
Collision Avoidance for Mobile Robots with
Limited Sensing and Limited Information about

the Environment

Dung Phan1, Junxing Yang1, Denise Ratasich2, Radu Grosu2,
Scott A. Smolka1, and Scott D. Stoller1

1 Department of Computer Science, Stony Brook University, USA
2 Department of Computer Science, Vienna University of Technology, Austria

Abstract. This paper addresses the problem of safely navigating a mo-
bile robot with limited sensing capability and limited information about
stationary obstacles. We consider two sensing limitations: blind spots be-
tween sensors and limited sensing range. We identify a set of constraints
on the sensors’ readings whose satisfaction at time t guarantees collision-
freedom during the time interval [t, t+∆t]. Here, ∆t is a parameter whose
value is bounded by a function of the maximum velocity of the robot and
the range of the sensors. The constraints are obtained under assumptions
about minimum internal angle and minimum edge length of polyhedral
obstacles. We apply these constraints in the switching logic of the Sim-
plex architecture to obtain a controller that ensures collision-freedom.
Experiments we have conducted are consistent with these claims. To the
best of our knowledge, our study is the first to provide runtime assur-
ance that an autonomous mobile robot with limited sensing can navigate
without collisions with only limited information about obstacles.

1 Introduction

Autonomous mobile robots are becoming increasingly popular. They are used
in homes, warehouses, hospitals and even on the roads. In most applications,
collision avoidance is a vital safety requirement. Ideally, the robots would have
360◦ field-of-view. One approach to achieve this is to closely place a sufficient
number of sensors (e.g., infrared, laser, or ultrasound) on the robot. The biggest
problem with this approach is interference between sensors. It is difficult to install
the sensors close enough to achieve 360◦ sensing while at the same time avoiding
interference.3 In addition, the use of numerous sensors increases cost, power
consumption, weight, and size of the robot. Another option is to use sensors
that have wide angle of observation, such as the Hokuyo URG-04LX laser range

3 Cameras, i.e., sensing based on computer vision, do not interfere with each other but
are less common as a basis for navigation due to other disadvantages: cameras depend
on good lighting; accurate ranging from stereoscopic vision is impossible on small
robots, is generally less accurate than and requires significantly more computational
power than ranging from lasers, ultrasound, IR, etc.



finder with 240◦ range. This approach, however, adds thousands of dollars to
the cost. Due to these difficulties, 360◦ sensing capability is often not a practical
option. Consequently, many well-known cost-effective mobile robots, such as E-
puck, Khepera III, Quickbot and AmigoBot, lack this capability. These robots
have a small number of narrow-angle infrared or ultrasound sensors that do not
provide 360◦ field-of-view. The resulting blind spots between sensors make the
robot vulnerable to collision with undetected obstacles that are narrow enough
to fit in the blind spots.

One approach to prevent such collisions is for the robot to repeatedly stop or
slow down (depending on the sensor range), rotate back and forth to sweep its
sensors across the original blind spots, and then continue (this assumes the robot
can rotate without moving too much). This approach, however, is inefficient: it
significantly slows the robot and wastes power. A similar approach is to mount
the sensors so that they can rotate relative to the robot. Unfortunately, this
approach adds hardware and software complexity, increases power usage, and
limits the maximum safe speed of the robot (depending on the rotation speed of
the sensors).

In this paper, we present a runtime approach, based on the Simplex architec-
ture [9,8], to ensure collision-freedom for robots with limited field-of-view and
limited sensing range in environments where obstacles are polyhedral and sat-
isfy reasonable assumptions about minimum internal angle and minimum edge
length. One example of such an environment is an automated warehouse, where
some information is known about the shapes and sizes of shelving racks, pallets,
etc. Our work is also applicable to robots designed with 360◦ sensing capabil-
ity that temporarily acquire blind spots due to of one or more sensor failures.
Our approach does not suffer from the above disadvantages, and requires only
some weak assumptions about the shape of the obstacles. Our approach guaran-
tees collision-freedom if the obstacles are stationary. If the environment contains
moving obstacles, and a bound on their velocity is known, our approach can
easily be extended to also ensure passive safety, which means that no collisions
can happen while the robot is moving.

