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Abstract. This paper describes formal specification and verification of
Lamport’s Multi-Paxos algorithm for distributed consensus. The speci-
fication is written in TLA+, Lamport’s Temporal Logic of Actions. The
proof is written and checked using TLAPS, a proof system for TLA+.
Building on Lamport, Merz, and Doligez’s specification and proof for
Basic Paxos, we aim to facilitate the understanding of Multi-Paxos and
its proof by minimizing the difference from those for Basic Paxos, and
to demonstrate a general way of proving other variants of Paxos and
other sophisticated distributed algorithms. We also discuss our general
strategies for proving properties about sets and tuples that helped the
proof check succeed in significantly reduced time.

1 Introduction

Distributed consensus is a fundamental problem in distributed computing. It
requires that a set of processes agree on some value or values. Consensus is
essential when distributed services are replicated for fault-tolerance, because
non-faulty replicas must agree. Unfortunately, consensus is difficult when the
processes or communication channels may fail.

Paxos [16] is an important algorithm, developed by Lamport, for solving
distributed consensus. Basic Paxos is for agreeing on a one-shot value, such
as whether to commit a database transaction. Multi-Paxos is for agreeing on
an infinite sequence of values, for example, a stream of commands to execute.
Multi-Paxos has been used in many important distributed services, e.g., Google’s
Chubby [1, 3] and Microsoft’s Autopilot [13]. There are other Paxos variants, e.g.,
that reduce a message delay [19] or add preemption [17], but Multi-Paxos is the
most important in making Paxos practical for distributed services that must
perform a continual sequence of operations.

Paxos handles processes that run concurrently without shared memory, where
processes may crash and may later recover, and messages may be delayed indef-
initely or lost. In Basic Paxos, each process may repeatedly attempt to be the
leader and propose some value, and wait for appropriate replies from appropri-
ate subsets of the processes while also replying appropriately to other processes;
consensus is reached eventually if enough processes and channels are non-faulty
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to elect a leader. In Multi-Paxos, many more different attempts, proposals, and
replies may happen in overlapping fashions to reach consensus on values in dif-
ferent slots in the continual sequence.

Paxos has often been difficult to understand, even though it was created
almost three decades ago [21]. Lamport later wrote a much simpler description
of the phases of the algorithm but only for Basic Paxos [17]. Lamport, Merz, and
Doligez [22] wrote a formal specification and proof of Basic Paxos in TLA+ [18]
and TLAPS [26]. Many efforts, especially in recent years, have been spent on
formal specification and verification of Multi-Paxos, but they use more restricted
or less direct language models, some mixed in large systems with many unrelated
functionalities, or handle other variants of Paxos than Multi-Paxos, as discussed
in Section 7. What is lacking is formal specification and proof of the exact phases
of Multi-Paxos, in a most direct and general language like TLA+ [18], with a
complete proof that is mechanically checked, and a general method for doing
such specifications and proofs in a more feasible way.

This paper addresses this challenge. We describe a formal specification of
Multi-Paxos written in TLA+, and a complete proof written and automatically
checked using TLAPS. Building on Lamport, Merz, and Doligez’s specification
and proof for Basic Paxos, we aim to facilitate the understanding of multi-Paxos
and its proof by minimizing the difference from those for Basic Paxos. The
key change in the specification is to replace operations involving two numbers
with those involving a set of 3-tuples, for each of a set of processes, exactly
capturing the minimum conceptual difference between Basic Paxos and Multi-
Paxos. However, the proof becomes significantly more difficult because of the
handling of sets and tuples in place of two numbers.

This work also aims to show the minimum-change approach as a general way
of specifying and verifying other variants of Paxos, and more generally of spec-
ifying and verifying other sophisticated algorithms by starting from the basics.
We demonstrate this by further showing the extension of the specification and
proof of Multi-Paxos to add preemption—letting processes abandon proposals
that are already preempted by other proposals [17, 29]. We also extended the
specification and proof of Basic Paxos with preemption, which is even easier.

Finally, we discuss a general method we attempted to follow to tackle tedious
and difficult proof obligations involving sets and tuples, a well-known significant
complication in general. For difficult properties involving sets, we use induction
and direct the prover to focus on the changes in the set values. For properties
involving tuples, we change the ways of accessing and testing the elements to
yield significantly reduced proof-checking time. Overall, we were able to keep
the specification minimally changed, and keep the proof-checking time to about
2 minutes or less while the prover checks the proofs for over 900 obligations for
both Multi-Paoxs and Multi-Paxos with Preemption.

Our full TLA+ specification and TLAPS-checked proof of Multi-Paxos with
Preemption are included in the Appendix of the full version [2].
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2 Distributed consensus and Paxos

A system is a set of processes that can process values individually and commu-
nicate with each other by sending and receiving messages. The processes may
crash and may later recover. The messages may be delayed indefinitely or lost.

Distributed consensus. The basic consensus problem, called single-value con-
sensus or single-decree consensus, is to ensure that a single value is chosen from
among the values proposed by the processes. The safety requirements for basic
consensus are [17]:

– Only a value that has been proposed may be chosen.
– Only a single value is chosen.
– A process never learns that a value has been chosen unless it actually has

been chosen.

