Tabling with Answer Subsumption:
| mplementation, Applications and Performance

Terrance Swift and David S. Warreh

! CENTRIA — Universidade Nova de Lishoa
2 Stony Brook University, Stony Brook, NY

Abstract. Tabled Logic Programming (TLP) is becoming widely avaitait
Prolog systems, but most implementations of TLP implemait answer vari-
ance in which an answed is added to the table for a subga@bnly if A is not

a variant of any other answer already in the tableSokWhile TLP with answer
variance is powerful enough to implement the well-foundeantics with good
termination and complexity properties, TLP becomes muchenpowerful if a
mechanism callednswer subsumption is used. XSB implements two forms of
answer subsumption. The first, partial order answer subSomm@ddsA to a ta-
ble only if A is greater than all other answers already in the table atwptd a
user-defined partial order. The second, lattice answerusgjison, may joinA
to some other answer in the table according to a user-defiper semi-lattice.
Answer subsumption can be used to implement paraconsatehtjuantitative
logics, abstract analysis domains, and preference Iogigs.paper discusses the
semantics and implementation of answer subsumption in d88discusses per-
formance and scalability of answer subsumption on a vadggepyoblems.

1 Introduction

Tabled Logic Programming (TLP) currently supports a nundf@pplications in agent
frameworks, reasoning over the semantic web, machineitegrand probabilistic logic
programming; and TLP is supported by several Prolog systemsiding XSB, YAP,
B Prolog, Ciao, and ALS. However, an important feature chdleswer subsumption
has been little studied in the literature, and is missingnfraost TLP systems. Most
TLP systems add an answdrto a tableT" only if A is not a variant of some other
answer already i, a technique termednswer variance. While answer variance is
sufficient to allow tabling to compute the well-founded saiizs and to terminate for
programs with bounded term-depth, other choices of wherhamdto add an answer
can be made. Usingartial order answer subsumption, A would be added t@" only

if A is maximal with respect to other answerslinaccording to a given partial order
>0. Furthermore ifA is added, any answers ifi that A subsumes (i.e., is greater
than in>) are deleted. When usirigttice answer subsumption, A itself may not be
added taT", rather the join is taken afl and another answet’ in T', with A’ being
deleted. Despite its conceptual simplicity, answer sulpgiom can be a powerful tool.
Partial order answer subsumption allows a table to retdinarswers that are maximal
according to a metric or to a preference relation; latticensr subsumption can form

the basis of multi-valued logics, quantitative logics, afidbstract interpretations for
programs and process logics.

A version of answer subsumption has been available in XSBvYer a decade, but
its implementation was never described, and only recemdlyitg implementation opti-
mized and declarations provided to make it easy for prograrsio use. [10] described
how lattice answer subsumption can implement Generalizatbfated Programs [6],
but did not provide any details of implementation or benctksaRecently, [8] used an-
swer subsumption to implement probabilistic inferencethe benchmark times in that
paper were dominated by the cost of maintaining BDDs thatesemted probabilistic
explanations. Beyond related work for XSB, the mode-spetifiling of B Prolog can
be seen a restricted form of answer subsumption that allalyswin and max over the
Prolog term order, and constrains the modes of aggregditatitaubgoals.

This paper makes two main contributions: first, it descritesimplementation of
partial order and lattice answer subsumption in XSB; andsécit analyzes perfor-
mance and demonstrates scalability of answer subsumptioapplications in social
network analysis, abstract interpretation, and queryfication through multi-valued
logics. The structure of the paper is as follows. Sectionf@rially presents the se-
mantics of partial order and lattice answer subsumptionti@e 3 then describes the
underlying implementation of answer subsumption usingttleebased tabling data
structures of XSB. Finally, Section 4 analyzes the perferoeaand scalability of an-
swer subsumption in various applications.

2 AnInformal Semanticsfor Answer Subsumption

Terminology and Conventions. Informally, an answer is simply an atom derived via
some fixed-point evaluation of a prografh— using tabling or bottom-up evaluation.
For simplicity of presentation, we assume that all queniesafe — i.e. that any answer
to a query will be ground (the implementation in XSB allowswground answers in
certain cases). Within this paper, answer subsumptionsisicted to occur on a sin-
gle argument of a predicate; however since answer subsomiptdefined for arbitrary
terms this restriction does not affect expressibility. porposes of space, we restrict our
description to definite programs. However, the implemémtadescribed in Section 3
supports stratified programs, and so can form the basis ofdiisms that use nega-
tion such as annotated or residuated programs [6, 1]. Fjradllexamples use standard
Prolog syntax.