Many navigation algorithms have been proposed for autonomous mobile
robots. Few of these algorithms, however, have been verified to ensure the safety
of the robot. One consequence of this state of affairs is that supposedly superior
but uncertified navigation algorithms are not deployed in safety-critical appli-
cations. The Simplex architecture allows these uncertified algorithms, which in
Simplex terms are called advanced controllers (ACs), to be used along side a pre-
certified controller, called the baseline controller (BC). The BC will take control
of the robot if something goes wrong with the AC. The key component of the
Simplex architecture that makes this happen is the decision module, which uses
switching logic to determine when to switch from the AC to the BC.

In this paper, we present a Simplex-based approach that offers runtime as-
surance that a mobile robot with limited sensing capability can safely navi-
gate an unknown environment with stationary obstacles. By “safely navigate”
we mean without colliding with an obstacle. We consider two sensing limita-



tions: blind spots between sensors, and limited sensing range. We identify a set
of constraints on the sensors’ readings whose satisfaction at time t guarantees
collision-freedom during the time interval [t, t + ∆t]. Here, ∆t is a parameter
whose value is bounded by a function of the maximum velocity of the robot and
the range of the sensors. The constraints are obtained under assumptions about
minimum internal angle and minimum edge length of polyhedral obstacles, and
form the basis for the switching logic. The simulation results we have obtained
are consistent with our runtime-assurance claims.

Another distinguishing feature of our work is the manner in which the switch-
ing condition is computed, using extensive geometric reasoning. Existing ap-
proaches to computation of switching condition are based on Lyapunov stability
theory (e.g., [9,8]) or, more recently, state-space exploration (e.g., [2]). These
existing approaches cannot be applied to the problem at hand, because of the
incomplete knowledge of the shapes and locations of the obstacles in the robot’s
environment. To the best of our knowledge, our study is the first to provide
runtime assurance that a mobile robot with limited sensing can navigate an
unknown environment without colliding with obstacles.

The paper is organized as follows. Section 2 considers related work on prov-
able collision avoidance. Section 3 provides background on the Simplex archi-
tecture. Section 4 contains a detailed derivation of the switching condition. Sec-
tion 5 discusses our implementation and experimental results. Section 6 offers
our concluding remarks and directions for future work.

2 Related Work

Prior work [4,3,1,5] has focused on establishing collision-freedom for specific
navigation algorithms. In contrast, we employ the Simplex architecture to ensure
the safety of the robot in the presence of any navigation algorithm, however
faulty it may be. We consider each of these approaches in turn.

Theorem-proving techniques are used in [4] to establish two safety properties
of the Dynamic Window algorithm for collision avoidance: passive safety and
passive friendly safety, both of which apply to stationary and moving obstacles.
Infinite sensor detection range is assumed. Our approach, in contrast, accounts
for the limited detection range of sensors.

In [3], the authors present the PassAvoid navigation algorithm, which avoids
“braking-inevitable collision states” to achieve passive safety. In [7], a biologically
inspired navigation algorithm for a unicycle-like robot moving in a dynamic
environment is presented. Both algorithms assume 360◦ sensing capability. We
do not make this assumption, and instead rely on certain weak assumptions
about the shapes of obstacles.

In [1], the authors propose an algorithm that constrains the velocity of a mo-
bile robot moving on a known trajectory such that it stops before colliding with
moving obstacles. They assume 360◦ field-of-view and a pre-planned trajectory
that guides the robot through an environment with known static obstacles. We
do not make any of these assumptions.



A method is presented in [5] for computing a smooth, collision-free path from
a piecewise linear collision-free trajectory produced by sampling-based planners.
They assume the given sampling-based trajectory is collision-free and use cubic
B-splines to generate a smooth trajectory that guarantees collision-freedom. We
do not make any assumptions about robot trajectories.

3 The Simplex Architecture

The Simplex architecture [9,8] was developed to allow sophisticated control soft-
ware to be used in safety-critical systems. This sophisticated software, called an
advanced controller, is designed to achieve high performance according to spec-
ified metrics (e.g., maneuverability, fuel economy, mission completion time). As
a result, it might be so complex that it is difficult to achieve the desired level
of safety assurance in all possible scenarios. Its complexity might also prevent
it from achieving required certifications (e.g., RTCA DO-178C for flightwor-
thiness). The Simplex architecture allows such advanced controllers to be used
safely, by pairing them with a simpler baseline controller for which the desired
level of safety assurance can be achieved, and with a decision module that de-
termines which controller is in control of the plant.

