read-only. A request req is known to be read-

only i� mightWriteAttr(req.subject, req) and mightWriteAttr(req.resource, req)
are empty. Handling of requests known to be read-only is described separately
from handling of other requests, for ease of understanding, although the two are
similar in places, and the code for them is integrated in our implementation.
Handling of requests known to be read-only follows the pseudocode in Figure 2.
The pseudocode syntax is generally Python-like, except we denote tuples using
angle brackets instead of parentheses. Implicitly, coarse-grain locking is used to
ensure that coordinators process each incoming message atomically, i.e., without
interruption by processing of other messages (as an optimization, �ner-grained
locking could be used).

Handling of read-write requests. Handling of other requests follows the pseu-
docode in Figures 3 and 4.

Liveness. The algorithm presented in the pseudocode is deadlock-free: the in-
equality on timestamps in the await statement in Figure 4 ensures that two
requests cannot be stuck waiting for each other. However, it can starve some
read-write requests. For example, a long stream of reads to an attribute x.attr
can cause the condition in the await statement in Figure 4 to remain true for a
long time, causing a pending update to x.attr to starve. The underlying reason
is that FACADE gives precedence to reads over writes, in the sense that reads
never abort, and writes can be aborted due to con�icting reads.

To counter-balance this, and thereby help prevent starvation of writes, we
modify the algorithm to delay reads in two cases (these modi�cations are not
re�ected in the pseudocode). (1) After a coordinator c receives 〈"request", req,
1〉 from a client, if req might update req.obj[1], c delays processing of incoming
requests that potentially con�ict with req (temporarily storing them in a queue)
until c determines the outcome (commit or restart) of the current execution of
req, at which time c processes the delayed requests normally. An incoming re-
quest req2 potentially con�icts with req if req2 might read an attribute that req
might update. (2) After a coordinator c receives an evaluation result message
〈"result", req〉 that includes updates to an object x managed by c, while c is
waiting for the await condition to become true, c delays processing of incoming
requests that potentially con�ict with those updates until c determines the out-
come (commit or restart) for req, at which time c processes the delayed requests
normally An incoming request req2 potentially con�icts with the updates if req2
might read one of the updated attributes. Note that these two kinds of delays

1. client:
for read-only requests, the coordinator order (subject �rst or resource �rst) does
not a�ect correctness or performance. arbitrarily do subject �rst.
req.obj[1], req.obj[2] = req.subject. req.resource
send 〈"request", req, 1〉 to coord(req.obj[1])

2. coordinator: on receiving 〈"request", req, 1〉:
x = req.obj[1]
req.ts = now() # now() returns the current date-time.
for attr in defReadAttr(x, req):
getVersion(x, attr, req.ts).rts = req.ts

for attr in mightReadAttr(x, req) - defReadAttr(x, req):
getVersion(x, attr, req.ts).pendingMightReads.add(〈req.id, req.ts〉)

req.cachedUpdates[1] = cachedUpdates(x)
send 〈"request", req, 2〉 to coord(req.obj[2])

3. coordinator: on receiving 〈"request", req, 2〉:
x = req.obj[2]
for attr in defReadAttr(x, req):
getVersion(x, attr, req.ts).rts = req.ts

for attr in mightReadAttr(x, req) - defReadAttr(x, req):
getVersion(x, attr, req.ts).pendingMightReads.add(〈req.id, req.ts〉)

select worker w to evaluate this request
req.worker = w
req.cachedUpdates[2] = cachedUpdates(x)
send req to w

4. worker: on receiving req:

req.evalResult = evaluateRequest(policy, req)
send 〈"decision", req.id, evalResult.decision〉 to req.client
send 〈"readAttr", req, 1〉 to coord(req.subject)
send 〈"readAttr", req, 2〉 to coord(req.resource)

5. coordinator: on receiving 〈"readAttr", req, i〉:
x = req.subject if i==1 else req.resource
for attr in mightReadAttr(x, req) - defReadAttr(x, req):
v = getVersion(x, attr, req.ts)
v.pendingMightReads.remove(〈req.id, req.ts〉)
if attr in req.evalResult.readAttr[i]:
v.rts = req.ts

Fig. 2. Handling of requests known to be read-only.

cannot lead to deadlock (i.e., to circular wait), because the delayed requests are
younger than req.