Partial Order Answer Subsumption. For simplicity, our first examples make use of a
shortest-path predicate (Figure 1) that counts the nunfleelges between two vertices;
more sophisticated uses of answer subsumption are predargection 4.

sp(X, Y,1):- edge(XY).
sp(X, Z,N:- sp(X, Y,N1), edge(Y,Z2),Nis N1 + 1.

Fig. 1. A Shortest Path Predicate

As mentioned above, partial-order answer subsumptiornseta a tableT” only
those answers that are maximal according to a given partato . In the case of the
shortest-path predicate of Figuresb(A1, A, A3) >0 sp(B1, Ba, Bs) if, A1 = By,

A; = By, andA3 < Bs. Note that that minimal distances are maximakip, and that
<o is undefined ifA3 or Bs is non-numeric. In XSB, partial order answer subsumption
is specified foisp/ 3 using the declaration

i- table sp(_,_,po(</2)).

In a given state of computation, only those answers that asémal according to>o
are available for resolution. Thus, for a finite graph witltleg,sp/ 3 will terminate
using answer subsumption, but not with answer varianceeiQtéartial orders beyond
distance metrics may be useful. For instarnse, may specify a preference ordering
between derived atoms so that answer subsumption providekeanative to default-
based methods for computing preferences (cf. Section 4d dascussion).

Lattice Answer Subsumption. An upper semi-lattice is a partial order for which any two
elements have a unique least upper bound. Because thengftarihe third argument
of sp/3 is total, it also forms an upper semi-lattice, andaolme computed using lattice
answer subsumption. In XSB lattice answer subsumptios [iér3 is declared as

:- table sp(_, _,lattice(nmn/3)).

with mi n/ 3 defined asmi n(X,Y,2):- Z is mn(X Y). Operationally, this
means that whenever an answe(A,, A2, As) is derived, if there is another answer
sp(Bi1, B2, B3) where Ay = B; and A, = Bs the join J; of As and Bs is taken,
and onlysp(A;, As, J3) is available for resolution. As with a partial order, thenjoi
operation ensures termination for shortest path over @ fgréiph with cycles.

As the following proposition shows, lattice answer substionpcan be modeled
either starting with a lattice, or starting with a functioitmwappropriate properties.

Proposition 1. Let opbe an associative, commutative, and idempotent binary function.
Then thereisa partial order P, such that P isan upper semi-lattice with join op.

Conversely, if a function does not have the above propeitiésnot suitable for lat-
tice answer subsumption. Accordingly the aggregate fonstcount and sum cannot
be computed using lattice answer subsumptidrattice answer subsumption has a va-
riety of applications: Section 4.3 shows how it is used fariglenetwork analysis and
for an application of multi-valued logics, [10] describesiha similar formalism can
implement a quantitative logic, and [8] describes an im@etation of probabilistic
logic based on answer subsumption.

Partial Order Answer Subsumptionwith Abstraction. Computation over an abstract do-
main may require certain maximal answers to be abstragtedahy cases, abstraction
can be modeled by a join operation, but in others the abgiratpresents an implicit

induction step in the following sense. Given a gedf answers, it may be detected that

3 Since count and sum are not idempotent their semanticséslmasmulti-sets, rather than sets.
Incorporating these as tabling features requires modiftfieir semantics to be set-based, in a
manner similar to aggregation ASP systems (cf. e.g. [2]) .

the program computed does not have a finite model. An abistnagperation then is
applied so tha#d and its extensions can be symbolically represented by sesimgwer
A. Using answer subsumption, this abstraction can be takigriforeeded during pro-
gram execution. Abstractly, partial order answer subsionptith abstraction uses the
declaration

;- table p(_, _,po(rel/2,abs/3)).

wherer el / 2 is a partial order, andbs/ 3 is the abstraction operation. Section 4.2
provides a detailed example of how such an approach is usathtgze a process logic.

