
A Simple and Efficient Implementation of

Concurrent Local Tabling

Rui Marques1, Terrance Swift2, and José Cunha1

1 CITI, Dep. Informática – FCT, Universidade Nova de Lisboa
2 CENTRIA — Universidade Nova de Lisboa

Abstract. Newer Prolog implementations commonly offer support for
multi-threading, and have also begun to offer support for tabling. How-
ever, most implementations do not yet integrate tabling with multi-
threading, and in particular do not support the sharing of a tabled
computation among threads. In this paper we present algorithms to
share completed tables among threads based on Concurrent Local SLG
evaluation (SLGCL). SLGCL is based on the Local scheduling strategy,
and is designed to support applications in which threads concurrently
share tabled evaluations Version 3.1 of XSB implements SLGCL in the
SLGCLWAM, which fully supports well-founded tabled negation, con-
struction of residual programs, tabled constraints and answer subsump-
tion. The implementation of SLGCL requires additions to a single tabling
operation only. As a result, SLGCL should be implementable by any
tabling system that uses Local evaluation, whether based on the Chat
engine, linear tabling, or call continuation.

1 Introduction

A number of Prolgs have become multi-threaded, while at the same time, cur-
rent or planned versions of several Prologs also support tabling, including XSB,
YAP [8], B-Prolog [11], Mercury [10], ALS [4] and Ciao [5]. Although there has
been work in combining tabling with parallel Prologs, most notably [8], little
work has been done to extend tabling to multi-threaded engines and the types
of concurrent applications they support. In this paper, we describe algorithms
that allow concurrently executing threads to share tables and that are based on
a popular scheduling strategy for tabling called Local evaluation [3]. The general
idea behind Local evaluation is to fully evaluate each mutually dependent set of
tabled subgoals before returning answers to other subgoals outside of that set.
As a result, Local evaluation requires less space than other scheduling strategies
for many programs. In addition, since it postpones the return of answers outside
of a mutually dependent set of subgoals until that set is completely evaluated,
Local evaluation can reduce the amount of delay and simplification operations
required for tabled negation. For the same reason, the method is efficient for
applications that benefit from answer ordering: in which a computation retains
only the join of answers over an upper semi-lattice, or only answers that are

maximal for a partial order. Local evaluation is supported by several tabling
systems including XSB, YAP, B-Prolog and Ciao.

Our approach is based on an operational semantics called Concurrent Local
SLG (SLGCL) [6], which allows concurrently executing threads to share tables
while maintaining a Local evaluation. We describe the algorithms to needed
to implement SLGCL on XSB’s SLG-WAM [9] creating the SLGCLWAM. This
engine is supported in the current version of XSB (3.1) and has been fully tested
for well-founded tabled negation with residual programs, for tabled constraints,
and for answer orderings. Beyond the overhead of a multi-threaded emulator,
the implementation of SLGCL imposes no overhead on Prolog execution or on
evaluations that use thread-private tabling.

SLGCL is designed primarily for concurrent applications that use shared
tables to amortize queries or save space, rather than for parallelism based on
tabling, a choice that is determined in part by the nature of Local evaluations.
An example is a multi-threaded knowledge server, based on XSB’s CDF ontol-
ogy management system or on the object logic FLORA-2 (both of which make
full use of tabled negation). In such a server, shared tables construct T-box or
schema information, while thread-private tables support A-box or object level
information. The decision to support concurrency over parallelism enables a sim-
plicity of implementation that has helped lead to the robustness indicated above.
The extensions for the SLGCLWAM are nearly all made to a single instruction:
tabletry (which is executed upon the call of a tabled subgoal) and can nearly all
be inserted as a function call. While we describe our implementation in terms
of the SLG-WAM, the algorithms are not specific to this engine. In fact, since
most tabling methods execute an operation analogous to tabletry when calling a
tabled subgoal, SLGCL should not be hard to implement in other tabling systems
that support Local evaluation. Section 2 reviews SLGCL and aspects of the SLG-
WAM that are most relevant to this paper. Section 3 describes algorithms for the
SLGCLWAM, arguing their correctness from theorems of SLGCL, and Section 4
provides an indication of complexity and performance of the SLGCLWAM.

2 Background

Due to space limitations, our presentation assumes a general knowledge of tabled
evaluation and of the WAM. In this section, we briefly and sometimes informally
review aspects of tabling that pertain to definite programs, and aspects of the
SLG-WAM directly relate to the implementation of SLGCL. Discussion of nega-
tion in the formalism and implementation is postponed until Section 3.1.