Formally this is defined as

Consistencybasic
∆
= ∀ v1, v2 ∈ V : φ(v1) ∧ φ(v2)⇒ v1 = v2 (1)

where V is the set of possible proposed values, and φ is a predicate that given a
value v evaluates to true iff v was chosen by the algorithm. The specification of
φ is part of the algorithm.

The more general consensus problem, called multi-value consensus or multi-
decree consensus, is to choose a sequence of values, instead of a single value.
Here we have

Consistencymulti
∆
= ∀ v1, v2 ∈ V, s ∈ S : φ(v1, s)∧ φ(v2, s)⇒ v1 = v2 (2)

where V is as above, S is a set of slots used to index the sequence of decisions,
and φ is a predicate that given a value v and a slot s evaluates to true iff v was
chosen for s by the algorithm.

Basic Paxos and Multi-Paxos. Paxos solves the problem of consensus. Two
main roles of the algorithm are performed by two kinds of processes:

– P is the set of proposers. These processes propose values that can be chosen.
– A is the set of acceptors. These processes vote for proposed values. A value

is chosen when there are enough votes for it.

A set Q of subsets of the acceptors, i.e., Q ⊆ 2A, is used as a quorum system.
It must satisfy the following properties:

– Q is a set cover for A, i.e.,
⋃

Q∈QQ = A.
– Any two quorums overlap, i.e., ∀Q1,Q2 ∈ Q : Q1 ∩Q2 6= ∅.

The most commonly used quorum system Q takes any majority of acceptors as
an element in Q.

Basic Paxos solves single-value consensus. It defines predicate φ as

φ(v)
∆
= ∃Q ∈ Q : ∀a ∈ Q : ∃b ∈ B : sent(“2b”, b, v , a) (3)
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where B is the set of proposal numbers, also called ballots, which is any set that
can be strictly totally ordered. sent(“2b”, b, v , a) means that a message of type
“2b” with ballot b and value v was sent by acceptor a (to some set of processes).
An acceptor votes by sending such a message.

Multi-Paxos solves the problem of multi-value consensus. It trivially extends
predicate φ to decide a value for each slot s in S:

φ(v , s)
∆
= ∃Q ∈ Q : ∀a ∈ Q : ∃b ∈ B : sent(“2b”, b, v , a, s) (4)

To satisfy the safety requirements, S need not have any relations defined on it.
In practice, S is usually the natural numbers.

Putting the actions of the proposer and acceptor together, we see that the
algorithm operates in the following two phases.

Phase 1. (a) A proposer selects a proposal number n and sends a prepare request
with number n to a majority of acceptors.
(b) If an acceptor receives a prepare request with number n greater than that
of any prepare request to which it has already responded, then it responds to
the request with a promise not to accept any more proposals numbered less
than n and with the highest-numbered proposal (if any) that it has accepted.

Phase 2. (a) If the proposer receives a response to its prepare requests (numbered
n) from a majority of acceptors, then it sends an accept request to each of those
acceptors for a proposal numbered n with a value v , where v is the value of the
highest-numbered proposal among the responses, or is any value if the responses
reported no proposals.
(b) If an acceptor receives an accept request for a proposal numbered n, it
accepts the proposal unless it has already responded to a prepare request having
a number greater than n.

A proposer can make multiple proposals, so long as it follows the algorithm for each
one. ... It is probably a good idea to abandon a proposal if some proposer has begun
trying to issue a high-numbered one. Therefore, if an acceptor ignores a prepare or
accept request because it has already received a prepare request with a higher
number, then it should probably inform the proposer, who should then abandon its
proposal. This is a performance optimization that does not affect correctness.

To learn that a value has been chosen, a learner must find out that a proposal
has been accepted by a majority of acceptors. The obvious algorithm is to have each
acceptor, whenever it accepts a proposal, respond to all learners, sending them the
proposal. ...

Fig. 1. Lamport’s description of Basic Paxos in English [17].

Figure 1 shows Lamport’s description of Basic Paxos [17]. It uses any majority
of acceptors as a quorum. In Phase 2a, it instructs the accept request be sent
to each acceptor that replied with the proposer’s ballot n, but it is sufficient
for safety to send accept to any subset of A. However, because the proposer is
waiting for a quorum, the set of receivers should contain at least one quorum,
which again is allowed to be different from the quorum that responded to n.
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Multi-Paxos can be built from Basic Paxos by carefully adding slots. In Basic
Paxos, acceptors cache the value they have accepted with the highest ballot.
With slots, we have a sequence of these values indexed by slot. Therefore,

– In Phase 1b, the acceptor now replies with a mapping in S → B × V as
opposed to just one pair in B × V.

– The same change is needed in Phase 2b.
– Upon receiving such a mapping as a reply, in Phase 2a, a proposer proposes

a mapping in S → V instead of just one value in V. In the same way that
v was chosen in Basic Paxos, by picking the value backed by the highest
received ballot, in Multi-Paxos, the proposer does this calculation for each
slot in the received mapping.

