
Tabling with Answer Subsumption:
Implementation, Applications and Performance

Terrance Swift1 and David S. Warren2

1 CENTRIA — Universidade Nova de Lisboa
2 Stony Brook University, Stony Brook, NY

Abstract. Tabled Logic Programming (TLP) is becoming widely available in
Prolog systems, but most implementations of TLP implement only answer vari-
ance in which an answerA is added to the table for a subgoalS only if A is not
a variant of any other answer already in the table forS. While TLP with answer
variance is powerful enough to implement the well-founded semantics with good
termination and complexity properties, TLP becomes much more powerful if a
mechanism calledanswer subsumption is used. XSB implements two forms of
answer subsumption. The first, partial order answer subsumption, addsA to a ta-
ble only if A is greater than all other answers already in the table according to a
user-defined partial order. The second, lattice answer subsumption, may joinA
to some other answer in the table according to a user-defined upper semi-lattice.
Answer subsumption can be used to implement paraconsistentand quantitative
logics, abstract analysis domains, and preference logics.This paper discusses the
semantics and implementation of answer subsumption in XSB,and discusses per-
formance and scalability of answer subsumption on a varietyof problems.

1 Introduction

Tabled Logic Programming (TLP) currently supports a numberof applications in agent
frameworks, reasoning over the semantic web, machine learning, and probabilistic logic
programming; and TLP is supported by several Prolog systems, including XSB, YAP,
B Prolog, Ciao, and ALS. However, an important feature called answer subsumption
has been little studied in the literature, and is missing from most TLP systems. Most
TLP systems add an answerA to a tableT only if A is not a variant of some other
answer already inT , a technique termedanswer variance. While answer variance is
sufficient to allow tabling to compute the well-founded semantics and to terminate for
programs with bounded term-depth, other choices of when andhow to add an answer
can be made. Usingpartial order answer subsumption, A would be added toT only
if A is maximal with respect to other answers inT according to a given partial order
>O. Furthermore ifA is added, any answers inT that A subsumes (i.e., is greater
than in>O) are deleted. When usinglattice answer subsumption, A itself may not be
added toT , rather the join is taken ofA and another answerA′ in T , with A′ being
deleted. Despite its conceptual simplicity, answer subsumption can be a powerful tool.
Partial order answer subsumption allows a table to retain only answers that are maximal
according to a metric or to a preference relation; lattice answer subsumption can form

the basis of multi-valued logics, quantitative logics, andof abstract interpretations for
programs and process logics.

A version of answer subsumption has been available in XSB forover a decade, but
its implementation was never described, and only recently was its implementation opti-
mized and declarations provided to make it easy for programmers to use. [10] described
how lattice answer subsumption can implement Generalized Annotated Programs [6],
but did not provide any details of implementation or benchmarks. Recently, [8] used an-
swer subsumption to implement probabilistic inference, but the benchmark times in that
paper were dominated by the cost of maintaining BDDs that represented probabilistic
explanations. Beyond related work for XSB, the mode-specific tabling of B Prolog can
be seen a restricted form of answer subsumption that allows only min and max over the
Prolog term order, and constrains the modes of aggregated tabled subgoals.

This paper makes two main contributions: first, it describesthe implementation of
partial order and lattice answer subsumption in XSB; and second, it analyzes perfor-
mance and demonstrates scalability of answer subsumption for applications in social
network analysis, abstract interpretation, and query justification through multi-valued
logics. The structure of the paper is as follows. Section 2 informally presents the se-
mantics of partial order and lattice answer subsumption. Section 3 then describes the
underlying implementation of answer subsumption using thetrie-based tabling data
structures of XSB. Finally, Section 4 analyzes the performance and scalability of an-
swer subsumption in various applications.

2 An Informal Semantics for Answer Subsumption

Terminology and Conventions. Informally, an answer is simply an atom derived via
some fixed-point evaluation of a programP – using tabling or bottom-up evaluation.
For simplicity of presentation, we assume that all queries are safe – i.e. that any answer
to a query will be ground (the implementation in XSB allows non-ground answers in
certain cases). Within this paper, answer subsumption is restricted to occur on a sin-
gle argument of a predicate; however since answer subsumption is defined for arbitrary
terms this restriction does not affect expressibility. Forpurposes of space, we restrict our
description to definite programs. However, the implementation described in Section 3
supports stratified programs, and so can form the basis of formalisms that use nega-
tion such as annotated or residuated programs [6, 1]. Finally, all examples use standard
Prolog syntax.