While the system is under the control of the advanced controller, the de-
cision module monitors the system state and periodically checks whether the
system is in imminent danger of violating a given safety requirement. If so, the
decision module switches control of the system from the advanced controller to
the baseline controller. The period with which the decision module makes the
switching decision is called the decision period and denoted ∆t. The condition on
the system state that it evaluates to determine whether to switch to the baseline
controller is called the switching condition. The switching condition depends on
the safety requirements, the system dynamics, and the decision period. A state is
correct if it satisfies the given safety requirements. A state is recoverable if, start-
ing from that state, the baseline controller can ensure that the system remains
correct; i.e., remains in correct states.

The correctness requirement for the switching condition is: If the switching
condition is false (i.e., “don’t switch”), then the system is guaranteed to remain
in recoverable states for the next ∆t time units, regardless of the control in-
puts to the plant produced by the advanced controller during that interval. The
quantification over all possible control inputs to the plant is needed because we
make no assumptions about the advanced controller’s behavior. If the baseline
controller and switching condition are correct, then correctness of the system is
ensured, regardless of the advanced controller’s behavior.

4 Switching Logic

Our approach uses the Simplex architecture with a baseline controller that im-
mediately stops the robot. To simplify the derivation of the switching condition



slightly, we make the following assumptions: (1) the execution time of the deci-
sion module is negligible; (2) the switching latency is negligible (i.e., the baseline
controller can take over immediately); (3) the robot can instantly come to a full
stop from any velocity; (4) the robot’s shape is a single point, as in [4]. None of
these assumptions is essential. Our derivation can easily be extended to eliminate
them.

Since we assume instantaneous stop, the decision module only needs to ensure
that no collisions can occur within ∆t time units. Since we make no assumptions
about the advanced controller’s behavior, and do not assume any limits on how
rapidly the robot can turn or accelerate, the robot may immediately move in any
direction at its maximum speed, denoted vmax. The speed vmax and the decision
period ∆t define the robot’s safety disk, a circular disk with radius R = vmax∆t
centered at the robot. The choice of the decision period ∆t is constrained by
the requirement that R < Rs, where Rs is the maximum detection range of the
sensors. To ensure collision-freedom for time ∆t, there must not be any obstacles
within the safety disk.

The robot is equipped with N distance sensors with angle of detection βs and
maximum range Rs, as shown in Fig. 1. For simplicity, we assume the sensors
are evenly spaced; it is easy to analyze other spacings in a similar way. The
angle (in radians) of the gap between the fields-of-view of adjacent sensors is
βg = (2π−Nβs)/N . We assume N and βs are such that βg > 0; in other words,
the robot has blind spots.

Fig. 1: The robot has N evenly spaced sensors s1, s2, ..., sN with angle of detec-
tion βs and maximum range Rs. The angle of the gap between two adjacent
sensors is βg.

When an obstacle intersects a sensor’s cone of observation at multiple dis-
tances, depending on the exact nature of the sensor, it may report the closest
distance to the obstacle, the farthest distance, or something in between. Our
derivation of the switching condition is based on the worst-case (from the per-
spective of collision avoidance) assumption about sensor behavior, namely, that
the sensor reports the farther distance to the obstacle.



4.1 Notation

Let EαAB = {P | 6 APB = α} be the α-equiangular arcs of AB, i.e., the locus of
points that see the line segment AB under angle α. Geometrically, EαAB forms
two circular arcs that pass through A and B, shown as the red boundary of
the blue shape in Fig. 2. Let SαAB be the set of points that lie within the area
enclosed by α-equiangular arcs of AB including the boundary. It is easy to show
that SαAB = {C | 6 ACB ≥ α}, which means SαAB is the locus of all possible
vertices with angle at least α such that one edge passes through A and the other
edge passes through B.

Fig. 2: Illustration of SαAB . The α-equiangular arcs of AB is the boundary.

Let O be the position of the robot. Let Ssafe be the set of points that lie
within the safety disk, i.e., Ssafe = {P |OP ≤ R}. Let Sobstacle be the set of
points that belong to the obstacle. Ssafe and Sobstacle are illustrated in Fig. 3.
By definition of the safety disk, a collision is possible within ∆t time units iff
Sobstacle ∩ Ssafe 6= ∅.