Decat et al.'s algorithm can also starve requests. It gives precedence to writes
over reads, in the sense that writes never abort, and reads can be aborted because
of con�icting writes. Consequently, long streams of writes can starve read-only

1. client:
if either object is known to be read-only, send req to its coordinator �rst.
if isEmpty(mightWriteAttr(req.obj[2], req)):
req.obj[1], req.obj[2] = 2, 1

else:

req.obj[1], req.obj[2] = 1, 2
send 〈"request", req, 1〉 to coord(req.obj[1])

2. coordinator: on receiving 〈"request", req, 1〉:
x = req.obj[1]
req.ts = now() # now() returns the current date-time.
for attr in mightReadAttr(x, req)
v = getVersion(x,attr,req.ts)
v.pendingMightReads.add(〈req.id, req.ts〉)

req.cachedUpdates[1] = cachedUpdates(x)
send 〈"request", req, 2〉 to coord(req.obj[2])

3. coordinator: on receiving 〈"request", req, 2〉:
x = req.obj[2]
for attr in mightReadAttr(x,req)
v = getVersion(x,attr,req.ts)
v.pendingMightReads.add(〈req.id, req.ts〉)

select worker w to evaluate this request
req.worker = w
req.cachedUpdates[2] = cachedUpdates(x)
send req to w

4. worker: on receiving req:

req.evalResult = evaluateRequest(policy, req)
if req.updatedObj == -1:
req is read-only.
send 〈"decision", req.id, req.evalResult.decision〉 to req.client
send 〈"readAttr", req, 1〉 to coord(req.subject)
send 〈"readAttr", req, 2〉 to coord(req.resource)

else:

req updated an object.
send 〈"result", req〉 to coord(req.obj[req.updatedObj])

Fig. 3. Handling of requests not known to be read-only, part 1.

and read-write requests. Their algorithm does not incorporate any mechanism to
compensate for this. This is probably acceptable for workloads in which writes
are infrequent relative to reads.

Optimizations. Our implementation incorporates the following optimizations
that are not re�ected in the pseudocode. (1) If the same coordinator is respon-
sible for both objects involved in a request, then the coordinator performs the
processing for both objects together, without sending itself a message in between.

5. coordinator: on receiving 〈"result", req〉:
req updates an object that this coordinator is responsible for.
x = req.obj[req.updatedObj]
con�ict = checkForCon�icts()
if not con�ict:
wait for relevant pending reads to complete. await(expr) blocks until expr is true.
await (∀〈attr,val〉∈ req.updates. ∀〈id,ts〉∈ getVersion(x, attr, req.ts).pendingMightReads.

id == req.id or ts < req.ts)
con�ict = checkForCon�icts()
if not con�ict:
commit req.evalResult.updates to the database with write timestamp req.ts
cache the updates, and store the new versions for con�ict checking
for (attr, val) in req.evalResult.updates:
cachedUpdates(x).add(〈attr, val, req.ts〉)
addVersion(x,attr,req.ts)

update read timestamps
for attr in mightReadAttr(x,req)
v = getVersion(x,attr,req.ts)
v.pendingMightReads.remove(〈req.id, req.ts〉)
if attr in req.readAttr[req.updatedObj]:
v.rts = req.ts

send decision to client
send 〈"decision", req.id, req.decision〉 to req.client
send read attributes to coordinator for read-only object
roCoord = coord(req.subject) if req.evalResult.rdonlyObj==1 else coord(req.resource)
send 〈"readAttr", req, req.evalResult.rdonlyObj〉 to roCoord

else:

restart(req)
else:

restart(req)

coordinator: on receiving 〈"restart", req〉:
remove entries for req from all pendingMightReads sets
restart processing of req, as if it were newly received from client

def checkForCon�icts():
for (attr, val) in req.updates:
note: if x.attr has not been read or written in this session, then
v is the special version with v.rts=0 and v.wts=0.
v = getVersion(x, attr, req.ts)
if v.rts > req.ts:
return true

return false

def restart(req):
remove entries for req from all pendingMightReads sets
tell the other coordinator to restart processing of this request
roCoord = coord(req.subject) if req.evalResult.rdonlyObj==1 else coord(req.resource)
send 〈"restart", req〉 to roCoord

Fig. 4. Handling of requests not known to be read-only, part 2.