Partial Order Answer Subsumption. For simplicity, our first examples make use of a
shortest-path predicate (Figure 1) that counts the number of edges between two vertices;
more sophisticated uses of answer subsumption are presented in Section 4.

sp(X,Y,1):- edge(X,Y).
sp(X,Z,N):- sp(X,Y,N1),edge(Y,Z),N is N1 + 1.

Fig. 1. A Shortest Path Predicate

As mentioned above, partial-order answer subsumption retains in a tableT only
those answers that are maximal according to a given partial order>O. In the case of the
shortest-path predicate of Figure 1,sp(A1, A2, A3) >O sp(B1, B2, B3) if, A1 = B1,
A2 = B2, andA3 < B3. Note that that minimal distances are maximal in<O, and that
<O is undefined ifA3 or B3 is non-numeric. In XSB, partial order answer subsumption
is specified forsp/3 using the declaration

:- table sp(_,_,po(</2)).

In a given state of computation, only those answers that are maximal according to>O

are available for resolution. Thus, for a finite graph with cycles,sp/3 will terminate
using answer subsumption, but not with answer variance. Other partial orders beyond
distance metrics may be useful. For instance,>O may specify a preference ordering
between derived atoms so that answer subsumption provides an alternative to default-
based methods for computing preferences (cf. Section 4.1 for a discussion).

Lattice Answer Subsumption. An upper semi-lattice is a partial order for which any two
elements have a unique least upper bound. Because the ordering for the third argument
of sp/3 is total, it also forms an upper semi-lattice, and so can be computed using lattice
answer subsumption. In XSB lattice answer subsumption forsp/3 is declared as

:- table sp(_,_,lattice(min/3)).

with min/3 defined asmin(X,Y,Z):- Z is min(X,Y). Operationally, this
means that whenever an answersp(A1, A2, A3) is derived, if there is another answer
sp(B1, B2, B3) whereA1 = B1 andA2 = B2 the join J3 of A3 andB3 is taken,
and onlysp(A1, A2, J3) is available for resolution. As with a partial order, the join
operation ensures termination for shortest path over a finite graph with cycles.

As the following proposition shows, lattice answer subsumption can be modeled
either starting with a lattice, or starting with a function with appropriate properties.

Proposition 1. Let opbe an associative, commutative, and idempotent binary function.
Then there is a partial order P , such that P is an upper semi-lattice with join op.

Conversely, if a function does not have the above properties, it is not suitable for lat-
tice answer subsumption. Accordingly the aggregate functions count and sum cannot
be computed using lattice answer subsumption3. Lattice answer subsumption has a va-
riety of applications: Section 4.3 shows how it is used for social-network analysis and
for an application of multi-valued logics, [10] describes how a similar formalism can
implement a quantitative logic, and [8] describes an implementation of probabilistic
logic based on answer subsumption.

Partial Order Answer Subsumption with Abstraction. Computation over an abstract do-
main may require certain maximal answers to be abstracted. In many cases, abstraction
can be modeled by a join operation, but in others the abstraction represents an implicit
induction step in the following sense. Given a setA of answers, it may be detected that

3 Since count and sum are not idempotent their semantics is based on multi-sets, rather than sets.
Incorporating these as tabling features requires modifying their semantics to be set-based, in a
manner similar to aggregation ASP systems (cf. e.g. [2]) .

the program computed does not have a finite model. An abstraction operation then is
applied so thatA and its extensions can be symbolically represented by a single answer
A. Using answer subsumption, this abstraction can be taken only if needed during pro-
gram execution. Abstractly, partial order answer subsumption with abstraction uses the
declaration

:- table p(_,_,po(rel/2,abs/3)).

whererel/2 is a partial order, andabs/3 is the abstraction operation. Section 4.2
provides a detailed example of how such an approach is used toanalyze a process logic.