– Phase 1a is unchanged.
– Learning, as described in the last part of Figure 1, is also unchanged, except

to consider different slots separately—a process learns that a value is chosen
for a slot if a quorum of acceptors accepted it for that slot.

Note that the size of messages replied by the acceptors grows as S increases,
which is a common abstraction before applying optimizations [16, 29].

3 Specification of Multi-Paxos

We give a formal specification of Multi-Paxos by minimally extending that of
Basic Paxos by Lamport, Merz, and Doligez [22].

Variables. The specification of Multi-Paxos has four global variables.

msgs—the set of messages that have been sent. Processes read from or add to
this set. This is the same as in the specification of Basic Paxos.

accVoted—per acceptor, a set of triples in B × S × V, capturing a mapping in
S → B×V, that the acceptor has voted for. This contrasts two numbers per
acceptor, in two variables, maxVBal and maxVal , in Basic Paxos.

accMaxBal—per acceptor, the highest ballot seen by the acceptor. This is
named maxBal in the specification of Basic Paxos.

proBallot—per proposer, the ballot of the current ballot being run by the pro-
poser. This is not in the specification of Basic Paxos; it is added to support
preemption and is only updated during preemption.

Note that in accVoted , we maintain a set of pairs in B×V, not just the pair with
the maximum ballot. This is an abstraction that simplifies the specification and
allows possible generalization of Paxos [29].

Algorithm steps. The algorithm consists of repeatedly executing two phases.

Phase 1a. Figure 2 shows the specifications of Phase 1a for Basic Paxos and
Multi-Paxos, which are in essence the same. Parameter ballot b, in Basic
Paxos is replaced with proposer p executing this phase in Multi-Paxos, to
allow extensions such as preemption that need to know the proposer of a
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Basic Paxos Multi-Paxos

Phase1a(b ∈ B)
∆
=

∧@m ∈ msgs : (m.type = “1a”)∧
(m.bal = b)
∧Send([type 7→ “1a”,

bal 7→ b)
∧unchanged 〈maxVBal ,maxBal ,

maxVal 〉

Phase1a(p ∈ P)
∆
=

∧@m ∈ msgs : (m.type = “1a”)∧
(m.bal = proBallot [p])

∧Send([type 7→ “1a”,
bal 7→ proBallot [p], from 7→ p])

∧unchanged 〈accVoted , accMaxBal ,
proBallot 〉

Fig. 2. Phase 1a of Basic Paxos and Multi-Paxos

Basic Paxos Multi-Paxos

Phase1b(a ∈ A)
∆
=

∃m ∈ msgs :
∧m.type = “1a”
∧m.bal > maxBal [a]
∧Send([type 7→ “1b”,

bal 7→ m.bal ,
maxVBal 7→ maxVBal [a],
maxVal 7→ maxVal [a],
acc 7→ a])
∧maxBal ′ =

[maxBal except ! [a] = m.bal ]
∧unchanged 〈maxVBal ,maxVal 〉

Phase1b(a ∈ A)
∆
=

∃m ∈ msgs :
∧m.type = “1a”
∧m.bal > accMaxBal [a]
∧Send([type 7→ “1b”,

bal 7→ m.bal ,
voted 7→ accVoted [a],

from 7→ a])
∧accMaxBal ′ =

[accMaxBal except ! [a] = m.bal ]
∧unchanged 〈accVoted , proBallot 〉

Fig. 3. Phase 1b of Basic Paxos and Multi-Paxos

ballot; uses of b are changed to proBallot [p]; and from 7→ p is added in

Send . Send is a macro that adds its argument to msgs, i.e., Send(m)
∆
=

msgs ′ = msgs∪{m}. In this specification, 1a messages do not have a receiver,
making them accessible to all processes. However, this is not required. It is
enough to send this message to any subset of A that contains a quorum.

Phase 1b. Figure 3 shows the specifications of Phase 1b. Parameter acceptor
a executes this phase. The only key difference between the specifications is
the set accVoted [a] of triples in Send of Multi-Paxos vs. the two numbers
maxVBal [a] and maxVal [a] in Basic Paxos.

Phase 2a. Figure 4 shows Phase 2a. The key difference is, in Send , the bloat-
ing of a single value v in V in Basic Paxos to a set of pairs given by
ProposeDecrees capturing a mapping in S → V in Multi-Paxos. The opera-
tion of finding the value with the highest ballot in Basic Paxos is performed
for each slot by Bmax in Multi-Paxos; Bmax takes a set T of triples captur-
ing a mapping in S → B×V and returns a set of pairs capturing a mapping
in S → V. NewProposals generates a set of pairs capturing a mapping in
S → V where values are proposed for slots not in Bmax . Note that this is
significantly more sophisticated than running Basic Paxos for each slot, be-
cause the ballots are shared and changing for all slots, and slots are paired
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with values dynamically where slots that failed to reach consensus values
earlier are also detected and reused.

