
An Engine for Computing Well-Founded Models

Terrance Swift

CENTRIA — Universidade Nova de Lisboa
tswift@cs.sunysb.edu

Abstract. The seemingly simple choice of whether to use call variance or call
subsumption in a tabled evaluation deeply affects an evaluation’s properties. Most
tabling implementations have supported only call varianceor, in the case of XSB
Prolog, supported call subsumption only for stratified programs. However, call
subsumption has proven critical for (sub-)model generation as required for some
kinds of program analysis (e.g. type analysis) and for semantic web applications
such as RDF inference. At the same time, the lack of well-founded negation has
prevented the use of call subsumption in producing residualprograms, and has
limited its use in semantic web applications that require negation (e.g. evaluation
of OWL ontologies). This paper describes an engine for evaluating normal pro-
grams under the well-founded semantics (WFS) in which the evaluation method
can be based on a mixture of call subsumption and call variance, chosen at the
predicate level. The implementation has been thoroughly tested for both local and
batched evaluation and is available in version 3.2 of XSB.
Keywords: Tabling, WAM

Tabled evaluations can differ in their subgoal reuse strategy. Given a selected tabled
subgoalG, answers may be resolved when there is a subgoal in the table that subsumes
G, in which casecall subsumption is used, or only when a variant ofG is in the table,
wherecall variance is used. Call variance preserves the instantiation patterns of selected
subgoals in an evaluation, making it efficient for query-oriented applications and suit-
able for tabling meta-interpreters. Call subsumption, on the other hand, often evaluates
only the most general subgoals, giving it a more bottom-up flavor. Call subsumption is
therefore suitable for (sub-)model generation as requiredfor stable model generation,
for certain type analyses, or for some semantic web applications. Call subsumption
is harder to implement than call variance and is usually not supported in tabling im-
plementations. Previous versions of XSB implemented call subsumption for stratified
programs [3], and allowed the strategy of subsumption or variance to be declared on a
predicate basis. This paper describes how XSB’s implementation of call subsumption
is extended to support full well-founded semantics The extended implementation has
been thoroughly tested, and is available in XSB version 3.2.

A Motivating Example Computing A-box entailment from a standard OWL
wine ontology (www.w3.org/TR/2003/CR-owl-guide-20030818/wine)
provides a striking example of a use of call subsumption for asemantic web application.
When translated into datalog by KAON2 (http://kaon2.semanticweb.org)
the ontology is a highly recursive datalog program. Computing a query using call sub-
sumption in XSB terminated correctly in 10 seconds, while call variance terminated
with memory errors after 100+ seconds. The difference was due to the lack of relevancy

in query evaluation: essentially the entire (sub-)model ofthe wine program needed to be
constructed. Because call subsumption avoided recomputing subsumed calls, it saved
space and time, and is quite competitive with special-purpose ontology tools [4]. While
this is a single example, two conclusions are clear. Call subsumption can be critical for
“bottom-up” computations that do not benefit from relevancy. Also, since ontologies in
general require negation when they are translated into datalog, evaluating WFS using
call subsumption is an important problem.

1. Implementation

We briefly describe the main ideas of the engine as implemented in the SLG-WAM of
XSB. Because of space limitations, we must assume a general knowledge of tabling
and its implementation. As background, [3] describes call subsumption in the SLG-
WAM, while [5] describes the overall SLG-WAM architecture for WFS and [2] the
data structures used for well-founded residual programs.

We begin by describing actions of the SLG-WAM on definite programs. When call
variance is used, if a tabled subgoalG is new to an evaluation, it is associated with
a generator choice point to backtrack through program clauses. If G was previously
selected and completed, the engine simply backtracks through answers in an answer
trie. If G was previouslyselected but is not completed a consumer choice point is created
that will backtrack through answers using ananswer return list for G. The answer return
list is needed to backtrack efficiently through the dynamically changing answer trie.

Call subsumption extends the cases an implementation must support. Let subgoal
G subsume a subgoalGθ. If Gθ is selected beforeG no special action is taken –Gθ

andG are evaluated just as with call variance, However ifGθ is selectedafter G, two
subcases arise. IfG is completed,Gθ simply backtracks through answers forG failing
on those that do not unify withGθ. If G is not completed, then a consumer choice point
is created forGθ (as with call variance) along with asubsumed subgoal frame in the
table. In addition, a special answer return list is created for Gθ pointing to each answer
in the answer trie forG that unifies withGθ. WhenGθ consumes the final answer in its
answer return list, the engine traverses the answer trie forG to generate a new answer
return list forGθ, consisting of answers that unify withGθ and were added after the
previous list was generated forGθ. Figure 1 schematically illustrates the relation of
G andGθ. [3] described an important optimization where nodes in an answer trie are
associated with time stamps, and the time stamps manipulated to avoid unnecessary
search through the trie when regenerating answer lists for subsumed subgoals. Note that
this mechanism supports those stratified programs where no ground negative subgoal
Gθ occurs in the same SCC asG (i.e. the same set of mutually dependent subgoals).