Complexity. Consider a ground programP where some predicatep/n is declared to use
lattice answer subsumption with join predicateop/3. Note that any answer to a subgoal
of p/n need be compared to at most one other answer to compute a join.Thus if op/3
has constant cost, lattice answer subsumption adds no overhead in terms of complexity
to evaluatingP . However, for partial order answer subsumption, an answer to a subgoal
of p/n might in principle be compared to all other answers forp/n, which in the worst
case isatoms(P), the number of atoms inP . Accordingly, if rel/2 has constant cost,
the complexity of evaluatingP will be size(P) × atoms(P), regardless of whetherP
is definite, or is being evaluated using negation over the well-founded semantics.

3 Implementation

Both lattice and partial-order subsumption are implemented through a compiler trans-
lation that introduces specialized code to manipulate answers in the table.

We first describe the implementation of lattice answer subsumption. As discussed,
for simplicity of presentation, we assume that the predicate tabled using answer sub-
sumption returns only ground answers. Consider again the example of shortest path
usingmin/3 as a join operator (Figure 1), in which the query finds all distances from
a single source – e.g. a query such assp(a,Y,M). The XSB compiler transforms
sp/3 to the code in Figure 2. The first two subgoals in the body of thetransformed
version ofsp/3 (line 3) gain access to the table created on the call tosp(a,Y,M);
access in XSB is through the generator choice point for the table, obtained through the
choice point register,Breg (see [9] for details).Cs is a pointer to the table entry for
the current call, andSkel is a term containing the free variables of the query, which
for sp(a,Y,M) is the termret(Y,M). Since tabled answers in XSB contain only
bindings to variables in the call, the free variables are necessary to retrieve answers
from the table. Line 4 throws an error if the argument using answer subsumption is not
a variable, as the code of Figure 2 is not correct in that case.Lines 5 and 6 generate
variants of other terms that will be needed to retrieve answers from the table. In our
example,OSkel is ret(Y,OM) – note thatY is in the call, butOM is free. After this
setup, line 7 calls the original code (transformed to’sp$$’/3) to derive answers. On
success of’sp$$’/3 (line 8), a previous answer whose bindings unify withOSkel
is obtained from the table, if it exists. For instance, if thesuccess ofsp$$/3 in line 7
boundY tob, the answer in the table forsp(a,Y,M) that hasY bound tob is obtained
if it exists, bindingOM to the third argument of that answer. Note that the use of lattice

:- table sp/3.
sp(X,Y,M) :-

’_$savecp’(Breg), breg_retskel(Breg,3,Skel,Cs),
(nonvar(M) -> instantiation_error ; true),

5 excess_vars(Skel,[M],[],Vars),
copy_term(t(Vars,Skel,M),t(Vars,OSkel,OM)),
’sp$$’(X,Y,NM),
(’_$$get_answers’(Cs,OSkel,AnsPtr)
-> min(OM,NM,M),

10 M \== OM,
delete_answer(Cs,AnsPtr)

; M = NM).

’sp$$’(X,Y,1) :- edge(X,Y).
15 ’sp$$’(X,Y,N) :- sp(X,Z,N1),e(Z,Y),N is N1+1.

Fig. 2. Example Code for Lattice Answer Subsumption

answer subsumption, together with the safety assumption ensure that there is at most
one such answer. If the answer does exist, the old valueOM is joined with the newNM
from the answer just returned (line 9). If the join differs from the old answer (line 10),
the old answer is deleted (line 12) and the clause succeeds. Further compilation into
byte code ensures that an answer is added to the table whenever a clause of a tabled
predicate succeeds (here, in line 10 or 12). If the joined valueM is the same as the value
OM in the old answer, the computation fails in order to search further. If there is no pre-
vious answer in the table (line 12), then the clause succeeds. Note that the setup portion,
(lines 1-6) are executed once per call; lines 8-12 are executed for each answer.