Basic Paxos Multi-Paxos

Phase2a(b ∈ B)
∆
=

∧@m ∈ msgs : (m.type = “2a”)∧
(m.bal = b)
∧∃ v ∈ V :
∧∃Q ∈ Q : ∃S ∈ subset {m ∈ msgs :

(m.type = “1b”)∧
(m.bal = b)} :
∧∀ a ∈ Q : ∃m ∈ S : m.acc = a
∧ ∨ ∀m ∈ S : m.maxVBal = −1
∨∃ c ∈ 0..(b − 1) :
∧∀m ∈ S : m.maxVBal =< c
∧∃m ∈ S : (m.maxVBal = c)
∧m.maxVal = v

∧Send([type 7→ “2a”, bal 7→ b, val 7→ v ])
∧unchanged 〈maxBal ,maxVBal ,

maxVal 〉

Phase2a(p ∈ P)
∆
=

∧@m ∈ msgs : (m.type = “2a”)∧
(m.bal = proBallot [p])

∧∃Q ∈ Q,S ∈ subset {m ∈ msgs :
(m.type = “1b”)∧
(m.bal = proBallot [p])} :
∧∀ a ∈ Q : ∃m ∈ S : m.from = a
∧Send([type 7→ “2a”,

bal 7→ proBallot [p],
decrees 7→ ProposeDecrees(union
{m.voted : m ∈ S}),

from 7→ p])

∧unchanged 〈accMaxBal , accVoted ,
proBallot 〉

Bmax (T )
∆
=

{[slot 7→ t .slot , val 7→ t .val ] : t ∈
{t ∈ T : ∀ t2 ∈ T : t2.slot = t .slot
⇒ t2.bal =< t .bal}}

FreeSlots(T )
∆
=

{s ∈ S : @t ∈ T : t .slot = s}

NewProposals(T )
∆
=

choose D ∈ (subset [slot :
FreeSlots(T ), val : V]) \ {} :
∀ d1, d2 ∈ D : d1.slot = d2.slot ⇒
d1 = d2

ProposeDecrees(T )
∆
=

Bmax (T ) ∪NewProposals(T )

Fig. 4. Phase 2a of Basic Paxos and Multi-Paxos

Phase 2b. Figure 5 shows Phase 2b. In Basic Paxos, the acceptor updates its
voted pair maxVBal [a] and maxVal [a] upon receipt of a 2a message of the
highest ballot. In Multi-Paxos, this is performed for each slot. The acceptor
updates accVoted to have all decrees in the received 2a message and all
previous values in accVoted for slots not mentioned in that message.

Complete algorithm specification. To complete the algorithm specification,
we define vars, Init , Next , and Spec, typical TLA+ macro names for the set of
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Basic Paxos Multi-Paxos

Phase2b(a ∈ A)
∆
=

∃m ∈ msgs :
∧m.type = “2a”
∧m.bal >= maxBal [a]
∧Send([type 7→ “2b”,

bal 7→ m.bal ,
val 7→ m.val ,
acc 7→ a])
∧maxBal ′ =

[maxBal except ! [a] = m.bal ]
∧maxVBal ′ =

[maxBal except ! [a] = m.bal ]
∧maxVal ′ =

[maxVal except ! [a] = m.val ]

Phase2b(a ∈ A)
∆
=

∃m ∈ msgs :
∧m.type = “2a”
∧m.bal >= accMaxBal [a]
∧Send([type 7→ “2b”,

bal 7→ m.bal ,
decrees 7→ m.decrees,
from 7→ a)

∧accMaxBal ′ =
[accMaxBal except ! [a] = m.bal ]

∧accVoted ′ = [accVoted except ! [a] =
∪{[bal 7→ m.bal , slot 7→ d .slot ,

val 7→ d .val ] : d ∈ m.decrees}]
∪{e ∈ accVoted [a] :

@ r ∈ m.decrees : e.slot = r .slot}
∧unchanged 〈proBallot 〉

Fig. 5. Phase 2b of Basic Paxos and Multi-Paxos

variables, the initial state, possible actions leading to the next state, and the
system specification, respectively:

vars
∆
= 〈msgs, accVoted , accMaxBal , proBallot 〉

Init
∆
= msgs = {} ∧ accVoted = [a ∈ A 7→ {}]∧

accMaxBal = [a ∈ A 7→ −1] ∧ proBallot = [p ∈ P 7→ 0]

Next
∆
= ∨∃ p ∈ P : Phase1a(p) ∨ Phase2a(p)

∨ ∃ a ∈ A : Phase1b(a) ∨ Phase2b(a)

Spec
∆
= Init ∧ 2[Next ]vars

(5)

4 Verification of Multi-Paxos

We first define the auxiliary predicates and invariants used, by extending those
for the proof of Basic Paxos with slots, and then describe our proof strategy
which proves Consistency of Multi-Paxos.

Auxiliary predicates. These predicates are used throughout the proof. We
define the predicate φ in (4) by φ(v , s) ≡ Chosen(v , s), where:

VotedForIn(a ∈ A, v ∈ V, b ∈ B, s ∈ S)
∆
=

∃m ∈ msgs :

m.type = “2b” ∧m.bal = b ∧m.from = a∧
∃ d ∈ m.decrees : d .slot = s ∧ d .val = v

ChosenIn(v ∈ V, b ∈ B, s ∈ S)
∆
=

∃Q ∈ Q : ∀ a ∈ Q : VotedForIn(a, v , b, s)

Chosen(v ∈ V, s ∈ S)
∆
=

∃ b ∈ B : ChosenIn(v , b, s)

(6)
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Predicate MaxVotedBallotInSlot(D ∈ subset [slot : S, bal : B], s ∈ S)
returns the highest ballot among all pairs in set D with slot s.