Fig. 3: Illustration of Ssafe and Sobstacle. A collision may happen within ∆t time
units iff Sobstacle ∩ Ssafe 6= ∅

Let Sii
′

safe be the set of points in the safety disk and in or between the cones
of observation of sensors si and si′ , shown as the orange region in Fig. 4.

4.2 Collision-Freedom Constraints

We derive the constraints that guarantee collision-freedom for ∆t time units
under the following assumptions about obstacles: (1) obstacles are polyhedra;



Fig. 4: Illustration of Sii
′

safe , the set of points in the safety disk and in or between
the cones of observation of sensors si and si′ .

(2) there is a known lower bound α on the internal angles between edges and
α > β, where β is the angle of the wedge Sii

′

safe (i.e., β = βg + 2βs); (3) there is a
known lower bound lmin on the edge lengths and lmin ≥ L, where L is defined
below; (4) the separation between obstacles is such that whenever two adjacent
sensors detect an obstacle, they are detecting the same obstacle. Intuitively, the
lower bound on internal angles ensures that vertices of obstacles are wide enough
so that they will be detected by the robot’s sensors despite blind spots.

Suppose sensor si detects an obstacle at Bi, i = 1..N . We define Ai as the
point in the cone of observation of si such that OAi = lmin, if si does not detect
any obstacle and OAi = min{OBi, lmin}, otherwise. Consider a sensor si′ , where
i′ = (i mod N) + 1, that is adjacent to si. The definition of Ai implies there is
at most one obstacle vertex inside triangle OAiAi′ . The assumptions about α
and lmin are designed such that SαAiAi′

∩ Sii′safe = ∅ if OAi = OAi′ = lmin. We

prove the constraints SαAiAi′
∩ Sii′safe = ∅ for i = 1..N , where i′ = (i mod N) + 1,

imply Sobstacle ∩ Ssafe = ∅ and hence guarantee collision-freedom for ∆t time
units. The proof is in the extended version of this paper, available at http:

//www.fsl.cs.stonybrook.edu/~dphan/rv2015-extended.pdf

Fig. 5 shows what the constraints look like geometrically. Intuitively, each
constraint guarantees collision-freedom in one wedge of the safety disk. These
wedges overlap and cover the safety disk.

Fig. 6 shows the lower bound L on lmin. Let Oarc be the center of the
α-equiangular arc of AiLAi′L as shown in Fig. 6. L can be derived from the
following equations.

AiLAi′L =
√

2 · L2 − 2 · L2 · cosβ (1)

Rarc = (AiLAi′L/2)/ sinα (2)

OOarc = Rarc +R (3)

The assumption lmin ≥ L ensures that if adjacent sensors si and si′ both
detect an obstacle at distances greater than lmin, then no obstacle point appears
within the wedge Sii

′

safe . We prove this in the extended version of this paper
(case 1c in Appendix A).

http://www.fsl.cs.stonybrook.edu/~dphan/rv2015-extended.pdf
http://www.fsl.cs.stonybrook.edu/~dphan/rv2015-extended.pdf


Fig. 5: Geometric meaning of the constraint SαAiAi′
∩ Sii′safe = ∅, where si and si′

are a pair of adjacent sensors.

Fig. 6: Lower bound L on lmin such that the α-equiangular arcs of AiLAi′L touch
the safety disk.

The assumption α > β is needed because if α ≤ β, then 6 AiOAi′ = β ≥ α,
i.e., O ∈ SαAiAi′

for any pair Ai, Ai′ . That means SαAiAi′
always intersects the

safety disk and we cannot guarantee the safety of the robot.
In principle, the constraints SαAiAi′

∩ Sii′safe = ∅ for i = 1..N , where i′ =

(i mod N) + 1, can be used as the switching condition for the switching logic in
the Simplex architecture. However, checking these constraints exactly is compu-
tationally expensive. In the following sections, we derive computationally cheaper
but more conservative switching conditions. We derive these switching conditions
for two cases: case 1: a sensor s detects an obstacle within distance lmin and the
adjacent sensors do not; case 2: two adjacent sensors s and s′ detect an obstacle
within distance lmin. Denote these switching conditions by φ1(s) and φ2(s, s′),
respectively. The overall switching condition is the disjunction of these two cases,
i.e., (∃s. φ1(s)) ∨ (∃s, s′. φ2(s, s′)).