2.1 SLG and Local Evaluation for Definite Programs

Our presentation of SLG [2] and its extensions makes use of a forest of trees
model (see e.g. [6]). In this model, an SLG evaluation is a sequence of forests
of SLG trees. Each SLG tree is associated with a tabled subgoal encountered in
the evaluation (variant subgoals are considered identical), and consists of nodes
of the form Head:-Goals in which Head carries the bindings found in a partial
proof of a tabled subgoal and Goals contains the list of goals remaining for the

partial proof A node with empty Goals is termed an answer. The literal selection
strategy in Goals is fixed-order; in this paper we assume it to be left-to-right. If
a node in a forest has a selected atom A that is not associated with an SLG tree,
a New Subgoal operation is applicable to allow the creation of a new tree with
root A:-A. Children of the root of a tree are produced by the Program Clause

Resolution; children of other nodes are produced by Positive Return. For
definite programs this operation is equivalent to considering the answer as a fact
and resolving it against the selected literal of Goals.

The above three operations continue until no more operations are possible
for a set of mutually dependent subgoals. To make more precise the notion of
dependency, we say that S1 directly depends on a non-completed subgoal S2 in
a forest F iff S2 is the selected atom of some node in the tree for S1 in F .
Then, for a given forest F the Subgoal Dependency Graph of F , SDG(F) =
(V,E), is a directed graph in which (Si, Sj) ∈ E iff subgoal Si directly depends
on subgoal Sj , while V is the underlying set of E. The above definition relies
on the notion of a subgoal being completed. To explain this, we first state that
within a finite SLG evaluation, a set S of subgoals is completely evaluated in F

if S forms a maximal SCC in SDG(F) and all applicable New Subgoal and
resolution operations have been performed on all nodes of every tree in the set. A
Completion operation is applicable to a set of completely evaluated subgoals,
and explicitly marks each tree with the token complete.

For a given forest there may be many applicable SLG operations. Formalisms
that restrict the number of applicable SLG operations in a given forest without
sacrificing completeness are called scheduling strategies. Local evaluation is a
scheduling strategy that makes use of the definition of an independent SCC.
We call a strongly connected component SCC independent if it is maximal and
∀S ∈ SCC, if S depends on some S′, then S′ ∈ SCC. Informally, a Local
Evaluation is one in which for any forest F , New Subgoal, Positive Return

and Program Clause Resolution operations are applied only to trees whose
subgoals are in an independent SCC of F , and that Completion operations
are applied to all subgoals in an independent SCC at once. Several properties
of Local Evaluation are proved in [6]. The implementation in this paper makes
direct use of the following theorem:

Theorem 1 ([6]). Let EL be a finite Local SLG evaluation. For each F in EL

there is at most one incoming edge for each SCC in SDG(F).

2.2 SLGcl

SLGCL [6] formalizes the actions of several threads of computation on a set of
atomic queries, where each thread performs a Local evaluation. In SLGCL a tree
can be marked with a thread identifier (tid) in addition to the token complete.
SLGCL then adds thread compatibility restrictions to those of Local Evaluation.
If a New Subgoal operation is performed by a thread T . the newly created
tree is marked with T . Next, an answer A can be returned to a tree marked with
T only if the tree in which A occurs is completed or also marked with T . And

finally, a Completion operation is applicable to a set of subgoals only if they
are all marked with the same tid. When the Completion operation is applied,
all completed trees have their tid overridden with complete. By themselves,
the thread compatibility restrictions prevent completeness, as a forest may be
deadlocked. A set S of non-completed subgoals in a forest F is in deadlock if:
for each S ∈ S there are no applicable SLGCL operations for N . A new SLGCL

operation resolves a deadlock for a forest and preserves completeness:
Usurpation: Given a set of subgoals S in deadlock mark all trees of S with

marking(S) for some S ∈ S

Example 1. To illustrate the Usurpation operation of SLGCL consider program
P1 (Figure 1) and let there be three threads with identifiers 1,2 and 3 executing
the initial queries ?- t1(X), ?- t2(X), ?- t3(X), respectively. Assume that
thread 1 calls t1(X) which calls a(X) and then d(X), while meanwhile thread 2
calls t2(X) and b(X). Immediately after this sequence thread 1 also calls b(X);
because b(X) is marked by thread 2, thread 1 has no applicable operations —
informally we say thread 1 is suspended. The SDG and TDG for the forest at
this point are shown in Figure 2a. There is not yet deadlock, because thread 2
can still call d(X). Thread 2 then does call d(X), and determines that there is
a deadlock. Thread 2 usurps d(X) from thread 1 arriving at the state shown in

:- table a/1, b/1, c/1, d/1.

t1(X):- a(X) t2(X):- b(X). t3(X):- c(X).

a(X) :- d(X). b(X) :- d(X). c(X) :- a(X). d(X) :- b(X).

a(X) :- c(X). b(b). c(y). d(X) :- a(X).

a(x). d(d).