Complexity. Consider a ground prografmwhere some predicag'n is declared to use
lattice answer subsumption with join predicatg’ 3. Note that any answer to a subgoal
of p/n need be compared to at most one other answer to compute in.if op/3
has constant cost, lattice answer subsumption adds noeactih terms of complexity
to evaluatingP. However, for partial order answer subsumption, an answaisubgoal
of p/n might in principle be compared to all other answersgon, which in the worst
case isatoms(P), the number of atoms if*. Accordingly, if rel/2 has constant cost,
the complexity of evaluatin@ will be size(P) x atoms(P), regardless of whethd?

is definite, or is being evaluated using negation over thé-fesahded semantics.

3 Implementation

Both lattice and partial-order subsumption are implemegtiteough a compiler trans-
lation that introduces specialized code to manipulate answa the table.

We first describe the implementation of lattice answer soipgion. As discussed,
for simplicity of presentation, we assume that the predit¢abled using answer sub-
sumption returns only ground answers. Consider again thenpbe of shortest path
usingm n/ 3 as a join operator (Figure 1), in which the query finds allatises from
a single source — e.g. a query suchsgg a, Y, M) . The XSB compiler transforms
sp/ 3 to the code in Figure 2. The first two subgoals in the body ofttarsformed
version ofsp/ 3 (line 3) gain access to the table created on the calpbpa, Y, M ;
access in XSB is through the generator choice point for thie t@btained through the
choice point registeBr eg (see [9] for details)Cs is a pointer to the table entry for
the current call, an®kel is a term containing the free variables of the query, which
for sp(a, Y, M is the termret (Y, M . Since tabled answers in XSB contain only
bindings to variables in the call, the free variables areensary to retrieve answers
from the table. Line 4 throws an error if the argument usingyaeT subsumption is not
a variable, as the code of Figure 2 is not correct in that dases 5 and 6 generate
variants of other terms that will be needed to retrieve ansvirem the table. In our
exampleCSkel isret (Y, OM — note thaty is in the call, butOMis free. After this
setup, line 7 calls the original code (transformed sp$$’ / 3) to derive answers. On
success of sp$$’ / 3 (line 8), a previous answer whose bindings unify waBkel
is obtained from the table, if it exists. For instance, if fuecess o§p$$/ 3 in line 7
boundY to b, the answer in the table fep(a, Y, M that hasy bound tob is obtained
if it exists, bindingOMto the third argument of that answer. Note that the use atéatt

;- table sp/3.

sp(X, Y,M :-
' _$savecp’ (Breg), breg_retskel (Breg, 3, Skel, Cs),
(nonvar(M -> instantiation_error ; true),

5 excess_vars(Skel ,[M,[], Vars),
copy_tern(t(Vars, Skel , M, t(Vars, CSkel ,OM),
"sp$% (X Y, NV,
(* _$$get _answers’ (Cs, OSkel , AnsPtr)
->mMn(OMNM M,
10 M\== OM
del et e_answer (Cs, AnsPtr)
M= NM).
"sp$$’ (X Y, 1) - edge(XY).
15 "sp$$ (X, Y, N) - sp(X Z,N1),e(Z Y),Nis NL+1.

Fig. 2. Example Code for Lattice Answer Subsumption

answer subsumption, together with the safety assumptisarerthat there is at most
one such answer. If the answer does exist, the old @\ joined with the newNM
from the answer just returned (line 9). If the join differsrin the old answer (line 10),
the old answer is deleted (line 12) and the clause succeedhelF compilation into
byte code ensures that an answer is added to the table whenelause of a tabled
predicate succeeds (here, in line 10 or 12). If the joinedefslis the same as the value
OMin the old answer, the computation fails in order to searcthér. If there is no pre-
vious answer in the table (line 12), then the clause succékxds that the setup portion,
(lines 1-6) are executed once per call; lines 8-12 are egddot each answer.

