
Easier Rules and Constraints for Programming∗

Yanhong A. Liu Scott D. Stoller

We discuss how rules and constraints might be made easier for more conventional program-
ming. We use a language that extends DistAlgo, which extends Python, and we use the RBAC
programming challenge plus distributed RBAC as examples.

Python. Python is a high-level programming language with an easy-to-read syntax. It supports
conventional imperative programming and object-oriented programming. It also supports database-
style programming with sets and queries (comprehension and generator expressions) and functional
programming with recursive functions and even a syntax for lambda. However, it does not support
rules and constraints.

DistAlgo. DistAlgo [LSL17, LL17] is a language that extends Python to support distributed
programming with processes and message passing. It also extends Python to support more powerful
queries with constraints and tuple patterns, including logic quanti�cations with witnesses. These
query constructs were created to better express high-level synchronization conditions over messages
and processes but also high-level queries in general, while integrating seamlessly with imperative
programming.

For example, consider a set UR of user-role pairs and a particular user user. The set of roles that
user has can be expressed using a set comprehension with a tuple pattern as follows.

setof(r, (_user,r) in UR)

The membership condition is exactly a constraint, and in general any number of constraints can be
used. (_user,r) is a tuple pattern, where the underscore indicates a variable on the left side of a
membership clause whose value is bound before the query. Note that we have also implemented a
more ideal syntax for the same query, shown below, but here we use Python accepted syntax, shown
above, so that the Python parser can be used.

{r: (=user,r) in UR}

Similarly one may compute aggregation (e.g., countof and minof) over sets, and universal and
existential quanti�cations (each(x in s, has= p(x) or some(x in s, has= p(x)).

Extension with constraint optimization. With the more powerful set queries as above, it is
easy to write an additional constraint to �lter out only those that minimize some objective function,
e.g., the constraint f(r) == minof(f(x), (_user,x) in UR) can be inserted in the set comprehension
shown above. It is even easier to simply add the constraint as follows,

minimize= exp

where exp expresses the objective function, e.g., minimize= f(r) can be inserted in the set compre-
hension shown above. This is just as in mathematical programming tools.

∗Authors' contact: Computer Science Department, Stony Brook University, Stony Brook, New York.
Email: {liu,stoller}@cs.stonybrook.edu. This work was supported in part by NSF under grants CCF-1414078, IIS-
1447549, and CNS-1421893, and ONR under grant N000141512208.

1



Extension with rules. Just as declaring a named function or method, one should be able to
easily declare a named set of rules, e.g.,

def rules (name='Trans_rules'):

if edge(x,y): path(x,y)

if edge(x,z) and path(z,y): path(x,y)

and call an inference function to infer values using the rule set, e.g., the following returns the set of
pairs for which predicate path holds using rule set Trans_rules given a set of edges RH.

infer(path, edge=RH, rules=Trans_rules)

One can also use path(1,v) in place of path to return the set of values of v for which path(1,v) holds.
Note that predicates edge and path are simply set-valued variables, without needing high-order logic.

Extension with backtracking under choices. While planning problems can be expressed as
constraint solving and optimization, it is more direct if actions in the program can be expressed with
choices, with actions sequenced, with backtracking in an allowed scope, until sequences of actions
satisfying a condition are found and returned or all choices are enumerated. This is easily expressed
with a pair of assume and achieve statements that surround statements with choices.

In particular, given a set of actions acts that are allowed operations, e.g., method de�nitions,
let instances(acts) generate all instances of calls to those methods, and let do(a) execute method
call a. The following code �nds any sequence that satis�es condition, where some makes a choice.

assume(True)

seq = []

while not condition:

if some(a in instances(acts)):

do(a)

seq.append(a)

achieve(anyof(seq))

Also, a cost function can be computed along the sequence, and solutions that minimize the cost
may be returned.

Implementation. The extensions are being implemented by extending DistAlgo. The imple-
mentation is currently incomplete. The main challenge will be e�cient implementation to provide
competitive performance compared with lower-level or more complex manually programmed solu-
tions.