(2) The await statement in Figure 4 waits for all relevant pending reads to com-
plete before checking whether any of them con�ict with the pending update. As
an optimization, when each relevant pending read completes, the coordinator
immediately checks whether it con�icts with the pending update, and if so, im-
mediately restarts the request performing the update. (3) To reduce the number
of database queries, workers piggyback data read from the database on messages
sent to coordinators, and coordinators add it to the data structure that caches
recent committed updates. Note that caching of attribute data is done only by
coordinators, not workers, because a coordinator performs all updates to objects
it manages and hence knows when cached data is stale (relative to a speci�ed
request timestamp).

Fault-tolerance. Like Decat et al. in [8], we focus in this paper on scalability and
leave detailed consideration of fault-tolerance for future work. We brie�y sketch
how to extend our algorithm to tolerate crash failures. A fault-monitoring service
is needed to detect crashes and restart crashed processes. Requests that were in-
progress at the time of a crash might be dropped. If a client does not receive a
decision for a request in a reasonable amount of time, the client can re-submit
the request with the same identi�er. If the request is read-only, the worker simply
re-evaluates it in the current state. If the request performs updates, the worker
checks whether the request already committed, and if so, re-sends the original
decision, otherwise re-evaluates the request in the current state. To support this,
when a coordinator commits the attribute updates for a request, it also inserts a
record containing the request id and decision in a request log table. The worker
looks up the request id in this table before evaluating a request.

3 Evaluation

Implementation. We implemented FACADE in DistAlgo [16,15], an extension
of Python with high-level communication and synchronization constructs. The
DistAlgo compiler5 translates DistAlgo into Python for execution. We also imple-
mented Decat et al.'s algorithm in DistAlgo, to allow a performance comparison
of the algorithms, not in�uenced by the performance of di�erent programming
language implementations (Decat et al.'s implementation is in Scala). Our im-
plementations of both algorithms are publicly available6. The experimental plat-
form consists of three desktop PCs with Intel Core 2 Quad processors (two at
2.83GHz, one at 2.66 GHz), with Gigabit Ethernet NICs connected to a Gigabit
Ethernet switch, and running Windows 10 64-bit, Python 3.6, DistAlgo 1.0.9,
and MySQL 5.7.17.

Workload. The workload consists of pseudorandom sequences of requests. The
same seeds, hence the same workload, are used for corresponding experiments
with the two algorithms. Con�guration parameters for each experiment include:

5 http://sourceforge.net/projects/distalgo/files/
6 http://www.cs.stonybrook.edu/~stoller/software/

http://sourceforge.net/projects/distalgo/files/
http://www.cs.stonybrook.edu/~stoller/software/

� nClient: number of clients. This is also the maximum number of concurrent
requests, since each client sends a request and waits for the response before
sending the next request.

� nWorker: number of workers per coordinator.
� nObj: number of objects in database. We use objects with 10 attributes, two
of which are mutable (i.e., might be updated by access control policy rules).

� nRequest: total number of requests (split evenly among the clients)
� pWrite: probability that a request is read-write; other requests are read-only.
� pSameCoord: probability that the two objects involved in a request have the
same coordinator. As discussed below, we emulate experiments with nCoord
coordinators using our platform with 2 coordinators by setting pSameCo-
ord=1/nCoord.

� wrongWrite: �ag controlling accuracy of client's prediction of written ob-
jects. wrongWrite=0 means completely accurate. wrongWrite=1 means the
prediction always includes an object not written by the request.

� wrongAttr: �ag controlling accuracy of client's prediction of accessed at-
tributes. wrongAttr=0 means completely accurate. wrongAttr=1 means the
predictions of read and written attributes contain all attributes and all mu-
table attributes, respectively.