To evaluate WFS, situations must be handled that arise whenG andnot(Gθ) are
mutually dependent (and neither is completed). The program

:- table win/1 as subsumptive.
win(X):- move(X,Y),tnot(win(Y)).

and querywin(X) under varying extensions ofmove/2 serves as a running example.
(tnot/1 is XSB’s predicate for tabled negation).

Changes to DELAYING . Consider the extensionmove(a,b) move(b,a). Eval-
uation of the goalwin(X) creates the goalswin(a) andwin(b). The two sub-

sumed goals are created afterwin(X) is called and before it is completed, so for
each subsumed subgoal a consumer choice point is created along with a subsumed
subgoal frame which is inserted in aconsumer subgoal chain in the subgoal frame for
win(X). However, since the program is non-stratified, bothwin(a) andwin(b)
are undefined in WFS and are treated asconditional answers, denotedwin(a):-
tnot(win(b))| andwin(b):- tnot(win(a))| — where the “|” symbol in-
dicates that the preceding literal is delayed. To representdelay lists when call sub-
sumption is used,tnot/1 must be changed to determine whether a negated goal is
subsumed by another goal, so that the delay list will properly contain a ground lit-
eral, rather than the subsuming literaltnot(win(X)). To effect this, the goaltnot(G)
determines whether there is a subsuming goal forG, and if not associates the delay el-
ement withG’s (producer) subgoal frame. Otherwise,tnot(G) determines whether the
subsuming goal is completed or not, creates the subsumed subgoal frame if necessary,
and associates the delay element with the subsumed subgoal frame forG – in this case
win(a) or win(b).

Changes to SIMPLIFICATION . Next, consider the extensionmove(a,b)
move(b,a) move(b,c) and the evaluation of the querywin(a). In this case, no
delaying is necessary for either call variance or call subsumption:win(a) does not
subsumewin(b) or win(c). win(c) is determined to be false, and this false value
causeswin(b) to be determined to be true andwin(a) false before any conditional
answers are created. However, if call subsumption were usedfor the goalwin(X), all
goals would be in the same mutually dependent SCC, so that DELAYING and SIMPLI -
FICATION must both occur.

SIMPLIFICATION operations are initiated in two cases [5]. When a subgoalG is
completed with no answers (fails), any answers conditionalonG must be deleted; and
any answers conditional ontnot(G) must havetnot(G) removed from their delay lists.
Similarly, when an unconditional answerA is derived, any answers conditional onA

must be simplified. Each case can initiate a chain of SIMPLIFICATION operations, since
removing an answer can cause a goal to fail; while removing a literal from a delay list
can cause an answer (or a ground subgoal) to become unconditionally true. Figure 1
shows the supporting data structures. A subgoalG has an answerAns in its answer trie
along with a subsumed goalGθ. Ans containstnot(Gdep) in its delay list. To perform
simplification, the subgoalGdep contains a list of backpointers to each answer (such
asAns) containingtnot(Gdep) in its delay list (conditional answers have backpointers
similar to those for subgoals). In addition, pointers from delay lists to answers (through
Delayinfo structures) and from answers to (producing) subgoals are used to traverse
table space and propagate SIMPLIFICATION operations.

Both cases in which SIMPLIFICATION is initiated are affected by call subsump-
tion. To handle the case initiated by a failing subgoalG, the engine checks the subgoal
frame to see whetherG has been declared to use call subsumption. If so, the engine
must check whether there are any subgoals subsumed byG that now fail. The chain of
subsumed subgoals is traversed, and each subsumed subgoal frame checked for a non-
null backpointers cell. The subsumed subgoal is checked forbackpointers, and a SIM -
PLIFICATION operation executed aif the subgoal fails. In our running example, when
the subsumed subgoalwin(c) fails, a SIMPLIFICATION operation is performed us-

Ans

Return
Answer

List
Return

...

Return
List

Answer ...

Subgoal
Backpointers

Subsumed Subgoal Frame Gθ

Subgoal Frame Gdep

DE

DE

Backpointers
Answer

Subgoal
Backpointers

Backpointers

Subgoal Frame G

...

DLDL

Answer

DL List

Trie

DelayInfo

Answer

...

DE ...