RBAC programming challenge solution. The Appendix shows how to express all components
and functions of the RBAC programming challenge, plus a component for distributed RBAC, in the
extended language. It is aimed to express everything in the clearest and most direct way possible.

process in class header is needed only for distributed execution for the distributed RBAC com-
ponent; for others, it is included only to allow use of more powerful set queries with constraints
and tuple patterns. pre for preconditions could be implemented simply as assert in Python but we
plan to support it directly in the extensions to DistAlgo.

These components can run with DistAlgo: CoreRBAC, HierarchicalRBAC_set, HierarchicalRBAC,
CoreRBACwithSSD, HierarchicalRBACwithSSD, and DistRBAC. Their less powerful variants in Python
without DistRBAC were run and optimized to run e�ciently previously [LWG+06, GLSR12].

These do not currently run: HierarchicalRBAC_rules and AdminRBAC.

2



References

[GLSR12] Michael Gorbovitski, Yanhong A. Liu, Scott D. Stoller, and Tom Rothamel. Composing trans-
formations for instrumentation and optimization. In Proceedings of the ACM SIGPLAN 2012

Workshop on Partial Evaluation and Program Manipulation, pages 53�62, 2012.

[LL17] Bo Lin and Yanhong A. Liu. DistAlgo: A language for distributed algorithms. http://github.
com/DistAlgo, 2017. Beta release September 27, 2014, latest release November 23, 2017.

[LSL17] Yanhong A. Liu, Scott D. Stoller, and Bo Lin. From clarity to e�ciency for distributed algorithms.
ACM Transactions on Programming Languages and Systems, 39(3):12:1�12:41, May 2017.

[LWG+06] Yanhong A. Liu, Chen Wang, Michael Gorbovitski, Tom Rothamel, Yongxi Cheng, Yingchao
Zhao, and Jing Zhang. Core role-based access control: E�cient implementations by transforma-
tions. In Proceedings of the ACM SIGPLAN 2006 Workshop on Partial Evaluation and Program

Manipulation, pages 112�120, 2006.

Appendix: RBAC challenge in a language that extends Python

1 """

2 We consider Role -Based Access Control (RBAC) with 6 components:

3

4 Core RBAC ,

5 Hierarchical RBAC ,

6 Core RBAC with Static Separation of Duty constraint (also called Constrained RBAC),

7 Hierarchical RBAC with Static Separation of Duty constraint ,

8 Administrative RBAC , and

9 Distributed RBAC

10 """

11

12 class CoreRBAC(process ):

13 """

14 Core RBAC keeps several sets including the following:

15

16 USERS: set of users

17 ROLES: set of roles

18 PERMS: set of permissions

19 UR: set of user -role pairs

20 PR: set of permission -role pairs

21

22 with constraints:

23

24 UR subset USERS * ROLES

25 PR subset PERMS * ROLES

26

27 update functions for each set , subject to the constraints above:

28

29 AddUser , DeleteUser , AddRole , DeleteRole , AddPerm , DeletePerm

30 AddUR , DeleteUR , AddPR , DeletePR

31 each Add has pre -conditions:

32 the element is not yet in the set and the constraints will not be violated

33 each Delete has the pre -condition that the element is in the set ,

34 and maintains the constraints

35

3



36 query functions including the following:

37

38 AssignedUsers(role): the set of users assigned to role in UR

39 AssignedRoles(user): the set of roles assigned to user in UR

40 UserPermissions(user):

41 the set of permissions assigned to the roles assigned to user

42 CheckAccess(user , perm):

43 whether some role is assigned to user and is granted perm

44 """

45

46 def setup ():

47 self.USERS = set()

48 self.ROLES = set()

49 self.PERMS = set()

50 self.UR = set() # UR subset USERS * ROLES

51 self.PR = set() # PR subset PERMS * ROLES

52

53 def AddUser(user): # pre: user not in USERS

54 USERS.add(user)

55

56 def DeleteUser(user): # pre: user in USERS

57 UR -= setof((user ,r), r in ROLES) # maintain UR

58 USERS.remove(user)

59

60 def AddRole(role): # pre: role not in ROLES

61 ROLES.add(role)

62

63 def DeleteRole(role): # pre: role in ROLES

64 UR -= setof((u,role), u in USERS) # maintain UR

65 PR -= setof((p,role), p in PERMS) # maintain PR

66 ROLES.remove(role)

67

68 def AddPerm(perm): # pre: perm not in PERMS

69 PERMS.add(perm)

70

71 def DeletePerm(perm): # pre: perm in PERMS

72 PR -= setof((perm ,r), r in ROLES) # maintain PR

73 PERMS.remove(perm)

74

75 def AddUR(user , role):