:- table sp/3.

sp(X, Y, M :-
' _$savecp’ (Breg), breg_retskel (Breg, 3, Skel, Cs),
(nonvar (M -> instantiation_error ; true),

5 excess_vars(Skel ,[M,[], Vars),
copy_term(t(Vars, Skel ,M,t(Vars, CSkel ,OV)),
"sp$d (X, Y, NV,

\+ (" _$$get _answers’ (Cs, Cskel,),
(M == NM; "< (OMNV)),
10 findall (AnsPtr,
(" _$$get _answers’ (Cs, OSkel , AnsPtr), "< (NM OV),
AnsPtrs),
(menber (AnsPtr, AnsPtrs), del ete_answer (Cs, AnsPtr), fail

15 MENM) .

Fig. 3. Example Code for Partial Order Answer Subsumption

Next we describe the implementation of the same program aadyqising partial
order answer subsumption. Again the compiler transforragptiogram to perform the
table manipulations (Figure 3). The first 6 lines of setupi@eatical to the lattice case;
partial order subsumption differs only in how it treats aassvIn lines 8-9 the table is
checked to see if any previous answer is the same as or subsheneew answer. If
so, then the computation fails. (Note that if the new answesubsumed by an answer
already in the table, then the table will not contain any arssubsumed by the new
one.) Assuming the new answer is not subsumed by any old answes 10-12 use
findal I / 3 to collect pointers to all answers subsumed by the new ortkjraline
13, they are deleted from the table. The new answer is addétkettable upon the
clause’s success in line 15.

Finally we describe the transformation for Partial Orderb&umption with
Abstraction. The example transformation for PT Net Reaititah(Section 4.2)
is shown in Figure 4. The declaration for this example is @l to be
.- table reachabl e(_, po(onega_gte/ 2, onega_abs/3)). Again the

;- tabl e reachabl e/ 2.
reachable(S, M : -
' _$savecp’ (Breg), breg_retskel (Breg, 2, Skel, Cs),
(nonvar(M -> instantiation_error ; true),
5 excess_vars(Skel ,[M,[], Vars),
copy_term(t(Vars, Skel ,M,t(Vars, CSkel ,OV)),
" reachabl e$$’ (S, NV,
findall (OM AnsPtr,’ $$get _answers’ (Cs, OSkel , AnsPtr), O dAnswer Ptrs),
col l ect _ans(d dAnswer Ptrs, O dAnswers),
10 onega_abs(d dAnswer s, NM AbsM ,
\'+ (nenber (OM _, O dAnswer Ptrs),
(OM == AbsM ; onega_gte(OM AbsM)),
(menber (p(OM AnsPtr), O dAnswer Ptrs),
onega_gte(AbsM OM)), del ete_answer(Cs, AnsPtr), fail
15 ;
MeAbsSM) .

Fig.4. Example Code for Partial Order Answer Subsumption with Adagton

setup and call in line 7 are the same as the previous case&t@n of a newly com-
puted answer, line 8 collects all old answers and the partethem, and line 9 sep-
arates out just the old answers, which are input to the atigiraoperator in line 10.
Then in the rest of the code, the abstracted answer is usddde pf the computed an-
swer, as follows. First, lines 11-12 check whether the neswan is already subsumed
by an existing answer, in which case the clause fails. Otiservines 13-14 delete all
old answers subsumed by (the possible abstraction of) theanswer. And in line 15,
we return the new (possibly) abstracted answer.

4 Performance and Applications

In this section we benchmark and analyze application TL@anms

4.1 Answer Subsumption in Support of Social Network Analysis

The field of Social Network Analysis (SNA) (cf. [13]) studi#se behavior of groups
through the relations among their members. In SNA a soctslor& is a graph that is
analyzed to determine measures of connectivity or of balgmartitioned into subcom-
ponents according to an optimality criterion, or analyzedther ways. Logic program-
ming offers promise for SNA: it is easy to specify propertiésertices (“male,“lives-
in-city”) and of edges (“father-of”,“exchanges-needlgish”); and SNA properties can
be declaratively analyzed by TLP or ASP systems. A factoramyrtypes of SNA (e.g.
[11]) is thecoherence of a (sub-)graph: a numeric measure based on the shortést pat
between all vertices in the subgroup (the metric for distanay be defined on different
edge types, or their combination).

We begin our benchmarking with the shortest path predisate3 of Figure 1
which uses lattice answer subsumptionsiw 3, distance between two vertices is de-
fined simply as the minimal number of edges between them.aNhére are several
well-known algorithms to determine shortest paths in gsaphih non-negative edge
weights, the problem offers excellent scope for analyziagous aspects of answer
subsumption. Table 1 shows the scalability of the gq&l Fr om To, Di st) on ran-
domly generated graphs wifti vertices and edges. These graphs are sparse in the sense
that they are largely unconnected: the number of answeubistantially below thev?
answers the query would return for a fully connected graphTable 1 showssp/ 3
scales linearly in answers up to the amount of core memorijeie.