Fig. 1. Program P1

Figure 2b. Proceeding onward, thread 2 calls a(X), and again determines that
there is a deadlock. The subgoal a(X) is usurped from thread 1 and marked as
belonging to thread 2. At this point let thread 3 call t3(X) and c(X), while just
afterward in thread 2, a(X) also calls c(X). As c(X) belongs to thread 3 and as
there is no deadlock, thread 2 suspends. Immediately after, thread 3 calls a(X) a
state shown in Figure 2c. Now thread 3 detects a deadlock and usurps the SCC
that was being computed by thread 2, as shown in Figure 2d. Threads 1 and 2
continue to be suspended. and both depend on thread 3, Eventually thread 3
completes the SCC. Only then are Positive Return operations applicable for
threads 1 and 2 using answers from the usurped SCC.

With the Usurpation operation, SLGCL can be proved complete, and it can
be proved that each thread performs a Local evaluation regardless of whether
it suspends or has a subgoal usurped [6]. The algorithm of Section 3 relies on

d(X):1

b(X):2a(X):1

SDG TDG

2

1

t1(X):1 t2(X):2

(a) State 1

d(X):2

b(X):2a(X):2

t2(X):2t1(X):1

1

2

TDGSDG
(b) State 3

d(X):2

b(X):2a(X):2c(X):3

SDG TDG

1

23

t3(X):3 t1(X):1 t2(X):2

(c) State 5

b(X):3a(X):3

d(X):3

c(X):3

t2(X):2t1(X):1t3(X):3

3 2

1

TDGSDG

(d) State 7

Fig. 2. Concurrent execution of P1

properties about thread dependencies. In a forest F let an active thread be a tid
T such that there exists a tree, Tr ∈ F , such that marking(Tr) = T . Then for
two active threads, T1 and T2 in a SLGcl forest F , T1 directly depends on T2 if
there exist a subgoal in T1 that directly depends on a subgoal in T2 (according
to the definition of SDG(F)). The Thread Dependency Graph TDG(F) = (V,E)
of F is a directed graph where V is the set of active threads in F and (ti, tj) ∈ E
iff active thread ti directly depends on active thread tj . For a forest F it is not
hard to see that TDG(F) is a graph homomorphism of SDG(F), leading to the
following theorem, which is used in Section 3.

Theorem 2. [6] Let F be a forest in a SLGcl evaluation. Then for each node
in TDG(F) there is at most one outgoing edge.

2.3 Review of Relevant Portions of the SLG-WAM

We briefly review aspects of the SLG-WAM that are affected by or support the
addition of concurrency to SLG.

Table Space The SLG-WAM maintains table space to store the tabled sub-
goals with their answers [7]. The relevant data structures include the following.
The Table Information Frame or TIF is the top-level structure for each tabled
predicate and contains information about the predicate, information for memory
management, and a pointer to a subgoal trie which stores all current subgoals for
a tabled predicate. When encountering a tabled subgoal, a subgoal check insert()
function is called, which checks whether a subgoal is present in a trie and inserts
it if not. Each leaf node of the subgoal trie corresponds to a subgoal S and points

to a subgoal frame which contains information about S. Two fields of the subgoal
frame are relevant for our purposes. A marking field indicates whether or not
S has been completed. An ansTrieRoot field points to the root node (if any) for
the trie of answers for S. When a derivation produces an answer, answers are in-
serted into the answer trie if needed by an answer check insert() function. Nodes
in the answer trie contain executable instructions, so that if S is completed, a
call to S branches to the answer trie root to begin returning answers.

The Completion Stack XSB’s SLG-WAM keeps a completion stack where
each frame represents a pointer to a non-completed tabled subgoal in the cur-
rent forest, along with dependency information used to construct a safe (over-
)approximation of the independent SCC of the current SDG 3. The completion
stack is also used for scheduling in Local evaluation, where the oldest subgoal in
the independent SCC is called the leader of the SCC (cf. [9, 3]).

SLG-WAM instructions The SLG-WAM contains several instructions not
in the WAM, the more important of which we briefly cover. The new answer

instruction adds answers to the table when an answer derivation succeeds The
answer return instruction corresponds to the SLG Positive Return operation.
Finally, the check complete instruction checks for completion of an SCC and
schedules answer return and other instructions if subgoals in the SCC have not
been completely evaluated. The tabletry instruction for a subgoal Subgoal has
the form tabletry(Arity, Clause, TIF). As in the WAM, the representation of
Subgoal is implicit in the argument registers; Arity is the number of registers to
save and restore upon backtracking; and Clause the failure continuation. A new
argument, TIF , is used to access the subgoal trie through the table information
frame. When tabletry executes, a check/insert operation is performed for Subgoal
in the subgoal trie for its predicate symbol. If Subgoal is in the table and has been
marked as completed, tabletry branches directly to the answer trie of Subgoal
if it has answers (failing if there are no answers). If Subgoal is new, a subgoal
frame is created for Subgoal, along with a generator choice point which will
be used to perform Program Clause Resolution. If Subgoal is not new, a
consumer choice point is created to return answers to the calling environment.
In the SLG-WAM stacks are also frozen so that computations that are waiting
for an answer and have been suspended can be resumed when answers are later
available.