76 # pre: user in USERS , role in ROLES , (user ,role) not in UR

77 UR.add((user ,role))

78

79 def DeleteUR(user , role): # pre: (user ,role) in UR

80 UR.remove ((user ,role))

81

82 def AddPR(perm , role):

83 # pre: perm in PERMS , role in ROLES , (perm ,role) not in PR

84 PR.add((perm ,role))

85

86 def DeletePR(perm , role): # pre: (perm ,role) in PR

87 PR.remove ((perm ,role))

88

89 def AssignedUsers(role): # pre: role in ROLES

90 return setof(u, (u,_role) in UR)

91

92 def AssignedRoles(user): # pre: user in USERS

93 return setof(r, (_user ,r) in UR)

94

95 def UserPermissions(user): # pre: user in USERS

96 return setof(p, (_user ,r) in UR, (p,r) in PR)

97

98 def CheckAccess(user , perm): # pre: user in USERS , perm in PPRMS

99 return some(r in ROLES , has= (user ,r) in UR and (perm ,r) in PR)

100

4



101

102 class HierarchicalRBAC_set(CoreRBAC ,process ): # using while for Trans

103

104 def Trans(E):

105 T = E

106 while some((x,y) in T, (y,z) in E, has= (x,z) not in T):

107 T.add((x,z))

108 return T | setof((r,r), r in ROLES)

109

110 class HierarchicalRBAC_rules(CoreRBAC ,process ): # using rules for Trans

111

112 def rules(name= 'Trans_rules '):

113 if edge(x,y): path(x,y)

114 if edge(x,z) and path(z,y): path(x,y)

115

116 def Trans(E):

117 return infer(path , edge=E, rules=Trans_rules) | setof((r,r), r in ROLES)

118

119 class HierarchicalRBAC(HierarchicalRBAC_set ,process ):

120 """

121 Hierarchical RBAC keeps also a role hierarchy:

122

123 RH: set of pairs of roles , called ascendant and descendant roles ,

124 where an ascendant role inherits permissions from a descendant role

125

126 with constraints:

127

128 RH subset ROLES * ROLES , and RH is acyclic

129

130 update functions for RH, subject to the constraints above:

131

132 AddInheritance(asc , desc)

133 DeleteInheritance(asc , desc)

134 with the same kinds of pre -conditions as updates in CoreRBAC

135

136 query functions including the following:

137

138 Trans:

139 the transitive closure of role hierarchy union reflexive role pairs

140 AuthorizedUsers(role):

141 the set of users of role or ascendant roles of role

142 AuthorizedRoles(user):

143 the set of roles of user or descendant roles of the roles

144 """

145

146 def setup ():

147 self.RH = set() # RH subset ROLES * ROLES , where asc inh desc

148

149 def AddInheritance(a, d):

150 # pre: a in ROLES ,d in ROLES , (a,d) notin RH , a!=d, (d,a) notin Trans(RH)

151 RH.add((a,d))

152

153 def DeleteInheritance(a, d): # pre: (a,d) in RH

154 RH.remove ((a,d))

155

156 def AuthorizedUsers(role):

157 return setof(u, (u,asc) in UR, (asc ,_role) in Trans(RH))

158

159 def AuthorizedRoles(user):

160 return setof(r, (_user ,asc) in UR , (asc ,r) in Trans(RH))

161

162

163 class CoreRBACwithSSD(CoreRBAC ,process ):

164 """

165 Core RBAC with SSD keeps also a set of SSD items , where each item has:

5



166

167 a name ,

168 a set of roles , and

169 a cardinality

170

171 with constraints:

172

173 all roles in all SSD items subset ROLES

174 for each SSD item , its cardinality is > 0 and < the number of its roles

175 for each user , for each SSD item ,

176 the number of assigned roles (AssignedRoles) of the user

177 that are in the item's set of roles is at most the item's cardinality

178

179 update functions , subject to the constraints above:

180

181 CreateSsdSet(name , roles , c): add SSD item having name , roles , c

182 DeleteSsdSet(name): delete SSD item having name

183 AddSsdRoleMember(name , role): add role to roles of SSD item having name

184 DeleteSsdRoleMember(name , role): del role fr roles of SSD item having name

185 SetSsdSetCardinality(name , c): set c to be card. of SSD item having name

186 with the same kinds of pre -conditions as updates in CoreRBAC , except that

187 all updates have also pre -conditions that no constraints will be violated

188

189 query functions including the following:

190

191 SsdRoleSets (): the set of names of SSD items

192 SsdRoleSetRoles(name): the set of roles in SSD item having name

193 SsdRoleSetCardinality(name): the cardinality of SSD item having name

194 """

195

196 def setup ():

197 self.SsdNAMES = set() # set of names of constraints

198 self.SsdNR = set() # set of pairs of name and role

199 # SsdNR subset SsdNAMES * ROLES

200 self.SsdNC = set() # set of pairs of name and cardinality

201 # SsdNC: SsdNAMES -> int

202

203 # constraint named SSD , as post condition for all updates

204 def constraint(name= 'SSD'):

205 return each(u in USERS , (name ,c) in SsdNC , has=

206 countof(r, r in AssignedRoles(u), (_name ,r) in SsdNR) <= c)

207

208 def CreateSsdSet(name , roles , c):

209 # pre: name not in SsdNAMES , roles subset ROLES , 1 <= c < count(roles)

210 SsdNAMES.add(name)

211 SsdNR |= setof((name ,r), r in roles)

212 SsdNC.add((name ,c))

213

214 def DeleteSsdSet(name): # pre: name in SsdNAMES #don't need post SSD

215 SsdNR -= setof((name ,r), r in SsdRoleSetRoles(name))

216 SsdNC.remove ((name ,SsdRoleSetCardinality(name )))

217 SsdNAMES.remove(name) # delete ssd name last

218

219 def AddSsdRoleMember(name , role):

220 # pre: name in SsdNAMES , role in ROLES

221 # pre: role not in SsdRoleSetRoles(name)

222 SsdNR.add((name ,role))

223

224 def DeleteSsdRoleMember(name , role):

225 # pre: name in SsdNAMES , role in SsdRoleSetRoles(name)

226 # pre: c < SsdRoleSetCardinality(name)-1

227 SsdNR.remove ((name ,role))

228

229 def SetSsdSetCardinality(name , c):

230 # pre: name in SsdNAMES , SsdRoleSetCardinality(name) != c

6



231 SsdNC.remove ((name ,SsdRoleSetCardinality(name )))

232 SsdNC.add((name ,c))

233

234 def SsdRoleSets ():

235 return SsdNAMES

236

237 def SsdRoleSetRoles(name): # pre: name in SsdNAMES

238 return setof(r, (_name ,r) in SsdNR)

239

240 def SsdRoleSetCardinality(name): # pre: name in SsdNAMES

241 return anyof(c, (_name ,c) in SsdNC)

242

243

244 class HierarchicalRBACwithSSD(HierarchicalRBAC ,CoreRBACwithSSD ,process ):

245 """

246 Hierarchical RBAC with SSD combines all from

247 Hierarchical RBAC and Core RBAC with SSD , except that

248 the SSD constraint uses AuthorizedRoles in place of AssignedRoles.

249 """

250

251 def constraint (name= 'SSD'):

252 return each(u in USERS , (name ,c) in SsdNC , has=

253 countof(r, r in AuthorizedRoles(u), (_name ,r) in SsdNR) <=c)

254

255

256 class AdminRBAC(HierarchicalRBACwithSSD ):

257 """

258 Administrative RBAC for HierarchicalRBACwithSSD

259 has optimization and planning functions:

260

261 MineMinRoles:

262 find a smallest set of roles with UR' and PR' assignments

263 such that UR' * PR' = UR * PR

264

265 MineMinRoleAssignments:

266 find a smallest set of UR' and PR' assignments

267 such that UR' * PR' = UR * PR = UP

268

269 GetRolesPlan(user , roles , acts):

270 find a sequence of actions , i.e., updates , in acts that

271 allows user to get roles

272

273 GetRolesShortestPlan(user , roles , acts):

274 find a shortest sequence of actions , i.e., updates , in acts that

275 allows user to get roles

276

277 Any subset of updates can be used as acts.

278 All constraints must hold after each action.

279

280 The first two can have a version that includes finding RH '.

281

282 Administrative RBAC could also be for

283 CoreRBAC , HierarchicalRBAC , or CoreRBACwithSSD.

284 """