[Vertices Time Table Space Answgrs

25000 1.7 44,146,000 960,588
50000 7.5 198,905,244 4,324,142
75000 12.8 307,611,736 6,683,493
100000 9.8 212,186,848 4,611,563
125000 57.6 1,128,215,852 24,617,[/54

Table 1. Scalability of latticesp/ 3 on sparse graphs whej@lges| = |vertices|

The standard algorithm for finding shortest paths to all sddem a single source
node is Dijkstra’s algorithm [4]. The difference, betwebattalgorithm and the under-
lying algorithm for answer subsumption, is in the schedylim Dijkstra’s algorithm,

4 All benchmarks were performed on a MacBook pro laptop, wighGhz Intel Core Duo CPU
and 2 GB of RAM. Multi-threading was not used for these beratks, so only one core was
utilized. All times are in seconds, and all measures of spaeén bytes. Table space in XSB
includes storage space for subgoals and answers alongpeitie sillocated for copying areas,
answer hash buckets, etc. All benchmark programs are biaityy anonymous CVS from
xsb.sourceforge.net in theenches directory of the modulert t est s.

the next node chosen to expand is the one with shortest desteom the source node.
So the “wave front” of the search is expanded by choosing gasast non-expanded
node. This tabling algorithm expands the wave front baseadi@number of edges from
the source, independent of the weights on the edges. Foxamyes where each edge
is assumed of weight 1, the algorithm corresponds to DgkstBut with varying edge
weights, answer subsumption (as implemented here) maydopsmal.

Sparse graphs are unlikely to have many different pathsdestwwo vertices: ac-
cordingly Table 1 does not check the efficiency of all aspettsttice answer sub-
sumption such as accessing previously derived answersrpute a join, and possibly
deleting them. These factors are measured in Table 2, wigisbHmarks various pred-
icates on graphs of 1000 vertices aNd= 2 x 1000,4 x 1000...512 x 1000 edges.
In addition to benchmarkingp/ 3 with lattice and partial order answer subsumption,
Table 2 measures two new predicates shown in in Figure 5. T$terfeach/ 3 is a
simple transitive closure predicate that does the same agsk/ 3 except for answer
subsumption; the second is a shortest path predisgtalel / 3, for which distance
is a function of weights for each edge. As can be seen fromeTabbnce the graphs

.- table reach/3.
reach(X Y, 1):- edge(XY).
reach(X zZ,1):- reach(X Y,Nl), edge(Y,Z), Nis NL + 1.

:- table sp_del (X, Y,lattice(mn/3)).
sp_del (X,Y,D):- edge(X Y,D).
sp_del (X, Z,D3):- sp_del (X Y,D1), edge(Y,Z,D2),D3 is D1 + D2

Fig.5. Predicates for shortest path and transitive closure

are fully connectedsp/ 3 is linear in the number of edges, regardless of whether a
lattice or partial order is used for answer subsumption. §geee required is virtually
the same for both approaches, and the times are also quitarsimdicating that the
worst-case complexity of partial order answer subsump8®ttion 2) is not a factor
for these examples.

Tests ofr each/ 3 on the same graphs show a similar growth in timesg6 3 and
virtually the same space.each/ 3 is about 3-4 times faster, indicating the overhead
for answer subsumption on this simple example; it shoulddiedthat shortest path
uses answer subsumption extremely heavily, and the owvegfbeanswer subsumption
on most other programs will be much smaller. Profiling pf 3 shows that no deletions
are performed on either the sparse-graph or dense-graghianks. In these experi-
ments, shorter paths are discovered first; when non-oppathk are derived later, so
that execution of answer subsumption code fails on the casgrain line 10 of Fig-
ure 2, and a deletion need not be performed. To test the caktlefionssp_del / 3
was tested on graphs where each edge fact also contains@niyrgenerated cost.