Maximum(B)
∆
=

choose b ∈ B : ∀ b2 ∈ B : b >= b2

MaxVotedBallotInSlot(D ∈ subset [slot : S, bal : B], s ∈ S)
∆
=

let B
∆
= {d .bal : d ∈ {d ∈ D : d .slot = s}}

in if {d ∈ D : d .slot = s} = {} then −1
else Maximum(B)

(7)

Type invariants. Type invariants are captured by TypeOK .

Messages
∆
=

∪ [type : {“1a”}, bal : B, from : P]

∪ [type : {“1b”}, bal : B, voted : subset [bal : B, slot : S, val : V], from : A]

∪ [type : {“2a”}, bal : B, decrees : subset [slot : S, val : V], from : P]

∪ [type : {“2b”}, bal : B, from : A, decrees : subset [slot : S, val : V]]

∪ [type : {“preempt”}, bal : B, to : P,maxBal : B]

TypeOK
∆
=

∧msgs ∈ subsetMessages

∧ accVoted ∈ [A → subset [bal : B, slot : S, val : V]]

∧ accMaxBal ∈ [A → B ∪ {−1}]
∧ proBallot ∈ [P → B]

∧ ∀ a ∈ A : ∀ t ∈ accVoted [a] : accMaxBal [a] >= t .bal

(8)

Invariants about messages. The following invariant is for 1b messages. The
first conjunct establishes that the ballot is at most the highest ballot seen by the
sending acceptor. The second conjunct states that the decrees contained within
the message body have been voted for by the sending acceptor. The last conjunct
asserts that for each slot, relative to the timeline established by ballots, since
the last time this acceptor voted in the slot to the time this message was sent,
no voting occurred on the slot by this acceptor.

MsgInv1b
∆
=

∀m ∈ msgs : (m.type = “1b”)⇒
∧m.bal =< accMaxBal [m.from]

∧ ∀ t ∈ m.voted : VotedForIn(m.from, t .val , t .bal , t .slot)

∧ ∀ b2 ∈ B, s ∈ S, v ∈ V : b2 ∈ (MaxVotedBallotInSlot(m.voted , s),m.bal)

⇒ ¬VotedForIn(m.from, v , b2, s)

(9)

Proof strategy. The proof is developed following a standard hierarchical struc-
ture and uses proof by induction and contradiction.

MsgInv
∆
= MsgInv1b ∧MsgInv2a ∧MsgInv2b

Inv
∆
= TypeOK ∧AccInv ∧MsgInv

Consistency
∆
= ∀ v1, v2 ∈ V, s ∈ S : Chosen(v1, s) ∧ Chosen(v2, s)⇒ v1 = v2

theorem Consistent
∆
= Spec ⇒ 2Consistency

(10)
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where AccInv is an invariant about acceptors, and MsgInv2a and MsgInv2b are
invariants for 2a and 2b messages, respectively, and these three invariants are
defined in the Appendix of the full version [2].

The main theorem to prove is Consistent as defined in Equation (10). For this,
we define Inv and first prove Inv ⇒ Consistency . Then, we prove Spec ⇒ 2Inv
which by temporal logic, concludes Spec ⇒ 2Consistency . To prove Spec ⇒
2Inv , we employ a systematic proof strategy that works very well for algorithms
described in the event driven paradigm, including message-passing distributed
algorithms. We demonstrate the strategy for some invariants in Inv .

First, consider invariant TypeOK . The goal is Spec ⇒ 2TypeOK . Recall

Spec
∆
= Init∧2[Next ]vars . The induction basis, Init ⇒ TypeOK , is trivial, and

TLAPS handles it automatically. Next, we want to prove TypeOK ∧[Next ]vars ⇒
TypeOK ′, where the left side is the induction hypothesis, and right side is the
goal to be proved. [Next ]vars is a disjunction of phases, as for any algorithm, and
TypeOK ′ is a conjunction of smaller invariants, as for many invariants. Now,
the basis can be stripped down to each disjunct separately, and each smaller
goal needs to be proved from all smaller disjuncts. This process is mechanical,
and TLAPS provides a feature for precisely this expansion into smaller proof
obligations. This breakdown is the first step in our proof strategy. For TypeOK ,
this expands to 5 smaller assertions; with 5 phases in Next , we obtain 25 small
proofs done by the prover with no manual intervention.

MsgInv and AccInv are more involved. We proceed like we did for TypeOK
and create a proof tree, each branch of which aims to prove an invariant for some
disjunct in Next . To explain the rest of our strategy, we show one combination:
MsgInv and Phase1b. Equation (11) gives the skeleton of the proof; the full
proof is in the Appendix of the full version [2]. Goal for the prover is step 〈4〉2
which states that MsgInv ′ holds if an acceptor, a, executes Phase1b. m is any
message in the new set of messages, msgs ′. Substeps 〈5〉1, 2, 3 focus on MsgInv1b,
MsgInv2a, MsgInv2b, respectively.