:- table sp/3.
sp(X,Y,M) :-

’_$savecp’(Breg), breg_retskel(Breg,3,Skel,Cs),
(nonvar(M) -> instantiation_error ; true),

5 excess_vars(Skel,[M],[],Vars),
copy_term(t(Vars,Skel,M),t(Vars,OSkel,OM)),
’sp$$’(X,Y,NM),
\+ (’_$$get_answers’(Cs,OSkel,_),

(OM == NM ; ’<’(OM,NM))),
10 findall(AnsPtr,

(’_$$get_answers’(Cs,OSkel,AnsPtr), ’<’(NM,OM)),
AnsPtrs),

(member(AnsPtr,AnsPtrs), delete_answer(Cs,AnsPtr), fail
;

15 M=NM).

Fig. 3. Example Code for Partial Order Answer Subsumption

Next we describe the implementation of the same program and query using partial
order answer subsumption. Again the compiler transforms the program to perform the
table manipulations (Figure 3). The first 6 lines of setup areidentical to the lattice case;
partial order subsumption differs only in how it treats answers. In lines 8-9 the table is
checked to see if any previous answer is the same as or subsumes the new answer. If
so, then the computation fails. (Note that if the new answer is subsumed by an answer
already in the table, then the table will not contain any answer subsumed by the new
one.) Assuming the new answer is not subsumed by any old answer, lines 10-12 use
findall/3 to collect pointers to all answers subsumed by the new one, and in line
13, they are deleted from the table. The new answer is added tothe table upon the
clause’s success in line 15.

Finally we describe the transformation for Partial Order Subsumption with
Abstraction. The example transformation for PT Net Reachability (Section 4.2)
is shown in Figure 4. The declaration for this example is assumed to be
:- table reachable(_,po(omega_gte/2,omega_abs/3)). Again the

:- table reachable/2.
reachable(S,M) :-

’_$savecp’(Breg), breg_retskel(Breg,2,Skel,Cs),
(nonvar(M) -> instantiation_error ; true),

5 excess_vars(Skel,[M],[],Vars),
copy_term(t(Vars,Skel,M),t(Vars,OSkel,OM)),
’reachable$$’(S,NM),
findall(OM-AnsPtr,’_$$get_answers’(Cs,OSkel,AnsPtr),OldAnswerPtrs),
collect_ans(OldAnswerPtrs,OldAnswers),

10 omega_abs(OldAnswers,NM,AbsM),
\+ (member(OM-_,OldAnswerPtrs),

(OM == AbsM ; omega_gte(OM,AbsM))),
(member(p(OM,AnsPtr),OldAnswerPtrs),
omega_gte(AbsM,OM)), delete_answer(Cs,AnsPtr), fail

15 ;
M=AbsM).

Fig. 4. Example Code for Partial Order Answer Subsumption with Abstraction

setup and call in line 7 are the same as the previous cases. On return of a newly com-
puted answer, line 8 collects all old answers and the pointers to them, and line 9 sep-
arates out just the old answers, which are input to the abstraction operator in line 10.
Then in the rest of the code, the abstracted answer is used in place of the computed an-
swer, as follows. First, lines 11-12 check whether the new answer is already subsumed
by an existing answer, in which case the clause fails. Otherwise, lines 13-14 delete all
old answers subsumed by (the possible abstraction of) the new answer. And in line 15,
we return the new (possibly) abstracted answer.

4 Performance and Applications

In this section we benchmark and analyze application TLP programs.4

4.1 Answer Subsumption in Support of Social Network Analysis

The field of Social Network Analysis (SNA) (cf. [13]) studiesthe behavior of groups
through the relations among their members. In SNA a social network is a graph that is
analyzed to determine measures of connectivity or of balance, partitioned into subcom-
ponents according to an optimality criterion, or analyzed in other ways. Logic program-
ming offers promise for SNA: it is easy to specify propertiesof vertices (“male,“lives-
in-city”) and of edges (“father-of”,“exchanges-needles-with”); and SNA properties can
be declaratively analyzed by TLP or ASP systems. A factor in many types of SNA (e.g.
[11]) is thecoherence of a (sub-)graph: a numeric measure based on the shortest paths
between all vertices in the subgroup (the metric for distance may be defined on different
edge types, or their combination).

We begin our benchmarking with the shortest path predicatesp/3 of Figure 1
which uses lattice answer subsumption. Insp/3, distance between two vertices is de-
fined simply as the minimal number of edges between them. While there are several
well-known algorithms to determine shortest paths in graphs with non-negative edge
weights, the problem offers excellent scope for analyzing various aspects of answer
subsumption. Table 1 shows the scalability of the goalsp(From,To,Dist) on ran-
domly generated graphs withN vertices and edges. These graphs are sparse in the sense
that they are largely unconnected: the number of answers is substantially below theN2

answers the query would return for a fully connected graph. As Table 1 shows,sp/3
scales linearly in answers up to the amount of core memory available.