Latency. To evaluate how the performance, primarily latency, of FACADE would
depend on the number of coordinators in a system, we ran experiments analo-
gous to the latency experiments in [8, Section 3.4, Figure 9]. We use nClient=1,
like they do, to measure the intrinsic latency of the algorithm, in the absence of
contention. In their experiment, latency is measured instead as a function of the
actual number of coordinators. However, the number of coordinators a�ects the
latency only indirectly, by a�ecting the probability that the same coordinator is
responsible for the two objects involved in the request. For clarity, we measure
the latency directly as a function of this probability, by making pSameCoord a
workload parameter, as described above. This also allows us to use a smaller plat-
form for the experiments. Values of the other �xed workload parameters in these
experiments are nWorker=1, nObj=1000, nRequest=5000 and pWrite=0.1. For
FACADE, we repeat the experiments for each of the four possible combinations
of values of wrongWrite and wrongAttr. Figure 5 shows average latency per re-
quest and average number of network messages sent per request for FACADE
and Decat et al.'s algorithm. When pSameCoord is 0.5 or less, corresponding to
deployments with 2 or more coordinators, FACADE has lower latency and sends
fewer network messages than Decat et al.'s algorithm. FACADE's lower latency
stems from using fewer network messages and fewer database queries (due to
optimization (3)). Deployments in large systems would probably use around 10
coordinators, as in Decat et al.'s experiments. This corresponds to pSameCo-
ord=0.1, for which the average latency of FACADE is less than half the average
latency of Decat et al.'s algorithm (37.7 milliseconds compared to 91.1 millisec-
onds), and the average network messages per request is 3.8 for FACADE vs. 5.6
for Decat et al.'s algorithm. This is true regardless of whether accurate predic-
tion of accessed attributes and written objects is possible. More generally, we see

that incorrect prediction of accessed attributes and written objects have negli-
gible e�ect on these results. We also see that the average latency of FACADE
is almost independent of pSameCoord; this is because local processing time ac-
counts for much of the latency, and the average number of network messages per
request changes less for FACADE than Decat et al.'s algorithm.

Fig. 5. Average latency per request (left) and average number of network messages per
request (right) as a function of pSameCoord.

Throughput. To evaluate throughput, we ran experiments analogous to the per-
formance experiments in [8, section 4.4, Figure 13]. To determine the maximum
throughput of each algorithm, we ran experiments with increasing numbers of
clients, until the throughput plateaus. For each value of nClient, we ran ex-
periments with increasing numbers of workers, until throughput plateaus. We
then used the value of nWorkers determined for the largest value of nClient in
experiments with all smaller values of nClient, since we wanted only one work-
load parameter to vary in the �nal results. For FACADE with wrongWrite=0
and wrongAttr=0, we found nClient=23 and nWorker=4 provided the maximum
throughput of 344 requests/second, with mean latency of 65.5 milliseconds. For
Decat et al.'s algorithm, we found nClient=19 and nWorker=14 provided the
maximum throughput of 318 requests/second, with mean latency of 79.5 mil-
liseconds. Values of the other �xed workload parameters are nObj=1000, nRe-
quest=5000, pWrite=0.1 and pSameCoord=0.1. Figure 6 shows average through-
put as a function of nClient for Decat et al.'s algorithm and FACADE. For
FACADE, average throughput is shown for each of the four possible combina-
tions of values of wrongWrite and wrongAttr. We see that FACADE achieves
higher maximum throughput than Decat et al.'s algorithm in most cases in these
experiments. We also see that FACADE's throughput is more sensitive than its
latency to the accuracy of predictions of accessed attributes and written objects.

Local processing time. The CPU time per request for coordinators is similar for
FACADE and Decat et al.'s algorithm. The CPU time per request for work-
ers is roughly double for FACADE compared to Decat et al.'s algorithm, due

Fig. 6. Average throughput as a function of nClient for Decat et al.'s algorithm (left)
and FACADE (right).

to versioning and piggybacking data read from the database on messages to
coordinators (i.e., optimization (3)). Local processing is a signi�cant fraction
of the overall latency (and throughput is relatively low in absolute terms), be-
cause Python is relatively slow. If both algorithms were implemented in a faster
language such as C++, local processing would be a smaller part of the overall
latency, and the ratio of average latency for FACADE to average latency for
Decat et al.'s algorithm would be even smaller than in our experiments.