5 The graphs used fap_del / 3 have different randomly-generate edge relations tharethos
for sp/ 3 and so have a different number of answers.

|Avg. Verts//Node 2 8 32 128 51%

sp/ 3-Lattice

Time 2.3 13.2 52.1 211.9 880
Table Space 26,249,826 41,213,664 41,213,664 41,213 58431664
Answers 631,509 1,000,000 1,000,000 1,000,000 1,000{000
sp/ 3-PO

Time 4.1 16.5 56 218.2 890
Table Space 26,249,860 41,213,688 41,214,084 41,214 D244084
reach/ 3

Time 0.88 3.47 125 53.2 238
Table Space 26,241,796 41,205,624 41,205,624 41,205520%624
sp-del /3

Time 4.2 104.0 329 845 2392
Table Space 27,198,048 41,203,908 41,290,552 41,322 4845080
Answers 655,221 999,000 1,000,000 1,000,000 1,000,000
Deletes 281,834 2,416,658 4,917,751 6,960,565 8,407,883

Table 2. Comparison of approaches on dense graphs whétes| = N x |vertices|

Table 2 shows that deletion imposes overhead in terms of botevirtually no overhead
in terms of space.

Comparison of answer subsumption to negation. In addition to using answer sub-
sumption, shortest paths can also be computed throughioegas by the predicate
pr ef _di st ance/ 4 in Figure 6, which concludes a given path between two vestice
is shortest if no other shorter path is derivable. This apphas similar to a preference-

.- table pref_distance/ 4.
pref _distance(X Y, 1, _):- edge(XY).
pref _distance(X, Z, N, Max) : -
pref _distance(X, Y, N1, Max),
edge(Y,2Z), Nis NL + 1, N < Max,
tnot (preferred_distance(X, Z, N, Max)) . % XSB' s tabl ed negation

:- table preferred_di stance/4.
preferred_di stance(X Y, N Max):- pref_distance(X,Y,M Max), M< N

Fig. 6. A Program to Compute Shortest Path using Negation

based approach, where a shorter path is prefered to a longeNwote that when an-
swer subsumption is not used for shortest path, a programhanas/ an infinite model

if the underlying graph has cycles. To ensure terminaporef di st ance/ 4 has as

its fourth argument the maximum diameter of a graph. The fieed maximum dis-
tance, together with the requirement that calls to negéiteals be ground, increases
the complexity of determining shortest path. Not surpgiinexperiments show that

pr ef _di st ance/ 4 scales poorly compared to the approaches based on answer sub
sumption. Since many ASP grounders may require users tagroghortest path in a

ground manner similar to that pf ef _di st ance/ 3, experiments on ASP grounders
were also performed. The experiments showed poor sc&jabdimpared to answer
subsumption. Overall, these results indicate that ansuleswsnption can play an im-
portant role for ASP grounding, either by implementing aesaubsumption within a
grounder, or by using TLP as a grounder as in XSB’s XASP pazkag

4.2 Answer Subsumption and Abstract I nterpretation

Net-style formalisms, such as Petri Nets, Workflow Nets, kéwe been used exten-
sively for process modeling. Reachability is a central pFobin analyzing properties
of such nets, to which properties such as liveness, deadteeklom, and the existence
of home states can be reduced. However, many interestirfgnealisms cannot guar-
antee a finite number of configurations in a given net, so attsdn methods must be
applied for their analysis.

For instance, the lack of finiteness is a problem in analyBlage/Transition (PT)
Nets. PT nets have no guard conditions or after-effectsdantbt distinguish between
token types. However, PT nets do allow a place to hold mone ¢in@ token, leading to
a potentially infinite number of configurations. This can bersin the simple network
of Figure 7 (from [3]) in which transitions are denoted by ags and places by circles.
Each transition removes one token from the places that &edhrces of its input
edges and adds one token to each place at the target of easlwotidut edges. Starting
from the configuration in Figure 7, repeated applicatiorrafsitiont 1 leads to place
s2 containing an unbounded number of tokens; repeated apiplicaf the sequence
t1,t2,1t3,1t4leadsto place4 containing an unbounded number of tokens.

t1 s2 t3 s4

sl(?—» @—» 534>Q t4

Fig. 7. A PT-net and configuration with an infinite number of reackatainfigurations

Despite such examples, reachability in PT nets is decidaidecan be determined
using an abstraction method calledsequences, (see e.g. [3]). The main idea in de-
terminingw sequences is to define a partial order on configurations as follows. If
configurationg”; andC5 are both reachabl€;; andC> have tokens in the same set
PL of places,C; has at least as many tokens in each placé€asand there exists a
non-emptyPL,,, € PL, such that for eachl € Pl,,, C; has strictly more tokens
thanCy, thenC; >, C>. When evaluating reachability, @ is reached first, and then
C1 was subsequently reached, is abstracted by marking each placeRtd ,,;, with
the special tokew which is taken to be greater than any intege€'{fwas reached first
and thenCs, (5 is treated as having already been seen.