Vertices Time Table Space Answers

25000 1.7 44,146,000 960,588
50000 7.5 198,905,244 4,324,742
75000 12.8 307,611,736 6,683,493

100000 9.8 212,186,848 4,611,563
125000 57.6 1,128,215,852 24,617,754

Table 1. Scalability of latticesp/3 on sparse graphs where|edges| = |vertices|

The standard algorithm for finding shortest paths to all nodes from a single source
node is Dijkstra’s algorithm [4]. The difference, between that algorithm and the under-
lying algorithm for answer subsumption, is in the scheduling. In Dijkstra’s algorithm,

4 All benchmarks were performed on a MacBook pro laptop, with a2 Ghz Intel Core Duo CPU
and 2 GB of RAM. Multi-threading was not used for these benchmarks, so only one core was
utilized. All times are in seconds, and all measures of spaceare in bytes. Table space in XSB
includes storage space for subgoals and answers along with space allocated for copying areas,
answer hash buckets, etc. All benchmark programs are available by anonymous CVS from
xsb.sourceforge.net in thebenches directory of the modulemttests.

the next node chosen to expand is the one with shortest distance from the source node.
So the “wave front” of the search is expanded by choosing the nearest non-expanded
node. This tabling algorithm expands the wave front based onthe number of edges from
the source, independent of the weights on the edges. For our examples where each edge
is assumed of weight 1, the algorithm corresponds to Dijkstra’s. But with varying edge
weights, answer subsumption (as implemented here) may be suboptimal.

Sparse graphs are unlikely to have many different paths between two vertices: ac-
cordingly Table 1 does not check the efficiency of all aspectsof lattice answer sub-
sumption such as accessing previously derived answers to compute a join, and possibly
deleting them. These factors are measured in Table 2, which benchmarks various pred-
icates on graphs of 1000 vertices andN = 2 × 1000, 4 × 1000 . . .512 × 1000 edges.
In addition to benchmarkingsp/3 with lattice and partial order answer subsumption,
Table 2 measures two new predicates shown in in Figure 5. The first, reach/3 is a
simple transitive closure predicate that does the same workassp/3 except for answer
subsumption; the second is a shortest path predicate,sp del/3, for which distance
is a function of weights for each edge. As can be seen from Table 2, once the graphs

:- table reach/3.
reach(X,Y,1):- edge(X,Y).
reach(X,Z,1):- reach(X,Y,N1),edge(Y,Z), _N is N1 + 1.

:- table sp_del(X,Y,lattice(min/3)).
sp_del(X,Y,D):- edge(X,Y,D).
sp_del(X,Z,D3):- sp_del(X,Y,D1),edge(Y,Z,D2),D3 is D1 + D2

Fig. 5. Predicates for shortest path and transitive closure

are fully connected,sp/3 is linear in the number of edges, regardless of whether a
lattice or partial order is used for answer subsumption. Thespace required is virtually
the same for both approaches, and the times are also quite similar, indicating that the
worst-case complexity of partial order answer subsumption(Section 2) is not a factor
for these examples.

Tests ofreach/3 on the same graphs show a similar growth in times tosp/3 and
virtually the same space.reach/3 is about 3-4 times faster, indicating the overhead
for answer subsumption on this simple example; it should be noted that shortest path
uses answer subsumption extremely heavily, and the overhead for answer subsumption
on most other programs will be much smaller. Profiling ofsp/3 shows that no deletions
are performed on either the sparse-graph or dense-graph benchmarks. In these experi-
ments, shorter paths are discovered first; when non-optimalpaths are derived later, so
that execution of answer subsumption code fails on the comparison in line 10 of Fig-
ure 2, and a deletion need not be performed. To test the cost ofdeletions,sp del/3
was tested on graphs where each edge fact also contains a randomly-generated cost.5

5 The graphs used forsp del/3 have different randomly-generate edge relations than those
for sp/3 and so have a different number of answers.