Phase1b generates a 1b message. 〈5〉3 is easy for the prover as it argues about
2b messages. Intuitively, 〈5〉2 should be easy for the prover too since, like 〈5〉3, it
involves a message type that is not what Phase1b generates. However, this is not
the case because of predicate SafeAt , which is used in MsgInv2a and expresses
whether it is safe to accept a given value for a given ballot for a given slot (the
formal definition is in the Appendix of the full version [2]). At this point the
prover needs a continuity lemma.

We define a continuity lemma as a lemma which asserts that a predicate
continues to hold (or not hold) as the system goes from one state to the next in
a single step. For example, the continuity lemma for SafeAt states that SafeAt
continues to hold for any disjunct in Next , which includes Phase1b(a). The
characteristic property of such lemmas is their reuse. In our proof of Multi-
Paxos, we defined 5 continuity lemmas which are asserted in 24 places.

Lastly, we need to prove 〈5〉1. Since 〈5〉1 asserts about 1b messages and
Phase1b generates such messages, the proof is more complicated and the prover
needs manual intervention. Here we split the set of messages in the new state
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into two: 〈6〉1 for the old messages, and 〈6〉2 for the increment created in this
step. For the old messages, we need continuity lemmas. The most challenging
is the increment. To deal with the increment, we focus on the cause of the
increment—the definition of Phase1b—and treat each goal conjunct separately
in 〈7〉1, 2, 3. The prover proves 〈7〉1 by just the definition of Phase1b and the
fact that it is the increment. For 〈7〉2, along with the definition of Phase1b, the
prover also needs a continuity lemma for VotedForIn. 〈7〉3 required, along with
the definition of Phase1b and continuity lemmas, some problem-specific manual
intervention. In this case, we helped the prover understand the change in limits
of the set MaxVotedBallotInSlot(m.voted , s) + 1..m.bal − 1.

〈4〉2.assume new a ∈ A,new m ∈ msgs ′,Phase1b(a) prove MsgInv ′

〈5〉1.((m.type = “1b”)⇒ (∗ MsgInv1b′ ∗)
∧m.bal ≤ acceptorMaxBal [m.from]

∧ ∀ r ∈ m.voted : VotedForIn(m.from, r .val , r .bal , r .slot)

∧ ∀ s ∈ S, v ∈ V, c ∈ B :

c ∈ MaxVotedBallotInSlot(m.voted , s) + 1..m.bal − 1⇒
¬VotedForIn(m.from, v , c, s))′

〈6〉1.case m ∈ msgs . . .

〈6〉2.case m ∈ msgs ′ \msgs

〈7〉1.(m.bal ≤ acceptorMaxBal [m.from])′

〈7〉2.(∀ r ∈ m.voted : VotedForIn(m.from, r .val , r .bal , r .slot))′ . . .

〈7〉3.(∀ s ∈ S, v ∈ V, c ∈ B :

c ∈ MaxVotedBallotInSlot(m.voted , s) + 1..m.bal − 1⇒
¬VotedForIn(m.from, v , c, s))′ . . .

〈5〉2.((m.type = “2a”)⇒ (∗ MsgInv2a ′ ∗)
∧ ∀ d ∈ m.decrees : SafeAt(d .val ,m.bal , d .slot)

∧ ∀ d1, d2 ∈ m.decrees : d1.slot = d2.slot ⇒ d1 = d2

∧ ∀ma ∈ msgs : (ma.type = “2a”) ∧ (ma.bal = m.bal)⇒ (ma = m))′ . . .

〈5〉3.((m.type = “2b”)⇒ (∗ MsgInv2b′ ∗)
∧ ∃ma ∈ msgs : ma.type = “2a” ∧ma.bal = m.bal ∧ma.decrees = m.decrees

∧m.bal ≤ acceptorMaxBal [m.from])′

(11)

Induction for properties over sets, and ways of accessing elements of
tuples. After developing the proof using the above strategy, we were still faced
with certain assertions which were difficult to prove. One of the main difficulties
lay in proving properties about tuples and sets of tuples for each of a set of
processes in Multi-Paxos, as opposed to scalars for each of a set of processes in
Basic Paxos. It may appear that, in many places, this requires simply adding an
extra parameter for the slot, but the proof became significantly more difficult:
even in places where an explicit inductive proof is not needed, auxiliary facts
had to be added to help TLAPS succeed or proceed faster.
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For example, adding slots to the proof of theorem Consistent for Basic
Paxos caused the prover to take about 90 seconds to check it. To aid the proof,
we added ∃ a ∈ A : VotedForIn(a, v1, b1, s)∧VotedForIn(a, v2, b1, s) as an inter-
mediary fact derivable from ChosenIn(v1, b1, s)∧ChosenIn(v2, b2, s)∧ b1 = b2.
Following this, the prover asserted the conclusion v1 = v2 in a few milliseconds.