Extensions for Multi-Threading In multi-threaded XSB, each thread of
tabled execution has a structure called a thread context in which thread-specific
information is maintained. Thus, for instance the E register for a thread is
accessed as a field of its context structure. When a thread is suspended, any
other thread can safely examine, and in some cases change, data in its context.
In XSB, tables can be thread-shared or thread-private, although in this paper
we restrict our attention to thread-shared tables. For shared tables, there is a
lock on the subgoal trie for each (shared) tabled predicate, but as will be seen a
lock is not required for answer tries, other than that required by the underlying
memory management system.

3 In Local evaluation, this approximation is exact if Early Completion is not used.

3 Implementing SLGCL in the SLG-WAM

The main addition needed to implement SLGCL in the SLG-WAM is the
Usurpation operation: its implementation mainly affects the tabletry instruc-
tion, and is summarized in Figure 3. The tabletry instruction for the SLGCLWAM
differs from that of the SLG-WAM only if the called subgoal is not new and is
currently marked by another thread (and therefore not marked as completed).
In this case deadlock detection is performed and if a deadlock is not found the
thread suspends, as it does not have any applicable SLGCL operations; otherwise
the thread performs a Usurpation operation. When a thread usurps subgoals
in this implementation of SLGCL, any partial computations for the usurped
subgoals are lost, and will be recomputed by the usurping thread. This design
decision allows SLGCL to be added to a tabling engine such as the SLG-WAM in
a simple manner, though, as shown below, the abstract complexity of evaluation
for the well-founded semantics is not affected.

Instruction tabletry(Arity, nextClause, TIF)

/* subgoal is in argument registers; Arity is arity of subgoal;
nextClause is failure continuation; TIF points to table information frame */

Perform the subgoal check insert(subgoal) operation in the trie for this predicate
If subgoal is not new and is marked by another thread

If waiting for subgoal to complete would produce a deadlock
/* all other threads in the independent SCC are suspended at deadlock */
Perform the usurpation operation:

Mark all subgoals in the independent SCC as usurped
For each thread T with an usurped subgoal ST

reset T to perform its call to ST

/* T will be awakened when ST is completed */
Else suspend the thread until subgoal completes

Proceed as in the sequential case; if subgoal was usurped, treat it as a new subgoal

Fig. 3. Summary of the changes to the tabletry instruction.

Before discussing implementation of the Usurpation operation, we discuss
two small changes. First, the tid marking for an incomplete tabled subgoal is kept
in the marking field of the subgoal frame, while for completed tables the field
contains the term complete. Second, the check complete instruction is changed
to wake any suspended threads waiting on the completing subgoals; as discussed
below, this is done through a condition variable associated with each TIF frame.

Detecting Deadlock The definition of deadlock used in the SLGCLWAM
differs from that of Section 2.2 in that the implementation considers an inde-
pendent SCC to be deadlocked even if there are applicable Program Clause

Resolution or Delaying operations while the formalism does not. In the
SLGCLWAM there is no reason to perform these operations since the partial
computations of usurped subgoals will be discarded. Checking for deadlock is
performed by the check deadlock() function (Figure 4). check deadlock() has

would deadlock(subgoal thread, current thread)
/* subgoal thread marks the subgoal called by current thread */
while(subgoal thread 6= NULL)

if(subgoal thread = current thread) return true;
else subgoal thread← subgoal thread.suspended on thread);

return false;

Fig. 4. The check deadlock function.

a simple form: if the current thread calls a non-completed subgoal marked by
another thread, it determines whether adding the dependency from the calling
subgoal to the called subgoal would give rise to a deadlock. Dependencies in
the TDG are maintained by a new suspended on thread field in the thread’s
context.4 If creating such a dependency would cause the calling thread to de-
pend on itself, then a deadlock is detected and a Usurpation operation will
be necessary. Otherwise, if there is no present deadlock, the calling thread can
simply suspend, waiting for the called subgoal to be completed. The correctness
of check deadlock() relies on the fact that any thread self-dependencies in the
TDG are simple cycles without any subcycles: a corollary of Theorem 2 which
states that each thread can depend on at most one other thread.