285

286 def MineMinRoles ():

287 return anyof((R, UR2 , PR2), R in subset(ran(UR)&ran(PR)),

288 UR2 in subset(dom(UR)*R), PR2 in subset(dom(PR)*R),

289 UR2 * PR2 == UR * PR, minimize= count(R))

290

291 def MineMinRoleAssignments ():

292 return anyof((R, UR2 , PR2), R in subset(ran(UR)&ran(PR)),

293 UR2 in subset(dom(UR)*R), PR2 in subset(dom(PR)*R),

294 UR2 * PR2 == UR * PR, minimize= count(UR2+PR2))

295

7



296 def GetRolesPlan(user , roles , acts):

297 assume(True)

298 seq = []

299 while not each(r in roles , has= (_user ,r) in UR):

300 if some(a in instances(acts )):

301 do(a)

302 seq.append(a)

303 achieve(anyof(seq))

304

305 def GetRolesShortestPlan(user , roles , acts):

306 assume(True)

307 seq = []

308 cost = 0

309 while not each(r in roles , has= (_user ,r) in UR):

310 if some(a in instances(acts )):

311 do(a)

312 seq.append(a)

313 cost += 1

314 achieve(anyof((seq , cost), minimize= cost))

315

316

317 class DistRBAC(HierarchicalRBACwithSSD ,process ):

318 """

319 A Distributed RBAC process keeps also the following sets:

320

321 OTHERS: set of other RBAC processes

322 GuestR: set of pairs of a rbac -role pair and a guest role

323

324 with constraints:

325

326 domain(domain(GuestR )) subset OTHERS

327 range(GuestR) subset ROLES

328

329 update functions for each set subject to the constraints above:

330

331 AddGuestRole , DeleteGuestRole

332 AssignGuestRole:

333 assign to user of role in rbac the corresponding guest roles

334 DeassignGuestRole

335 deassign from user of role in rbac the corresponding guest roles

336

337 query functions:

338

339 GuestRoles (rbac ,role): the set of guest roles for role of rbac

340 OthersRoles(guest ): the set of rbac -role pairs for role guest

341

342 Distributed RBAC can also be for only

343 CoreRBAC , HierarchicalRBAC , or CoreRBACwithSSD ,

344 or Administrative RBAC for any of these.

345 """

346

347 def setup(OTHERS ):

348 self.GuestR = set()

349

350 def AddGuestRole(rbac , role , guest): # pre: rbac in OTHERS ,guest in ROLES

351 GuestR.add(((rbac ,role),guest))

352

353 def DeleteGuestRole(rbac , role , guest ): # pre: ((rbac ,role),guest) in GuestR

354 GuestR.remove (((rbac ,role),guest ))

355

356 def GuestRoles(rbac , role):

357 return setof(guest , ((_rbac ,_role),guest) in GuestR)

358

359 def OthersRoles(guest):

360 return setof((rbac ,role), ((rbac ,role),_guest) in GuestR)

8



361

362 def AddGuestUR(user , rbac , role): # pre: rbac in OTHERS

363 send(('credential ', user , role), to= rbac)

364 if await(received (('accept ', user , role), from_= rbac )):

365 for r in GuestRoles(rbac , role):

366 AddUR(user , r)

367

368 def DeleteGuestUR(user , rbac , role):

369 for r in GuestRoles(rbac , role):

370 DeleteUR(user , r)

371

372 def receive(msg=('credential ', user , role), from_= rbac):

373 if (user ,role) in UR:

374 send(('accept ', user , role), to= rbac)

375 else:

376 send(('reject ', user , role), to= rbac)

377

378 def receive(msg=('AddGuestUR ', user , rbac , role )):

379 AddGuestUR(user , rbac , role)

380

381 def receive(msg=('DeleteGuestUR ', user , rbac , role )):

382 DeleteGuestUR(user , rbac , role)

9