Tuples have only a fixed number of components and therefore do not require
separate inductive proofs, but they often turn out to be tricky and require special
care in choosing the ways to access and test their elements, to reduce TLAPS’s
proof-checking time. For example, consider the definition of VotedForIn in Equa-
tion (6). Originally a test [slot 7→ s, val 7→ v ] ∈ m.decrees was written, because it
was natural, but it had to be changed to ∃ d ∈ m.decrees : d .slot = s∧d .val = v ,
because the prover found the latter more helpful. With the original version, the
proof did not carry through after 1 or 2 minutes. After the change, the proof pro-
ceeded quickly. One minute of waiting for such simple, small tests felt very long,
making it uncertain whether the proof would carry through, even if it would in
a longer time. With dozens of places like this, one also cannot afford to wait for
this long at each such place.

5 Multi-Paxos with Preemption

Preemption is described informally in Lamport’s description of Basic Paxos in
Figure 1, in the paragraph about abandoning a proposal. Preemption has an
acceptor reply to a proposer, in both Phases 1b and 2b, if the proposer’s ballot
is stale i.e., the acceptor has seen a higher ballot than the one just received from
the proposer. This reply is a hint to the proposer to increase its ballot.

To specify preemption, each of Phases 1b and 2b adds a new case for when
the acceptor receives a lower ballot than some ballot it has seen before. We also
define predicate Preempt that specifies how proposers update proBallot upon
receiving a preemption message. Figure 6 shows Phase 1b with and without the
modifications to add preemption. Modifications to Phase 2b are similar and are
omitted for brevity.

Preemption adds a new phase in the variable Next , modifies definitions of
existing phases, and adds a new type of message. This meant increasing the
width of the proof tree for the new phase. This new branch of the proof was
proven by asserting continuity lemmas already established earlier. The whole
task of adding the new specification and proof took less than an hour.

6 Results of TLAPS-checked proof

Figure 7 summarizes the results from our specification and proof.

The specification size grew by only 18 lines (16%), from 115 lines for Basic Paxos
to 133 lines for Multi-Paxos; another 23 lines are added for Preemption.

The proof size increased significantly by 763 lines (180%), from 423 for Basic
Paxos to 1106 for Multi-Paxos, due to the complex interaction between slots
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NewBallot(bb ∈ B)
∆
= choose b ∈ B :

∧b > bb
∧@m ∈ msgs : m.type = “1a” ∧m.bal = b

Preempt(p ∈ P)
∆
= ∃m ∈ msgs :

∧m.type = “preempt”
∧m.to = p
∧m.bal > proBallot [p]
∧proBallot ′ = [proBallot except ! [p] = NewBallot(m.bal)]
∧unchanged 〈msgs, accVoted , accMaxBal 〉

Phase 1b without Preemption Phase 1b with Preemption

Phase1b(a ∈ A)
∆
=

∃m ∈ msgs :
∧m.type = “1a”
∧m.bal > accMaxBal [a]
∧Send([type 7→ “1b”,

bal 7→ m.bal ,
voted 7→ accVoted [a],
from 7→ a])

∧accMaxBal ′ =
[accMaxBal except ! [a] = m.bal ]

∧unchanged 〈accVoted , proBallot 〉

Phase1b(a ∈ A)
∆
=

∃m ∈ msgs :
∧m.type = “1a”
∧ifm.bal > accMaxBal [a] then
∧Send([type 7→ “1b”,

bal 7→ m.bal ,
voted 7→ accVoted [a],
from 7→ a])
∧accMaxBal ′ =

[accMaxBal except ! [a] = m.bal ]
∧unchanged 〈accVoted , proBallot 〉

else
∧Send([type 7→ “preempt”,

to 7→ m.from,
bal 7→ acceptorMaxBal [a]])
∧unchanged 〈accVoted , accMaxBal ,

proBallot 〉

Fig. 6. Extension of Multi-Paxos to Multi-Paxos with Preemption

and ballots; only 30 more lines are added for Preemption, thanks to the reuse
of all lemmas, especially continuity lemmas.

The maximum level of proof tree nodes increased from 7 to 11 going from Basic
Paxos to Multi-Paxos but remained 11 after adding Preemption; this contrast
is even stronger for the maximum degree of proof tree nodes, consistent with
challenge of going to Multi-Paxos.

The increase in number of lemmas is due to the change from Maximum in Basic
Paxos to MaxVotedBallotInSlot in Multi-Paxos, defined in Equation (7). Five
lemmas were needed for this predicate alone to aid the prover, as we moved
from scalars to a set of tuples for each acceptor.

No proof by induction on set increment is used for Basic Paxos. Four such
proofs are used for Multi-Paxos and for Multi-Paxos with Preemption.

Proof by contradiction is used once in the proof of Basic Paxos, and we extended
it with slots in the proof of Multi-Paxos and Multi-Paxos with Premption.