Performance with di�erent write probabilities. To evaluate the e�ect of pWrite
on performance, we also ran the latency experiments and throughput exper-
iments (described in the Latency and Throughput paragraphs above, respec-
tively) with pWrite=0.0 (i.e., all requests are read-only) and pWrite=0.2. We
consider pWrite=0.1 to be a realistic value and pWrite=0.2 to be on the high
side of the realistic range. pWrite=0.0 is a natural boundary value to consider;
it is also the best case for both algorithm's performance. For the latency ex-
periments, the results with pWrite=0.0 and pWrite=0.2 are almost the same
as those described above for pWrite=0.1, because writes have little e�ect on
performance when there are no con�icts, and there are no con�icts in experi-
ments with only one client. For the throughput experiment with pWrite=0.0,
for FACADE, we found nClient=24 and nWorker=8 provided the maximum
throughput of 412 requests/second, with mean latency of 56.6 milliseconds;
for Decat et al.'s algorithm, we found nClient=24 and nWorker=9 provided
the maximum throughput of 373 requests/second, with mean latency of 62.0
milliseconds. For throughput experiment with pWrite=0.2, for FACADE, we
found nClient=24 and nWorker=2 provided the maximum throughput of 303
requests/second, with mean latency of 77.4 milliseconds; for Decat et al.'s algo-
rithm, we found nClient=25 and nWorker=4 provided the maximum through-
put of 283 requests/second, with mean latency of 86.8 milliseconds. Thus, FA-
CADE's maximum throughput is 11%, 8%, and 7% higher than Decat et al.'s
algorithm's maximum throughput when pWrite=0.0, 0.1, and 0.2, respectively,
and FACADE has lower latency in all three experiments.

Performance with more con�icts. To evaluate the e�ect of a higher con�ict rate
on performance, we also ran the throughput experiments with an unrealistically
small number of objects; decreasing nObj is the simplest way to increase the
con�ict rate. Speci�cally, we reduced nObj from 1000 (a more realistic value) to
200 (an unrealistically small value) for these experiments. Other workload pa-
rameters, including nClient and nWorker, are the same as described above for the
throughput experiments. For FACADE with wrongWrite=0 and wrongAttr=0,
the number of restarts due to con�icts increased from 1 to 16, throughput de-
creased from 344 to 295 requests/second, and average latency increased from
65.5 to 75.9 milliseconds. For Decat et al.'s algorithm, the number of restarts
due to con�icts increased from 1 to 6, throughput decreased from 318 to 305
requests/second, and average latency increased from 79.5 to 81.7 milliseconds.
Although FACADE is more sensitive than Decat et al.'s algorithm to this change,
FACADE's performance is still competitive, with 3% lower throughput and 7%
lower latency than Decat et al.'s algorithm.

4 Related Work

Decat et al.'s work in [8] is the most closely related and is discussed in previous
sections.

Chadwick describes a distributed architecture for a XACML-based stateful
policy framework, consisting of multiple policy decision points (PDPs) inter-
acting with a centralized database containing the mutable state [6]. Each PDP
locks all relevant rows in the database before evaluating a request. The design
has limited scalability, due to the centralized database and locking.

Alzahrani et al. describe a similar distributed architecture [1], without com-
mitting to a speci�c approach to storage of the state. They brie�y mention a
few alternatives, e.g., in a centralized database, or replicated at or partitioned
among the PDPs, but do not discuss any of them in detail.

Dhankhar et al. consider evaluation of stateful distributed XACML policies.
Di�erent PDPs have di�erent policies, and the policies can refer to each other
[9]. Concurrency control is provided by a centralized lock manager. Each PDP
locks all relevant attributes before evaluating a request. The centralized lock
manager limits scalability of their design.

Kelbert and Pretschner describe a fault-tolerant decentralized infrastruc-
ture for enforcement of usage control policies [14]. They rely on the database,
Cassandra2, for concurrency control. As mentioned in Section 1, Cassandra pro-
vides serializability only for single-row transactions, so their system does not
support serializable evaluation of requests involving attributes of two objects.

Weber et al. present a framework for stateful access control policies in dis-
tributed systems based on weakly consistent replication of the state, as provided
by eventually consistent data stores [22]. In contrast, our design is based on the
traditional notion of strong consistency. When weak consistency is acceptable,
it potentially allows more fault-tolerance and scalability. They do not present a
completed implementation or any performance results.

Acknowledgments We thank M. Decat for explaining the details of [8].