Avg. Verts//Node 2 8 32 128 512

sp/3-Lattice
Time 2.3 13.2 52.1 211.9 880
Table Space 26,249,826 41,213,664 41,213,664 41,213,664 41,213,664
Answers 631,509 1,000,000 1,000,000 1,000,000 1,000,000
sp/3-PO
Time 4.1 16.5 56 218.2 890
Table Space 26,249,860 41,213,688 41,214,084 41,214,084 41,214,084
reach/3
Time 0.88 3.47 12.5 53.2 238
Table Space 26,241,796 41,205,624 41,205,624 41,205,624 41,205,624
sp del/3
Time 4.2 104.0 329 845 2392
Table Space 27,198,048 41,203,908 41,290,552 41,322,464 41,345,080
Answers 655,221 999,000 1,000,000 1,000,000 1,000,000
Deletes 281,834 2,416,658 4,917,751 6,960,565 8,407,883

Table 2. Comparison of approaches on dense graphs where|edges| = N × |vertices|

Table 2 shows that deletion imposes overhead in terms of time, but virtually no overhead
in terms of space.

Comparison of answer subsumption to negation. In addition to using answer sub-
sumption, shortest paths can also be computed through negation, as by the predicate
pref distance/4 in Figure 6, which concludes a given path between two vertices
is shortest if no other shorter path is derivable. This approach is similar to a preference-

:- table pref_distance/4.
pref_distance(X,Y,1,_):- edge(X,Y).
pref_distance(X,Z,N,Max):-

pref_distance(X,Y,N1,Max),
edge(Y,Z), N is N1 + 1, N < Max,
tnot(preferred_distance(X,Z,N,Max)). % XSB’s tabled negation

:- table preferred_distance/4.
preferred_distance(X,Y,N,Max):- pref_distance(X,Y,M,Max),M < N.

Fig. 6. A Program to Compute Shortest Path using Negation

based approach, where a shorter path is prefered to a longer one. Note that when an-
swer subsumption is not used for shortest path, a program mayhave an infinite model
if the underlying graph has cycles. To ensure termination,pref distance/4 has as
its fourth argument the maximum diameter of a graph. The needfor a maximum dis-
tance, together with the requirement that calls to negativeliterals be ground, increases
the complexity of determining shortest path. Not surprisingly, experiments show that
pref distance/4 scales poorly compared to the approaches based on answer sub-
sumption. Since many ASP grounders may require users to program shortest path in a

ground manner similar to that ofpref distance/3, experiments on ASP grounders
were also performed. The experiments showed poor scalability compared to answer
subsumption. Overall, these results indicate that answer subsumption can play an im-
portant role for ASP grounding, either by implementing answer subsumption within a
grounder, or by using TLP as a grounder as in XSB’s XASP package.

4.2 Answer Subsumption and Abstract Interpretation

Net-style formalisms, such as Petri Nets, Workflow Nets, etc. have been used exten-
sively for process modeling. Reachability is a central problem in analyzing properties
of such nets, to which properties such as liveness, deadlock-freedom, and the existence
of home states can be reduced. However, many interesting netformalisms cannot guar-
antee a finite number of configurations in a given net, so abstraction methods must be
applied for their analysis.

For instance, the lack of finiteness is a problem in analyzingPlace/Transition (PT)
Nets. PT nets have no guard conditions or after-effects, anddo not distinguish between
token types. However, PT nets do allow a place to hold more than one token, leading to
a potentially infinite number of configurations. This can be seen in the simple network
of Figure 7 (from [3]) in which transitions are denoted by squares and places by circles.
Each transition removes one token from the places that are the sources of its input
edges and adds one token to each place at the target of each of its output edges. Starting
from the configuration in Figure 7, repeated application of transitiont1 leads to place
s2 containing an unbounded number of tokens; repeated application of the sequence
t1,t2,t3,t4 leads to places4 containing an unbounded number of tokens.

s3

t1

s1

s2

t2

t3 s4

t4

Fig. 7. A PT-net and configuration with an infinite number of reachable configurations

Despite such examples, reachability in PT nets is decidableand can be determined
using an abstraction method calledω-sequences, (see e.g. [3]). The main idea in de-
terminingω sequences is to define a partial order≥ω on configurations as follows. If
configurationsC1 andC2 are both reachable,C1 andC2 have tokens in the same set
PL of places,C1 has at least as many tokens in each place asC2, and there exists a
non-emptyPLsub ⊆ PL, such that for eachpl ∈ Plsub C1 has strictly more tokens
thanC2, thenC1 >ω C2. When evaluating reachability, ifC2 is reached first, and then
C1 was subsequently reached,C1 is abstracted by marking each place inPLsub with
the special tokenω which is taken to be greater than any integer. IfC1 was reached first
and thenC2, C2 is treated as having already been seen.