Gaining Control of Usurped Subgoals The fact that the thread depen-
dencies for deadlocked threads form a simple cycle also underlies the control
flow of the usurp() function (Figure 5) which consists of two traversals of the
deadlocked TDG cycle. In the first traversal, Tusurper updates the TDG, setting
the suspended on thread field of each usurped thread to its own id. Adjusting the
TDG must be performed under global mutual exclusion: otherwise two usurp-
ing threads concurrently adjusting the TDG might produce an incoherent TDG.
Exclusion is enforced by the usurpation mutex, which is set earlier in the tabletry
instruction (see Figure 7) and is unset immediately after the TDG is updated
in usurp(). In the second traversal, the execution stacks in each usurped thread
are examined and manipulated through the function mark and reset() (Figure 6).
This stack manipulation is safe since each usurped thread is suspended on the
completion of a subgoal. In addition to resetting stacks, mark and reset() prop-
agates subgoal dependencies among threads. The dependency propagation is
based in part on a corollary of Theorem 1 that each thread can depend on at
most one subgoal, Ssusp, in its independent SCC, the value for which is main-
tained in the new suspended on subgoal field in the thread context. To charac-
terize Ssusp, observe that when a thread, Tusurped, is involved in deadlock, all
threads in the deadlock share the same independent SCC, SCCdlock and Tusurped

should be suspended on the first subgoal in SCCdlock that it encountered during
its evaluation. At deadlock, however, Tusurped may not know the true value of
Ssusp because it may not know the true extent of SCCdlock as dependencies
from other threads may not have been propagated to Tusurped. In fact, there is

4 In this presentation, we do not distinguish between a thread’s id and its context.

only one dependency that must be propagated to Tusurped. To see this, recall
that because a deadlock is a cycle in the TDG, any Tusurped has exactly one
thread, Tdep depending on it, and by Theorem 1, Tdep is suspended on exactly
one subgoal in Tusurped. This dependency is passed into mark and reset() which
determines the true value of Ssusp for Tusurped in a manner discussed below.
When mark and reset() succeeds, it returns the true value of Ssusp to usurp(),
which sets the suspended on subgoal field of Tusurped. Before doing so, the old
suspended subgoal of Tusurped is obtained to be propagated to the next thread
in the TDG cycle.

usurp(dep SF , first usurped, Tusurper)

/* Tusurper called a subgoal with frame dep SF , marked by first usurped */
Tusurped ← first usurped;
while(Tusurped 6= Tusurper) /* first reset the TDG */

Tusurped.next← Tusurped.suspended on thread;
Tusurped.suspended on thread← Tusurper;
Tusurped ← Tusurped.next;

unlock(usurpation mutex); /* locked in tabletry */
Tusurped ← first usurped;
while(Tusurped 6= Tusurper) /* now reset stacks for usurped */

reset sf ← mark and reset(Tusurper, Tusurped, dep SF);
/* reset sf is true value of Ssusp for Tusurped */
dep SF ← Tusurped.suspended on subgoal;
/* dep SF is the dependency to be propagated from Tusurped to Tusurped.next */
Tusurped.suspended on subgoal← reset sf ;
Tusurped ← Tusurped.next;

Fig. 5. The usurp procedure.

In addition to dependency propagation, mark and reset() also marks the sub-
goal frames for usurped subgoals, and resets the execution stacks for the thread
Tusurped so that it will no longer compute its usurped subgoal, but rather will
return answers once the usurped subgoal has been completed. The details are as
follows. The function first checks whether the subgoal frame marked by Tusurped

has already had its information reset, by checking a new usurped field in the sub-
goal frame. For a previously usurped subgoal, the marking field need only be set
with the id of Tusurper and mark and reset() can return immediately. Otherwise
if the subgoal has not been previously usurped, the function uses a while loop to
traverse the completion stack of Tusurped to find its portion of SCCdlock (as men-
tioned in Section 2.3 an independent SCC is represented by a segment on the top
of the completion stack). However, as discussed above, the dependency from Tdep

to Tusurped is not propagated until a thread is actually usurped. Accordingly, in
Figure 6, the completion stack is traversed from the top of stack, represented
by usurped.CmplStkReg to the true leader of the revised SCC. More precisely,
the completion stack is traversed until the first leader is found that is at least as

mark and reset(Tusurper, Tusurped, dep SF)
/* The dependency dep SF is propagated to Tusurped during usurpation*/
if(dep SF.marking 6= Tusurped) /* usurped was previously usurped */

return Tusurped.suspended on subgoal;
/* Find the oldest subgoal deadlocking SCC and mark subgoal frames */
CSF ← Tusurped.CmplStkReg; found dep SF ← false;
while(not (found dep SF and is scc leader(CSF)))

if (CSF.subg ptr = dep SF) found dep SF ← true;
SF ← CSF.subg ptr;
SF.usurped← true; SF.marking ← Tusurper;
reset subgoal frame cells in SF having to do with computation state in the stacks
decrement(CSF);

/* Finally, reset the stacks of Tusurped */
Tusurped.ComplStkReg ← CSF ; /* pop the completion stack */
Tusurped.B← SF.generator cp; /* get the generator cp */
use the information in the generator cp to reset usurped’s stacks;
Tusurped.P← Tusurped.B.reset pcreg;/* set forward continuation */
Tusurped.B← Tusurped.B.prevbreg; /* delete the generator cp */
return CSF.subg ptr;

Fig. 6. The mark and reset() procedure.

old as the new dependency, dep SF . This is essentially the same propagation as
if Tusurped itself had called the subgoal represented by dep SF (see [9] for the
actual computation of leaders in the SLG-WAM).