Tabling combined with partial order answer subsumptiomires slightly over 100
lines of code to model reachability in PT nets usingequences. Due to space re-

strictions, the program cannot be fully described here,thettop-level reachability
predicate is shown in Figure 8. Despite its succinctnessarit evaluate reachability
in networks with millions of states in a few minutes. This wé¢abling to determine

reachability in PT nets can be seen as a special case ofgdbliabstract interpretation
(cf. [5] and other works). However the framework for answabsumption described
here allows tabling to be used to efficiently perform abstmaterpretation within a

general Prolog system

.- table reachabl e(_, po(onega_gte/ 2, onega_abs/ 3)).
reachabl e(1 nConf, NewConf) : -

reachabl e(1 nConf, NewConf),

hasTr ansi ti on(Conf, NewConf) .
reachabl e(1 nConf, NewConf): - hasTransition(lnConf, NewConf).

Fig. 8. Top-level predicate for PT net reachability

4.3 Scalability for multi-valued and quantitative logics

The technique of program justification (cf. e.g. [7]) hasrbaesed for debugging tabled
programs that cannot be debugged by traditional means, Wereonsider justification
in the context of the Silk system, currently under developna Vulcan, Inc. Silk is
a commercial knowledge representation and rule systerhdiutbp of Flora-2, which
is implemented using XSB. One of the salient features of Bilks default reason-
ing, which is based on a parameterized argumentation trex@tyated under the well-
founded semantics [12]. One issue in using Silk is that kedgé engineers must have
a way of understanding the reasoning of the system, a tasglaated by the use of the
well-founded semantics and the intricacies of the arguat&mt theory. We describe an
experimental approach to justification of Silk-style arguntation theories using multi-
valued logics.

As noted in [12], argumentation theories in Silk are usuakiensions of the default
theories of Courteous Logic Programs (CLP) and are based@user-defined pred-
icates:opposes/ 2 andover ri des/ 2. Two atomsoppose each other if no model
of a program can contain both atoms: an atom and its expkgjation oppose each
other, but opposition can capture many other types of cdiutians. Given two op-
posing atoms, one atom mayerride the other, and so be given preference. For atoms
A; and A,, if A; and As are both derivable and oppose each other but neither over-
rides the otherd; and A, mutuallyrebut each other. If in additiond,, say, overrides
A,, A, refutes A, 8. Within Silk and Flora-2, the compilation of an argumerdatine-
ory ensures that rebutted atoms have an undefined truth,\adwo atoms that refute
themselves (i.e. if theverri des/ 2 predicate is cyclic). However, for justification,
it is meaningful to distinguish those facts that are undeffitiee to a negative loop in
the argumentation theory from those that are undefined daentegative loop in the
program itself. In addition, it is meaningful to distinghiian atom that is true because

8 In [12] argumentation theories are built on named rulese nex base them on derived atoms.

it overrides some other atom, from an atom whose derivata@s dot depend on the
argumentation theory. Similar distinctions can be madeléault false literals leading
to the truth lattice shown in Figure 9.

true default false

refuted true default refuted false

mutualT rebutted

bottom

Fig. 9. A Truth Lattice for a Simplified Version of Courteous Argunt&tion Theory

An atom-based argumentation theory is added to a programnbgaay stan-
dard transformation [12]. Each clausd :- B whose head is a defeasable predicate
is rewritten asH :- B, tnot(defeated(H)); clauses for non-defeasible predicates are
not altered. To obtain support for a justificationnailti-valued transformation was
used instead of the standard transformation. First, thiedabf Figure 9 was pro-
grammed in Prolog for use by answer subsumption. Next, elaciseH :- B whose
head was a defeasible predicate was rewritteff asB, de f eated(H, Reason), where
def eat ed(H, Val ue) indicates the truth value df on the lattice of Figure 9.