Tabling combined with partial order answer subsumption requires slightly over 100
lines of code to model reachability in PT nets usingω-sequences. Due to space re-

strictions, the program cannot be fully described here, butthe top-level reachability
predicate is shown in Figure 8. Despite its succinctness, itcan evaluate reachability
in networks with millions of states in a few minutes. This useof tabling to determine
reachability in PT nets can be seen as a special case of tabling for abstract interpretation
(cf. [5] and other works). However the framework for answer subsumption described
here allows tabling to be used to efficiently perform abstract interpretation within a
general Prolog system

:- table reachable(_,po(omega_gte/2,omega_abs/3)).
reachable(InConf,NewConf):-

reachable(InConf,NewConf),
hasTransition(Conf,NewConf).

reachable(InConf,NewConf):- hasTransition(InConf,NewConf).

Fig. 8. Top-level predicate for PT net reachability

4.3 Scalability for multi-valued and quantitative logics

The technique of program justification (cf. e.g. [7]) has been used for debugging tabled
programs that cannot be debugged by traditional means. Here, we consider justification
in the context of the Silk system, currently under development at Vulcan, Inc. Silk is
a commercial knowledge representation and rule system built on top of Flora-2, which
is implemented using XSB. One of the salient features of Silkis its default reason-
ing, which is based on a parameterized argumentation theoryevaluated under the well-
founded semantics [12]. One issue in using Silk is that knowledge engineers must have
a way of understanding the reasoning of the system, a task complicated by the use of the
well-founded semantics and the intricacies of the argumentation theory. We describe an
experimental approach to justification of Silk-style argumentation theories using multi-
valued logics.

As noted in [12], argumentation theories in Silk are usuallyextensions of the default
theories of Courteous Logic Programs (CLP) and are based on two user-defined pred-
icates:opposes/2 andoverrides/2. Two atomsoppose each other if no model
of a program can contain both atoms: an atom and its explicit negation oppose each
other, but opposition can capture many other types of contradictions. Given two op-
posing atoms, one atom mayoverride the other, and so be given preference. For atoms
A1 andA2, if A1 andA2 are both derivable and oppose each other but neither over-
rides the other,A1 andA2 mutuallyrebut each other. If in additionA1, say, overrides
A2, A1 refutes A2

6. Within Silk and Flora-2, the compilation of an argumentation the-
ory ensures that rebutted atoms have an undefined truth value, as do atoms that refute
themselves (i.e. if theoverrides/2 predicate is cyclic). However, for justification,
it is meaningful to distinguish those facts that are undefined due to a negative loop in
the argumentation theory from those that are undefined due toa negative loop in the
program itself. In addition, it is meaningful to distinguish an atom that is true because

6 In [12] argumentation theories are built on named rules, here we base them on derived atoms.

it overrides some other atom, from an atom whose derivation does not depend on the
argumentation theory. Similar distinctions can be made fordefault false literals leading
to the truth lattice shown in Figure 9.

mutually refuted

bottom

mutually rebutted

default refuted falserefuted true

default falsetrue

top

Fig. 9. A Truth Lattice for a Simplified Version of Courteous Argumentation Theory

An atom-based argumentation theory is added to a program by an easystan-
dard transformation [12]. Each clauseH :- B whose head is a defeasable predicate
is rewritten asH :- B, tnot(defeated(H)); clauses for non-defeasible predicates are
not altered. To obtain support for a justification amulti-valued transformation was
used instead of the standard transformation. First, the lattice of Figure 9 was pro-
grammed in Prolog for use by answer subsumption. Next, each clauseH :- B whose
head was a defeasible predicate was rewritten asH :- B, defeated(H, Reason), where
defeated(H,Value) indicates the truth value ofH on the lattice of Figure 9.