For each completion stack frame traversed in the while loop, the appropriate
subgoal frame is obtained, its usurped field set, its marking field set to Tusurper ,
and other fields re-initialized. Once the while loop is exited, CSF is the com-
pletion stack frame associated with the proper suspended subgoal, Ssusp. Next,
the state of Tusurped is set to call Ssusp. This is done by obtaining the genera-
tor choice point for Ssusp, which provides information to reset stack and freeze
registers of Tusurped in a manner analogous to failing. A small difference from
failing is that the argument registers of Tusurped are reset to their state at the
call of Ssusp rather than to a failure continuation. In order to do this, a gener-
ator choice point contains a new reset pcreg field which points to the original
tabletry instruction for Ssusp, which is used to set the P register of Tusurped.
Upon awakening Tusurped will re-execute the tabletry instruction, but this time
it will determine that Ssusp has been completed, and will simply return any
answers in the completed table for Ssusp.

The tabletry Instruction The tabletry instruction (Figure 3) detects dead-
lock, and ensures that if there is deadlock one and only one thread performs
usurpation. We describe the actions of a thread T calling a subgoal subgoal for a
shared tabled predicate Pred, ignoring at first concurrency issues. In addition to
the Arity and nextClause pointer of a WAM try, tabletry contains a pointer to
the predicate-level (TIF) (Section 2.3). The TIF field contains a pointer to the
subgoal trie, but also information on whether Pred is thread shared or thread

private — Figure 3 includes pseudo-code only for shared tables. The function
subgoal check insert() determines whether subgoal resides in the subgoal trie: it
returns a pointer to its subgoal frame if so and Null if not. If subgoal is new,
actions proceed as usual, although the marking field of the subgoal frame is set
to the executing thread’s id, T (case α). Otherwise if subgoal is not new (case β),
if subgoal has been usurped by Tusurper (case β.1), computation of subgoal must
be started afresh by T so the normal steps for a new tabled subgoal are taken, a
step ensured by setting the new subgoal flag. In case β.2 if subgoal is not marked
by T (and not completed) a determination must be made whether to suspend T
or to perform a Usurpation operation. As discussed above, check deadlock() is
called and if there is a deadlock usurp() is called; afterwards control will jump to
the sequential portion of tabletry where the usurped subgoal will be treated as
new. If there is no deadlock, the suspended on thread and suspended on subgoal
fields of T ’s subgoal frame are set, and T suspends on a condition variable as-
sociated with the TIF for subgoal. The sequential portion of tabletry works as
in the SLG-WAM, with the minor exception that a subgoal is treated as new if
the new subgoal flag has been set.

Returning to the concurrency issues for tabletry, it must be ensured that one
and only one thread will create a new tabled subgoal, and if any deadlock occurs,
one and only one thread will usurp the deadlocked SCC — while at the same
time allowing as much concurrency as possible. The first issue is to ensure mutual
exclusion for the (predicate-level) subgoal trie during the subgoal check insert()
function. Each subgoal trie (for thread-shared tables) has its own mutex, which is
unlocked by tabletry as soon as possible — after the frame is created for subgoal
if subgoal was new. Next, a global usurpation mutex is locked to ensure exclusion
of check deadlock() and part of the usurp functions; as discussed above this is
necessary to prevent two threads from concurrently updating the TDG and
possibly making it incoherent. If T suspends, it will wait on a condition variable
associated with the predicate-level TIF of subgoal. When T is awakened, it must
recheck whether subgoal was actually completed, as different subgoals may share
the same predicate-level condition variable.

Summary of Changes The changes to SLG-WAM data structures include
the suspended on thread and suspended on subgoal fields of the thread context,
which are used to maintain the thread dependency graph and parts of the subgoal
dependency graph; a next field is also needed for TDG cycle traversal by usurp().
In addition there is the usurped field in the subgoal frame and the reset pcreg
field in the generator choice point, both of which are required for usurpation.
Since any shared table is marked by a single thread, no locks are required for
answer tries. Finally, a condition variable is added to each TIF , and a global
usurpation mutex is required. At the instruction level, there is a minor change
to the check complete instruction to wake up threads that may be suspended on
completing subgoals. The tabletry instruction has the additions described in this
section. However, no changes are needed to tabletry code beyond factoring out
the subgoal check insert() operation and subgoal frame creation as shown in the
first few lines of Figure 7.