We do not need a switching condition for the case when two adjacent sensors
detect an obstacle at distances greater than lmin because of the assumptions
lmin ≥ L and α > β discussed above, which allow us to treat detections at
distances above lmin as detections at lmin.

4.3 Case 1: A sensor detects an obstacle within lmin; adjacent
sensors do not

We use the following property to derive the switching condition in this case.
Let OX,OY be two readings by sensor si such that OX < OY . Let OZ be the
reading of sensor si′ that is adjacent to si.

Property 1.
∣∣∣SαXZ ∩ Sii′safe

∣∣∣ = 1 ⇒ SαY Z ∩ Sii
′

safe = ∅

Fig. 7: Illustration of Property 1. SαXZ touches Sii
′

safe at C. SαY Z ∩ Sii
′

safe = ∅

Proof. By contradiction. Suppose
∣∣∣SαXZ ∩ Sii′safe

∣∣∣ = 1 and SαY Z ∩ Sii
′

safe 6= ∅. Let

C ∈ SαXZ ∩ Sii
′

safe as shown in Fig. 7 (C is the point where SαXZ touches Sii
′

safe).
Since C lies on the boundary of SαXZ , we have 6 XCZ = α. Let D ∈ SαY Z ∩
Sii

′

safe . Because OY is strictly greater than OX, the geometry implies 6 XDZ >

6 Y DZ ≥ α. This means D ∈ SαXZ and D 6≡ C, therefore
∣∣∣SαXZ ∩ Sii′safe

∣∣∣ > 1, a

contradiction.



Suppose sensor s1 detects an obstacle at point A1, where OA1 = d1, and
adjacent sensors do not detect any obstacle within distance lmin, as shown in
Fig. 8. In this case, we assume the adjacent sensor s2 detects an obstacle at
distance OA2 = lmin, as described in Section 4.2. The switching condition φ1(s1)
in this case is of the form d1 ≤ d1switch, for the threshold d1switch defined below.

Fig. 8: Illustration of case 1. Sensor s1 detects an obstacle at distance OA1 <
lmin. Adjacent sensor s2 does not detect any obstacle within distance lmin so we
assume OA2 = lmin.

If we can find a point AT such that
∣∣SαATA2

∩ Ssafe

∣∣ = 1 (i.e., SαATA2
touches

Ssafe), then by Property 1, we can let d1switch = OAT . This switching condition
is more conservative than the constraint SαA1A2

∩S12
safe = ∅ because there are some

cases when SαATA2
touches Ssafe at a point outside the wedge S12

safe . The benefit
is that the switching threshold d1switch = OAT can be computed statically,
resulting in a very simple switching condition.

Similar to the computation of lower bound L on lmin described in Section 4.2,
the point AT must satisfy the following equations, where Oarc is the center of
the α-equiangular arc of ATA2 as shown in Fig. 9.

ATA2 =
√
OA2

T + l2min − 2 ·OAT · lmin · cosβ (4)

Rarc = (ATA2/2)/ sinα (5)

OOarc = Rarc +R (6)

Given lmin, α, β and R, all of which are known statically, the switching
threshold OAT can be obtained by straightforward solution of these equations
using algebraic geometry. We use Matlab to automate this.



Fig. 9: Illustration of switching threshold OAT calculation.

4.4 Case 2: Two adjacent sensors detect an obstacle within lmin

Suppose s1 detects an obstacle at A1 where OA1 ≤ lmin, and an adjacent sensor
s2 detects an obstacle at A2 where OA2 ≤ lmin, as depicted in Fig. 10.

Fig. 10: Sensors s1 and s2 detect an obstacle at distance OA1 ≤ lmin and OA2 ≤
lmin, respectively.

Checking the constraint SαA1A2
∩ S12

safe = ∅ exactly requires a complex al-
gorithm. To obtain a computationally cheaper switching condition, we instead
check the more conservative constraint SαA1A2

∩Ssafe = ∅. Algorithm 1 computes
the switching condition φ2(s1, s2) by checking whether SαA1A2

∩ Ssafe 6= ∅. This



algorithm performs only a short sequence of inexpensive geometric calculations.
The geometric reasoning underlying Algorithm 1 is similar to the derivation of
the lower bound L on lmin described in Section 4.2.