The number of proof obligations to the prover increased most significantly, by
679 (284%), from 239 for Basic Paxos to 918 for Multi-Paxos. Only another
41 proof obligations were added for Multi-Paxos with Preemption.
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The proof-checking time increased significantly, by 104 seconds, from 24 for
Basic Paxos to 128 for Multi-Paxos, despite our continuous efforts to help
the prover reduce it, because of the greatly increased size and complexity of
the inductions used, leading to significantly more obligations to the prover.
Going to Multi-Paxos with Preemption, however, the proof-checking time de-
creased by about 25%. This was initially surprising, but our understanding
of Paxos and experience with proofs help support it: (1) adding the preemp-
tion cases to the original Phases 1b and 2b helps make the obligations in
these cases more specialized and the remaining steps for proving consistency
(which carry on longer in these cases before) easier; (2) adding preemption
with Phases 1a and 2a increases the number of proof obligations, but the
new obligations are easy, because they let the proposer start over (and thus
there are no remaining steps in these cases). We are investigating further to
confirm these.

Metric Basic Paxos Multi-Paxos
Multi-Paxos
w/ Preemption

Size of specification (lines) 115 133 158
Size of proof (lines) 423 1106 1136
Max level of proof tree nodes 7 11 11
Max degree of proof tree nodes 3 17 17
# lemmas 4 11 12
# continuity lemmas 1 5 6
# uses of continuity lemmas 8 27 29
# proofs by induction on set increment 0 4 4
# proofs by contradiction 1 1 1
# obligations in TLAPS 239 918 959
Time to check by TLAPS (seconds) 24 128 94

Fig. 7. Summary of results. An obligation is a condition that TLAPS checks. The
time to check is on an Intel i7-4720HQ 2.6 GHz CPU with 16 GB of memory, running
Windows 10 and TLAPS version 1.5.2.

7 Related work and conclusion

We discuss closest related results on verification of Paxos, categorized by the
verification technique.

Model checking. Model checking automatically explores the state space of
systems [6]. Lamport wrote TLA+ specifications for Basic Paxos and its variants,
e.g., Fast Paxos [19], and checked them using the TLA+ model checker TLC [25],
but he has not done this for Multi-Paxos or its variants; a number of MS students
at our university have also done this in course projects, including for Multi-
Paxos. Delano et al. [8] modeled Basic Paxos in Promela and checked it using
the Spin model checker [31]. To reduce the state space, they use counting guards
to track majority, reset local variables after state operations, and use sorted send
instead of FIFO send (with random receive, to model non-FIFO channels). They
checked Basic Paxos for pairs of numbers of proposers and acceptors up to (2,8),
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(3,5), (4,4), (5,3), and (8,2). Yabandeh et al. [35] checked a C++ implementation
of Basic Paxos using CrystalBall, a tool built on Mace [15], which includes a
model checker. Yang et al. [36] used their model checker MoDist to check a
Multi-Paxos-based service system developed by a Microsoft product team [24].
With dynamic partial-order reduction [10], they found 13 bugs including 2 bugs
in the Paxos implementation, with as few as 3 replicas and a few slots. In all
cases, existing work in model checking either does not check Multi-Paxos or can
check it for only a very small number of slots and processes.

Deductive verification. Kellomaki [14] formally specified and verified Basic
Paxos using PVS [32]. Charron-Bost and Schiper [5] expressed Basic Paxos in
the Heard-Of model, and Charron-Bost and Merz [4] verified it formally using
Isabelle/HOL [33]. Drăgoi et al. [9] specified and verified a version of Basic Paxos
in PSync, which is based on the Heard-Of model, so the specification and proof
are similar to [5, 4]. Lamport, Merz, and Doligez [22] give a formal specification
of Basic Paxos in TLA+ and a TLAPS-checked proof of its correctness. Lam-
port [20] wrote a TLA+ specification of Byzantine Paxos, a variant of Basic
Paxos that tolerates arbitrary failures, and a TLAPS-checked proof that it re-
fines Basic Paxos. With IronFleet, Hawblitzel et al. [11] verified a state machine
replication system that uses Multi-Paxos at its core. Their specification mimics
TLA+ models but is written in Dafny [23], which has no direct concurrency sup-
port but has more automated proof support than TLAPS. This work is superior
to its peers by proving not only safety but also liveness properties. Schiper et
al. [30] used EventML [28] to specify Multi-Paxos and used NuPRL [7] to verify
safety. Using the Verdi framework, Wilcox et al. [34] expressed Raft [27], an
algorithm similar to Multi-Paxos, in OCAML and verified it using Coq [12]. All
these works either do not handle Multi-Paxos or handle it using more restricted
or less direct language models than TLA+, some mixed in large systems, making
the essence of the algorithm’s proof harder to find and understand.

In contrast, our work is the first to specify the exact phases of Multi-Paxos
in a most direct and general language model, TLA+, with a complete correct-
ness proof automatically checked using TLAPS. Building on Lamport, Merz,
and Doligez’s specification and proof for Basic Paxos [22], we aim to facilitate
the understanding of Multi-Paxos and its proof by minimizing the difference
from those for basic Paxos. We also show this as a general way for specifying
and proving variants of Multi-Paxos, by doing so for Multi-Paxos extended with
preemption. We also discuss the significantly more complex but necessary sub-
proofs by induction. Future work may automate inductive proofs and support
the verification of variants that improve and extend Multi-Paxos, by extending
specifications of variants of Paxos, e.g., Fast Paxos [19] and Byzantine Paxos [20],
to Multi-Paxos and verifying these variants of Multi-Paxos as well as Raft [27].
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