Instruction tabletry(Arity, Clause, TIF)

/* subgoal is in argument registers; T is executing thread */
lock(TIF.subgoal trie mutex); /* Handle shared tables */
SF ← subgoal check insert(subgoal, TIF);

α if (SF = NULL) /* subgoal is not in the table */
SF ← CreateSubgoalFrame(subgoal);
/* sets SF.usurped← false; SF.marking ← T ; */
unlock(TIF.subgoal trie mutex);
new subgoal← true;

β else /* subgoal is already in the table */
unlock(TIF.subgoal trie mutex);

β.1 if(SF.marking = T and SF.usurped) /* subGoal was usurped by T*/
new subGoal ← true; SF.usurped← false;

else new subGoal← false;
β.2 if(SF.marking 6= T and SF.marking 6= completed)

lock(usurpation mutex);
while (SF.marking 6= completed)

if(check deadlock(SF.marking, T))
usurp(SF ,SF.marking,T); /* unlocks usurpation mutex */
new subgoal← true; SF.usurped← false;
goto seq tabletry;

T.suspended on subgoal← SF ;
T.suspended on thread← SF.marking;
cond wait(TIF.cond var,usurpation mut);

unlock(usurpation mutex);
T.suspended on subgoal← NULL; T.suspended on thread← NULL;
T.usurping ← false;
Branch to instruction in P register;

seq tabletry: Execute as in sequential SLG-WAM; treat subgoal as new iff new subgoal is true

Fig. 7. The tabletry instruction for the SLGCLWAM

3.1 Extensions for Negation, Constraints and Answer Orderings

The discussion has so far focussed exclusively on tabled evaluation of definite
programs. Because SLGCL differs from SLG essentially only in the Usurpation

operation it should not be surprising that the SLGCLWAM requires few changes
beyond those already indicated in order to implement the well-founded seman-
tics. Consider first the case of stratified programs. In the sequential SLG-WAM,
if the underlying (tabled) subgoal S of a selected negative literal is not new
and not complete, the computation path “suspends” and resumes only when S
has been completed. These operations are the same as the interactions between
threads so far described.5 In the case of non-stratified negation the first new
operation to consider is the SLG Delaying operation. Delaying is handled in
the SLG-WAM essentially as with stratified negation. If S is involved in a loop
through negation, the resumption mechanism is the same except that a bit in
the subgoal frame of S is set to indicate that S was delayed rather than com-
pleted. Several cycles of delaying may be needed before S is finally completed,
but these may all be handled using the thread suspension and usurpation mech-
anisms described. When S is completed, any Simplification operations for its
SCC are also performed before awakening any threads suspended on S, so that
Simplification is not affected by the concurrency mechanisms.

Tabling constraints also carries over to the SLGCLWAM in a simple manner.
In XSB, constraints are tabled by copying attributed variables into and out
of tables for subgoals and answers. The actual mechanism for this copying is
encapsulated in the subgoal check insert() and answer check insert() operations
and is therefore unaffected by the changes to tabletry. Similarly, implementations
of answer ordering are performed as extensions to the SLG-WAM new answer
operation which is also unaffected by the changes for SLGCL.

4 Complexity and Performance

Despite its advantages, the described implementation has to recompute an-
swers for usurped subgoals. To understand this effect on complexity, we denote
a SLGCL evaluation that recomputes answers for usurped subgoals as an SLGCL

evaluation with restart. In [6] it is shown that the maximal number of Usurpa-

tion operations in a SLGCL evaluation is linear in atoms(P), the number of
atoms in a program P . Now assuming perfect indexing, all SLG operations can
be considered to be constant, except for Completion and Usurpation, which
have worst-case complexity of atoms(P), and Answer Completion which has
worst-case complexity of size(P), the size of P . Because completely evaluated
SCCs cannot be usurped, and because Answer Completion need only be per-
formed on completed tables, Usurpation affects only constant operations, and
occurs O(atoms(P)) times, giving rise to the following:

Theorem 3. Let E be a finite SLGcl evaluation with restart of a query to a
program P . Then E has worst-case complexity of O(atoms(P)size(P)).

5 A minor difference is that threads suspended on negative literals need to be reset to
the beginning of tnot/1, rather than to the tabletry instruction.

Theorem 3 is significant, since known computation methods of the well-founded
semantics have the same complexity for unrestricted normal programs (cf. [1]).