Input: OA1, OA2, α, 6 A1OA2, R

// Distance between points A1 and A2

A1A2 =
√
OA2

2 +OA2
2 − 2 ·OA1 ·OA2 · cos 6 A1OA2;

// Radius of the α-equiangular arcs for A1A2, i.e., points C such

that 6 A1CA2 = α
Rarc = (A1A2/2)/ sinα;
// Find the centers of those two arcs (the green dots in Fig. 10).

Their position is defined by the following geometric constraints,

whose solution amounts to finding the third vertex of a triangle,

given the other two vertices (namely, A1 and A2) and the internal

angle at the third vertex 6 A1OA2.

Oarc,1, Oarc,2 = the points Oarc satisfying OarcA1 =OarcA2 ∧ 6 A1OarcA2 =2α;
// Between those two points, choose the one corresponding to the arc

that intersects the safety disk.

Oarc = α ≤ π/2 ? min{OOarc,1, OOarc,2} : max{OOarc,1, OOarc,2};
// Test whether the arc intersects the safety disc by comparing the

distance between their centers with the sum of their radii.

return OOarc ≤ Rarc +R

Algorithm 1: Switching condition when adjacent sensors detect an obstacle
within distance lmin

5 Implementation and Experimental Results

We implemented the Simplex architecture with the baseline controller and switch-
ing conditions described in Section 4 in the Matlab simulator for the Quickbot
ground robot [6]. The robot has sensor architecture as in Fig. 1 with the fol-
lowing parameters: (1) number of sensors N = 8; (2) angle of detection of the
sensors βs = 10o; (3) maximum range of the sensors Rs = 80 cm; (4) maximum
velocity vmax = 28cm/sec, and decision period ∆t = 0.5sec. The radius of the
safety disk is R = vmax∆t = 14cm.

We tested the switching condition in the following two scenarios; snapshots
from simulations of these scenarios appear in Fig. 11. Both scenarios involve
an obstacle with lower bound on internal angles α = 70◦. For the scenario
in Fig. 11(a), we place the obstacle such that when the robot approaches the
obstacle and the vertex with angle α is about to enter the safety disk, only one
sensor detects an edge with lmin and the other edge barely misses the cone of
observation of an adjacent sensor. This is the worst-case scenario for case 1 in
Section 4.3. For the scenario in Fig. 11(b), we place the obstacle such that when
the robot approaches the obstacle and the vertex with angle α is about to enter



the safety disk, the vertex is in the gap of two adjacent sensors and both sensors
detect an edge of the obstacle within lmin. This is the worst-case scenario for
case 2 in Section 4.4.

The snapshots in Fig. 11 show the moment when the switching condition
becomes true and the robot stops. One observation is that, in both scenar-
ios, the switching condition is correct: the obstacle does not enter the safety
disk. Of course, this is expected. A more interesting observation is that, in
both scenarios, the switching condition is tight (not unnecessarily conservative):
the robot does not stop until the obstacle is about to enter the safety disk.
The actual simulations leading to these snapshots can be viewed at https:

//www.youtube.com/watch?v=bK-YnGgwjwU

(a) (b)

Fig. 11: Snapshots from simulations showing the robot correctly stops to ensure
no obstacles in the safety disk. The circle around the robot represents the safety
disk. The red region represents the obstacle. The blue wedges represent the
robot’s cones of observation. (a) Snapshot from scenario for case 1: a sensor
detects an obstacle within lmin; adjacent sensors do not. (b) Snapshot from
scenario for case 2: two adjacent sensors detect an obstacle within lmin.

Fig. 12 shows how the switching threshold d1switch in case 1 depends on
various parameters. Fig. 12(a) shows how d1switch decreases as α increases. It is
clear from the worst-case scenario of case 1 that when an obstacle with a sharper
corner, i.e., a smaller α, touches the safety disk, the sensor detects its edge at
a greater distance than one with a flatter corner, and this necessitates a larger
d1switch. Fig. 12(b) shows how d1switch increases as β increases. Intuitively, a
larger β means a larger gap between the cones of observation of two adjacent
sensors, so the edge of the obstacle is detected at a larger distance when the ver-
tex is at the boundary of the safety disk. Fig. 12(c) shows how d1switch decreases
as lmin increases. This can be seen from the worst-case scenario: the edge of the
obstacle that is not detected within lmin will make a smaller angle with the edge

https://www.youtube.com/watch?v=bK-YnGgwjwU
https://www.youtube.com/watch?v=bK-YnGgwjwU


of the cone if lmin is larger, so the other edge is detected at a smaller distance.
Fig. 12(d) shows how d1switch increases as R increases (note: it doesn’t matter
whether the increase in R is due to an increase in vmax or ∆t). This directly
reflects the fact that a robot with a larger safety disk needs to stop farther from
obstacles.