List

Fig. 1. Schematic Table Space for Call Subsumption with Conditional Answers

ing backpointers ofwin(c) to remove the answerwin(b):- tnot(win(c))|,
in turn propagating a SIMPLIFICATION operation to make the answerwin(a):-
tnot(win(b)| unconditional. Consider the case of the second simplification where
an unconditional answerA is derived, other answers having eitherA or tnot(A) in their
delay lists need to be simplified. Answers havingA in their delay lists are obtained
through the backpointers list off of the answerA itself, and so are not affected by call
subsumption. On the other hand, obtaining answers havingtnot(A) in their delay list
is more difficult using call subsumption, as they depend on the subgoalA which may
be subsumed. As shown in Figure 1, there is a pointer from an answer to its producer
(or variant) subgoal frame, but not to frames of any subsumedsubgoals. However while
A may not need to initiate simplification through its producing call, it may need to ini-
tiate simplification through a subsumed call. Again using our running example, when
win(b) becomes true, the answerwin(a) :- tnot(win(b))|must be deleted.
This occurs through the backpointers of the subgoalwin(b), but as mentioned there
is no pointer from the answerwin(b) (for win(X)) to the subsumed subgoal frame
for win(b). Fortunately, the trie data structures make the check for possible subsumed
subgoals efficient. Tabled subgoals are stored in a trie justas answers are, with subgoal
frames (including those for subsumed subgoals) as leaves ofthe subgoal trie. A term
is constructed from the answer substitutionA, and trie indexing is used to determine
whetherA is also a subsumed subgoal frame: if so, simplification will be performed.

Performance Tests ofwin/1 provide information about the speed of basic operations.
The table below illustrates CPU times in seconds and table space in bytes forwin/1
using call variance and call subsumption. Whenmove/2 is a chain, call subsumption is
significantly slower than call variance. For the goalwin(1) this is due to the fact that
tnot/1, currently written largely in Prolog, is more complicated for call subsumption.

In addition, call subsumption for the goalwin(X) treats all subgoals as if they were
in the same SCC, and must delay and simplify each answer. Whenmove/2 is a cycle,
the time to add conditional answers dominates all strategies. For the goalwin(X),
call subsumption must perform the same amount of delaying for the chain and for the
cycle (and the same amount of delaying as call variance for the cycle). However, note
that for the chain, 50,000 extra simplifications are performed in a negligible amount of
time. Also, call subsumption requires slightly more table space than call variance, when
there is no actual subsumption to exploit. Withwin(X) goals, call subsumption saves
some table space, but unlike the wine example, the savings are limited in this example
as there is at most a single answer per subsumed goal.

call variancewin(1) call subsump.win(1) call subsump.win(X)
50000 chain 0.19 / 5,582,396 0.53 / 5,982,596 1.0 / 3,653,620
50000 cycle 1.14 / 9,985,548 0.72 / 10,585,940 0.98 / 7,654,660

2. Discussion

In terms of related work, a global answer table has been implemented in YAP for def-
inite programs [1], and allows the sharing of answers between different subgoals of a
tabled predicate. Global tables and call subsumption can both reduce the size of tables,
but each has advantages that the other does not. A global table can allow sharing of
answers between subgoals that unify, even if neither subsumes the other. Call subsump-
tion, on the other hand can reduce computation time as well asspace.

The implementation described is intended to be robust. Accordingly, before dis-
tributing the described implementation in XSB, it was run ona suite of programs testing
WFS, residual programs, and tabled constraints. The test suite contained over 12,000
lines of code, and was run on various platforms under local and batched evaluation
for 32-bit and 64-bit compilations. The implementation described here makes minor
changes to scheduling, relatively straightforward changes to table data structures and
access routines, and more complex changes to simplificationinstructions. It is impor-
tant to note that call subsumption does not affect a tabling system’s mechanisms for
suspending and resuming a computation – the aspect of tabling that is most intimately
connected with the WAM data structures. This means that the approach described here
is (in principle) applicable to systems such as Ciao, Mercury, B-Prolog and ALS that
support tabling outside of the SLG-WAM.

References

1. J. Costa and R. Rocha. One table fits all. InPADL, pages 195–208, 2009.
2. B. Cui, T. Swift, and D. S. Warren. From tabling to transformation: Implementing non-ground

residual programs. InImplementations of Declarative Languages, 1999.
3. E. Johnson, C.R. Ramakrishnan, I.V. Ramakrishnan, and P.Rao. A space-efficient engine for

subsumption based tabled evaluation of logic programs. In4th International Symposium on
Functional and Logic Programming, 1999.

4. S. Liang, P. Fodor, H. Wan, and M. Kifer. OpenRuleBench: Ananalysis of the performance
of rule engines. InWWW: Semantic Data Track, 2009.

5. K. Sagonas, T. Swift, and D. S. Warren. An abstract machinefor efficiently computing queries
to well-founded models.JLP, 45(1-3):1–41, 2000.