Performance A full performance analysis of the SLGCLWAM cannot be
presented here, so we focus on illustrating extremal behavior with respect to
deadlocking and Usurpation. Table 4 shows scalability on left-recursive transi-
tive closure for randomly generated graphs. Each graph is designated by the no-
tation V ertices×Edges per vertex: for instance, the first row measures a graph
of 256 vertices, each of which have 128 edges per vertex. The columns indicate
elapsed time and speedup for N threads to each perform V ertices/N queries of
the form path(bound,free). These queries show nearly linear speedup on up
to 8 threads, which is not surprising as these evaluations do not require either
Usurpation or thread suspension. On the other hand, executing right-recursive

N Threads: 1 2 Speedup 4 Speedup 8 Speedup

256x128 1.46s 0.73s 2.0 0.38s 3.8 0.19s 7.7

512x8 0.60s 0.31s 1.9 0.16s 3.8 0.10s 6.0

2048x2 4.62s 2.38s 1.9 1.27s 3.6 1.03s 4.5

8192x1 1.30s 0.67s 1.9 0.36s 3.6 0.20s 6.5

Table 1. Scalability for left-transitive closure in random graphs using N threads

transitive closure on these graphs provides a situation where Usurpation is ex-
pected to occur heavily. Table 4 shows the number of deadlocks for the randomly
generated graphs with from 1 to 256 threads on an 8-core machine each evalu-
ating a random right recursive query of the form path(bound,free). Given the
number of vertices in the graphs, a relatively high number of threads need to
be concurrently invoked to obtain more than than 10 deadlocks or so, which is
observed only on the moderately dense graphs. Table 4 shows the times and

N. Threads 1 2 4 8 16 32 64 128 256

256x128 0 0 2 3 7 8 7 12 16

512x8 0 1 0 3 3 9 21 4 8

2048x2 0 1 6 8 20 33 26 16 36

8192x1 0 0 0 0 0 0 0 1 1

Table 2. Number of deadlocks for transitive closure with right recursion for N threads

speedups for right recursion. While there is little speedup for the three more
densely connected graphs, the repeated Usurpation operations do not slow the
times down, and the evaluations degenerate into behavior similar to a sequential
evaluation. Of course, having a large number of threads simultaneously querying
small densely connected graphs using right recursion is arguably a “worst”-case
situation for the SLGCLWAM, but in these cases, the cost of restarting a usurped
SCC does not appear to be high.

N Threads: 1 2 Speedup 4 Speedup 8 Speedup

256x128 1.64s 1.64s 1.0 1.62s 1.0 1.65s 1.0

512x8 0.61s 0.58s 1.1 0.57s 1.1 0.56s 1.1

2048x2 3.20s 2.68s 1.2 2.44s 1.3 2.23s 1.4

8192x1 0.65s 0.34s 1.9 0.20s 3.3 0.12s 5.4

Table 3. Scalability for right-transitive closure in random graphs using N threads

5 Summary

While they are conceptually complex at times, the algorithms for deadlock de-
tection and Usurpation are based on a formal semantics for SLGCL, so they
can be concisely stated, theiir correctness clearly argued and they support a
number of tabling features. In addition, because only actions upon the call of a
tabled subgoal are significantly changed, the approach should be adaptable to
a variety of engines. Substantiation for this claim is provided by the fact that
implementation of SLGCL in XSB required approximately 300 lines of code in-
cluding code for negation. SLGCL is thus a simple and effective way to extend
a tabling engine for concurrency.

References

1. K. Berman, J. Schlipf, and J. Franco. Computing the well-founded semantics faster.
pages 113–125. Springer-Verlag, 1995.

2. W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic
Programs. Journal of the ACM, 43(1):20–74, January 1996.

3. J. Freire, T. Swift, and D. S. Warren. Beyond depth-first: Improving tabled logic
programs through alternative scheduling strategies. JFLP, 1998(3), 1998.

4. H. Guo and G. Gupta. A simple scheme for implementing tabled logic programming
systems based on dynamic reordering of alternates. In ICLP, pages 181–196, 2001.

5. P. Guzman, M. Carro, M. Hermenegildo, C. Silva, and R. Rocha. An improved
continuation call-based implementation of tabling. In PADL, 2008.

6. R. Marques and T. Swift. Concurrent and local evaluation of normal programs,
2008. Submitted. Available at http://www.cs.sunysb.edu/~tswift.

7. I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren. Efficient
access mechanisms for tabled logic programs. JLP, 38(1):31–55, January 1999.

8. R. Rocha, F. Silva, and V. S. Costa. On applying or-parallelism and tabling to
logic programs. Theory and Practice of Logic Programming, 4(6), 2004.

9. K. Sagonas and T. Swift. An abstract machine for tabled execution of fixed-order
stratified logic programs. ACM TOPLAS, 20(3):586 – 635, May 1998.

10. Z. Somogyi and K. Sagonas. Tabling in Mercury: Design and implementation. In
PADL, 2006.

11. N. Zhou, Y. Shen, L. Yuan, and J. You. Implementation of a linear tabling mech-
anism. Journal of Functional and Logic Programming, 2001(10), 2001.