(a) (b)

(c) (d)

Fig. 12: Graphs of d1switch as a function of various parameters. (a) d1switch as a
function of α, with β = π/4, lmin = 80 and R = 14. (b) d1switch as a function of
β, with α = π/2, lmin = 80 and R = 14. (c) d1switch as a function of lmin, with
α = π/2, β = π/4, and R = 14. (d) d1switch as a function of R, with α = π/2,
β = π/4, and lmin = 80.

6 Conclusions

In this paper, we have shown how it is possible to use the Simplex architecture,
equipped with a sophisticated geometric-based switching condition, to ensure at
runtime that mobile robots with limited field-of-view and limited sensing range
navigate without collisions with only limited information about obstacles.



Future work includes extending our approach to take into account the size
and shape of the robot, its braking power (instead of assuming immediate stop),
and the minimum detection distance of the sensors. We will also consider more
powerful baseline controllers. We also plan to develop algorithms that allow the
robot to learn about its environment, enabling it to replace worst-case assump-
tions with more detailed information about obstacles it has encountered, allowing
tighter switching conditions. The geometric analysis that we developed to derive
and verify the switching condition can also be used as a basis for the design of
collision-avoidance logic in navigation algorithms for mobile robots.

Acknowledgments. This material is based upon work supported in part by
AFOSR Grant FA9550-14-1-0261, NSF Grants IIS-1447549, CCF-0926190, CNS-
1421893, CNS-1446832, CCF-1414078, ONR Grant N00014-15-1-2208, and Artemis
EMC2 Grant 3887039.

References

1. Alami, R., Krishna, K.M.: Provably safe motions strategies for mobile robots in
dynamic domains. In: in Autonomous Navigation in Dynamic Environment: Models
and Algorithms. in C. Laugier, R. Chatila (Eds.), Springer Tracts in Advanced
Robotics (2007)

2. Bak, S., Manamcheri, K., Mitra, S., Caccamo, M.: Sandboxing controllers for cyber-
physical systems. In: Proc. 2011 IEEE/ACM International Conference on Cyber-
Physical Systems ICCPS. pp. 3–12. IEEE Computer Society (2011)

3. Bouraine, S., Fraichard, T., Salhi, H.: Provably safe navigation for mobile robots
with limited field-of-views in dynamic environments. Autonomous Robots 32(3),
267–283 (Apr 2012), https://hal.inria.fr/hal-00733913

4. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for au-
tonomous robotic ground vehicles. In: Newman, P., Fox, D., Hsu, D. (eds.) Robotics:
Science and Systems (2013)

5. Pan, J., Zhang, L., Manocha, D.: Collision-free and smooth trajectory computation
in cluttered environments. Int. J. Rob. Res. 31(10), 1155–1175 (Sep 2012), http:
//dx.doi.org/10.1177/0278364912453186

6. QuickBot MOOC v2 (2014), http://o-botics.org/robots/quickbot/mooc/v2/
7. Savkin, A.V., Wang, C.: A reactive algorithm for safe navigation of a wheeled mobile

robot among moving obstacles. In: Proceedings of the 2012 IEEE International
Conference on Control Applications (CCA). pp. 1567–1571. IEEE (2012)

8. Seto, D., Krogh, B., Sha, L., Chutinan, A.: The Simplex architecture for safe online
control system upgrades. In: Proc. 1998 American Control Conference. vol. 6, pp.
3504–3508 (1998)

9. Sha, L.: Using simplicity to control complexity. IEEE Software 18(4), 20–28 (2001)

https://hal.inria.fr/hal-00733913
http://dx.doi.org/10.1177/0278364912453186
http://dx.doi.org/10.1177/0278364912453186
http://o-botics.org/robots/quickbot/mooc/v2/

	Collision Avoidance for Mobile Robots with Limited Sensing and Limited Information about the Environment