Experiments were performed on synthetic programs to coenther implementa-
tion of a Silk argumentation theory using the standard fansation to the new multi-
valued transformation. Synthetic programs were testedagting a large number of
mutually recursive defeasible rules, together with a langgportion of refuted and re-
butted atoms. These tests indicate that the use of lattiegdmrease the time for total
query evaluation by two to three times, well within an all®esincrease for a justifica-
tion system. Surprisingly, the multi-valued transforroatof the argumentation theory
sometimes takkesstable space, due to the space overhead incurred by XSB taaimain
conditional answers (i.e. answers whose truth value isfimetkin the well-founded se-
mantics). We stress that these results are preliminaryarséimse that the behavior of
the synthetic programs may not resemble that of practicanams that use defeasible
logic. However, the heavy use of defeasibility in the sytithprograms gives reason
to believe that the time overhead may well be much less intiged@rograms than
observed here. Together the results show that multi-vahgids are a promising ap-
proach for justification of defeasible logics, whether thixyics occur as part of Silk
or are used directly in a TLP system such as XSB.

5 Conclusions

This paper has described how answer subsumption can bearsgapfications in quan-
titative reasoning, abstract interpretation and multisgd logics. To use answer sub-
sumption, a programmer need only write a join, comparisogbstraction operation

in Prolog and make the appropriate declarations. As shov@eution 3, the main im-
plementational requirements of answer subsumption are é&ffigient way to compare
a new answer to appropriate answers in a table; and 2) areeffisiay to delete sub-
sumed answers. These features only access table spaca, theyhcan be implemented
by any tabling system, regardless of the engine architec&ince XSB’s table space
is trie-based, other Prologs with trie-based tabling suchAeP or Ciao may be able to
port XSB’s engine code directf

Answer subsumption is restricted to stratified programsadurrent version of
XSB. Future work includes the ability to use answer subsionph non-stratified pro-
grams, and to add program constructs that allow non-ideempaggregate operations
to be computed, such as sum and count. However, the main witkesncorporating
answer subsumption in applications such as program asaitysompilers, grounders
for ASP solvers, and para-consistent and quantitativerprog.

Acknowledgements The authors would like to thank Prasad Rao who helped impiéme
the original version of answer subsumption, and Neng-FaiZbtioa helpful discussion
of tabling declarations.

References

1. C.V. Damasio and L. M. Pereira. Monotonic and residuédgit programs. IrECSQARU,
pages 748-759, 2001.
2. T.Dell’Armi, W. Faber, G. lelpa, N. Leone, and G. Pfeifeéggregate functions in disjunctive
logic programs. IHJCAI, 2003.
3. J. Desel and W. Reisig. Place/transition Petri netketiures on Petri Nets|: Basic Models,
pages 122-174. Springer LNCS 1491, 1998.
4. E. Dijkstra. A note on two problems in connexion with grapNumerische Mathematik,
1:269 V27, 1959.
5. T. Kanamori and T. Kawamura. Abstract interpretationebdasn OLDT resolution.JLP,
15:1-30, 1993.
6. M. Kifer and V. S. Subrahmanian. Theory of generalizedosaed logic programming and
its applications.JLP, 12(4):335-368, 1992.
7. G. Pemmasani, H. Guo, Y. Dong, C. R. Ramakrishnan, and Ravhakrishnan. Online
justification for tabled logic programs. FLOPS pages 24—-38, 2004.
8. F. Riguzzi and T. Swift. Tabling and answer subsumptiarréasoning on logic programs
with annotated disjunctions. ICLP, 2010. To appear.
9. K. Sagonas and T. Swift. An abstract machine for tabledwi@n of fixed-order stratified
logic programs ACM TOPLAS 20(3):586 — 635, May 1998.
10. T. Swift. Tabling for non-monotonic programmingMAI, 25(3-4):201-240, 1999.
11. T. Valente and K. Fujimoto. Bridges: Locating criticalnnectors in a network.Social
Networks, 2010. To Appear.
12. H. Wan, B. Grossof, M. Kifer, P. Fodor, and S. Liang. Lggiogramming with defaults and
argumentation theories. I€LP, pages 432-448, 2009.
13. S. Wasserman and K. FauStcial Network Analysis. Cambridge University Press, 1994.

" A significant amount of low-level C code has been ported froBBXo YAP to support a
different feature termed call subsumption.