Experiments were performed on synthetic programs to compare the implementa-
tion of a Silk argumentation theory using the standard transformation to the new multi-
valued transformation. Synthetic programs were tested containing a large number of
mutually recursive defeasible rules, together with a largeproportion of refuted and re-
butted atoms. These tests indicate that the use of lattices may increase the time for total
query evaluation by two to three times, well within an allowable increase for a justifica-
tion system. Surprisingly, the multi-valued transformation of the argumentation theory
sometimes takeless table space, due to the space overhead incurred by XSB to maintain
conditional answers (i.e. answers whose truth value is undefined in the well-founded se-
mantics). We stress that these results are preliminary in the sense that the behavior of
the synthetic programs may not resemble that of practical programs that use defeasible
logic. However, the heavy use of defeasibility in the synthetic programs gives reason
to believe that the time overhead may well be much less in practical programs than
observed here. Together the results show that multi-valuedlogics are a promising ap-
proach for justification of defeasible logics, whether these logics occur as part of Silk
or are used directly in a TLP system such as XSB.

5 Conclusions

This paper has described how answer subsumption can be used for applications in quan-
titative reasoning, abstract interpretation and multi-valued logics. To use answer sub-
sumption, a programmer need only write a join, comparison, or abstraction operation

in Prolog and make the appropriate declarations. As shown inSection 3, the main im-
plementational requirements of answer subsumption are 1) an efficient way to compare
a new answer to appropriate answers in a table; and 2) an efficient way to delete sub-
sumed answers. These features only access table space, so that they can be implemented
by any tabling system, regardless of the engine architecture. Since XSB’s table space
is trie-based, other Prologs with trie-based tabling such as YAP or Ciao may be able to
port XSB’s engine code directly7.

Answer subsumption is restricted to stratified programs in the current version of
XSB. Future work includes the ability to use answer subsumption in non-stratified pro-
grams, and to add program constructs that allow non-idempotent aggregate operations
to be computed, such as sum and count. However, the main work will be incorporating
answer subsumption in applications such as program analysis in compilers, grounders
for ASP solvers, and para-consistent and quantitative programs.

Acknowledgements The authors would like to thank Prasad Rao who helped implement
the original version of answer subsumption, and Neng-Fa Zhou for a helpful discussion
of tabling declarations.

References

1. C. V. Damásio and L. M. Pereira. Monotonic and residuatedlogic programs. InECSQARU,
pages 748–759, 2001.

2. T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer.Aggregate functions in disjunctive
logic programs. InIJCAI, 2003.

3. J. Desel and W. Reisig. Place/transition Petri nets. InLectures on Petri Nets I: Basic Models,
pages 122–174. Springer LNCS 1491, 1998.

4. E. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269 V27, 1959.

5. T. Kanamori and T. Kawamura. Abstract interpretation based on OLDT resolution.JLP,
15:1–30, 1993.

6. M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic programming and
its applications.JLP, 12(4):335–368, 1992.

7. G. Pemmasani, H. Guo, Y. Dong, C. R. Ramakrishnan, and I. V.Ramakrishnan. Online
justification for tabled logic programs. InFLOPS, pages 24–38, 2004.

8. F. Riguzzi and T. Swift. Tabling and answer subsumption for reasoning on logic programs
with annotated disjunctions. InICLP, 2010. To appear.

9. K. Sagonas and T. Swift. An abstract machine for tabled execution of fixed-order stratified
logic programs.ACM TOPLAS, 20(3):586 – 635, May 1998.

10. T. Swift. Tabling for non-monotonic programming.AMAI, 25(3-4):201–240, 1999.
11. T. Valente and K. Fujimoto. Bridges: Locating critical connectors in a network.Social

Networks, 2010. To Appear.
12. H. Wan, B. Grossof, M. Kifer, P. Fodor, and S. Liang. Logicprogramming with defaults and

argumentation theories. InICLP, pages 432–448, 2009.
13. S. Wasserman and K. Faust.Social Network Analysis. Cambridge University Press, 1994.

7 A significant amount of low-level C code has been ported from XSB to YAP to support a
different feature termed call subsumption.