References

1. Alzahrani, A., Janicke, H., Abubaker, S.: Decentralized XACML overlay network.
In: Proceedings of the 10th IEEE International Conference on Computer and In-
formation Technology (CIT 2010). pp. 1032�1037. IEEE Computer Society (2010)

2. American National Standards Institute (ANSI), International Committee for Infor-
mation Technology Standards (INCITS): Role-based access control. ANSI INCITS
Standard 359-2004 (Feb 2004)

3. Becker, M.Y.: Speci�cation and analysis of dynamic authorisation policies. In:
Proc. 22nd IEEE Computer Security Foundations Symposium (CSF). pp. 203�
217. IEEE Computer Society (2009)

4. Becker, M.Y., Nanz, S.: A logic for state-modifying authorization policies. ACM
Transactions on Information and System Security 13(3) (2010)

5. Brewer, D.F.C., Nash, M.J.: The chinese wall security policy. In: Proceedings of
the 1989 IEEE Symposium on Security and Privacy. pp. 206�214. IEEE Computer
Society (1989)

6. Chadwick, D.: Coordinated decision making in distributed applications. Informa-
tion Security Technical Report 12 (2007)

7. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Systems 26(2), 4:1�4:26 (2008)

8. Decat, M., Lagaisse, B., Joosen, W.: Scalable and secure concurrent evaluation of
history-based access control policies. In: Proceedings of the 31st Annual Computer
Security Applications Conference (ACSAC 2015). pp. 281�290. ACM (2015)

9. Dhankhar, V., Kaushik, S., Wijesekera, D., Nerode, A.: Evaluating distributed
XACML policies. In: Proceedings of the 4th ACM Workshop On Secure Web Ser-
vices (SWS 2007). pp. 99�110. ACM (2007)

10. Edjlali, G., Acharya, A., Chaudhary, V.: History-based access control for mobile
code. In: Proceedings of the 5th ACM Conference on Computer and Communica-
tions Security (CCS '98). pp. 38�48. ACM (1998)

11. Gama, P., Ribeiro, C., Ferreira, P.: A scalable history-based policy engine. In:
Proceedings of the 7th IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY 2006). pp. 100�112. IEEE Computer Society
(2006)

12. Gay, R., Mantel, H., Sprick, B.: Service automata. In: 8th International Workshop
on Formal Aspects of Security and Trust (FAST 2011). Lecture Notes in Computer
Science, vol. 7140, pp. 148�163. Springer (2012)

13. ISO/IEC: Information technology � open systems interconnection � security
frameworks for open systems: Access control framework. ISO/IEC Standard 10181-
3:1996, International Organization for Standardization (2006)

14. Kelbert, F., Pretschner, A.: A fully decentralized data usage control enforcement
infrastructure. In: 13th International Conference on Applied Cryptography and
Network Security. Lecture Notes in Computer Science, vol. 9092, pp. 409�430.
Springer (2015)

15. Liu, Y.A., Stoller, S.D., Lin, B.: From clarity to e�ciency for distributed algo-
rithms. ACM Transactions on Programming Languages and Systems 39(3) (2017)

16. Liu, Y.A., Stoller, S.D., Lin, B., Gorbovitski, M.: From clarity to e�ciency for dis-
tributed algorithms. In: Proceedings of the 2012 ACM International Conference on
Object Oriented Programming Systems Languages and Applications (OOPSLA).
pp. 395�410. ACM Press (Oct 2012)

17. Lobo, J., Ma, J., Russo, A., Lupu, E., Calo, S.B., Sloman, M.: Re�nement of
history-based policies. In: Logic Programming, Knowledge Representation, and
Nonmonotonic Reasoning - Essays Dedicated to Michael Gelfond on the Occasion
of His 65th Birthday. Lecture Notes in Computer Science, vol. 6565, pp. 280�299.
Springer (2011)

18. Martinelli, F., Matteucci, I., Mori, P., Saracino, A.: Enforcement of U-XACML
history-based usage control policy. In: Proceedings of the 12th International Work-
shop on Security and Trust Management (STM 2016). Lecture Notes in Computer
Science, vol. 9871, pp. 64�81. Springer (2016)

19. Nguyen, D., Park, J., Sandhu, R.S.: A provenance-based access control model for
dynamic separation of duties. In: Eleventh Annual International Conference on
Privacy, Security and Trust (PST 2013). pp. 247�256. IEEE Computer Society
(2013)

20. Park, J., Sandhu, R.: The uconabc usage control model. ACM Trans. Inf. Syst.
Secur. 7(1), 128�174 (Feb 2004)

21. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts. McGraw-
Hill, 6th edn. (2011)

22. Weber, M., Bieniusa, A., Poetzsch-He�ter, A.: Access control for weakly consistent
replicated information systems. In: Proceedings of the 12th International Work-
shop on Security and Trust Management (STM 2016). Lecture Notes in Computer
Science, vol. 9871, pp. 82�97. Springer (2016)

