Incremental Tabling in Support of Knowledge
Representation and Reasoning

Terrance Swift

July 19, 2014

Incremental Tabling July 19,2014 1/36

Definition

Incremental Tabling [SR05, Sah06] ensures that tables correctly reflect
changes in dynamic rules or facts.

Incremental Tabling July 19, 2014 2 /36

Overview

@ Context: Tabling for KRR Systems
© Previous Work: Manual Incremental Tabling
© New Work: Transparent Incremental Tabling

@ Performance and Scalability Overview

Incremental Tabling July 19, 2014 3 /36

Some Traditional Use Cases for Tabling

The majority of predicates are not tabled

@ As an extension of Prolog

o Parts of a Prolog program are tabled for termination, efficiency, or
semantic support.
o Parsers, graph search algorithms...

@ XSB, Inc's CDF-system uses tabling with stratified negation to
efficiently traverse inheritance structures.

@ As a means to implement specialized deduction

o Tabled predicates implement inference rules as a module within a larger
system

o Process logics: CCS, m-calculus, Petri Nets

e Temporal Logics: CCL, modal p-calculus

o Probabilistic reasoning: PITA, Problog, PRISM

@ These use cases are neither completely distinct nor exhaustive

Incremental Tabling July 10,2014 4/ 36

KRR Systems that use Tabling

@ Description logics may be of high complexity (e.g., ALC and
extensions, SHOZQ); or low-complexity (e.g., EL or various flavors
of DL-Lite).

o Logical rules also may be of high complexity (ASP); or of low
complexity e.g., Flora-2 (open-source), Silk (Vulcan, Inc), Ergo
(Coherent Knowledge Systems)

@ Silk and Ergo are extensions of Flora-2, and so are implemented using
XSB and Tabling. Ergo supports

Lists and structures as with Prolog

Monotonic and non-monotonic inheritance;

Hilog

“Mix-ins" of defeasibility theories

Partial implementation of Transaction Logic

“Omni-rules” that permit Lloyd-Topor transformations in the body and

head, and allow some existential reasoning

®© ©6 6 6 o o

Incremental Tabling July 19,2014 5/ 36

Uses of Ergo

@ One of the main applications involves the automatic processing of
text into rules

o The sentence: A contractile vacuole is inactive in an isotonic
environment [RUC10] is translated to

forall(?x6) “contractile(vacuole) (?x6))
==> forall(?x9) “isotonic(environment) (7x9)
==> inactive(in(7x9)) (?x6);

@ Another is to use loosely-coordinated teams to construct knowledge
bases

Incremental Tabling July 19, 2014 6/ 36

Context: Tabling for KRR Systems

Pervasive Tabling

@ Flora-2, Silk, and Ergo all make use of Pervasive Tabling: A user rule
is tabled unless it is explicitly declared not tabled.
o Rules that have side-effects should not be tabled
o Facts are not tabled
o Uses tabling with well-founded negation, attributed variables, call
abstraction, answer abstraction (restraint) and table space reclamation

@ Behavior of a computation differs greatly from Prolog and starts to
resemble a deductive database.

o Often, 10’s of millions of tables, if domain is not well restricted.

Incremental Tabling July 10,2014 7/ 36

The Need for Incremental Tabling in KRR Systems

@ Would like to support easier interactive rule development — adding or
deleting rules and/or facts

@ Would like to support hypothetical reasoning (used in question
answering)

@ Would like to support use of Ergo, etc. in reactive systems

In short, want to make lots of things incrementally tabled!

Incremental Tabling July 19, 2014 8 /36

Previous Work: Manual Incremental Tabling

Manual Incremental Tabling

@ Incremental Tabling [SR05, Sah06] provides for a table to be updated
when a fact or rule upon which it depends is updated

o Used to support a deductive spreadsheet [RRWOQ7]

@ Relies on the notion of a dynamic Incremental Dependency Graph
(IDG)

o In the next slide arrows represent direct dependency
o Goal depends on Goal iff Goal, affects Goal
o A leaf node depends on no other node

@ Descriptions of all algorithms are highly simplified. Exact algorithms
are in the paper.

Incremental Tabling July 19,2014 9/ 36

Previous Work: Manual Incremental Tabling

Incremental Dependency Graph (IDG)

- table t-1/1, t.2/1, t-4/1, t.5/1 as incremental.

t_1(X) - t_4(X),tnot(t_2(X)).
t4(X) - t-5(X). t_4(X):- t-4(Y),p(X,Y).

t.2(X) - q(X). t.5(X):- nt_1(X).
ntI(X)- p(AX). nt1(X)- p(e(X)).

- dynamic p/1, q/1 as incremental.

p(f(1)). q(f(1)).
1%

neg

D_4(X) L2(6(1) l_2$g(1))

5(X) q(f(1)) q(g(1)

2

pEX) peX)

Incremental Tabling July 19, 2014 10 / 36

Terrance Swift

Previous Work: Manual Incremental Tabling

Manual Incremental Tabling: Invalidation

o Invalid means that a subgoal may not be correct given the current
state of the program.

@ Perform immediately after updating a dynamic incremental predicate
@ In practice, a depth-first algorithm is used

/* Let A be the head of the clause that was updated */
Use the IDG to determine LeafSet, the set of leaf nodes that unify with A
Let SubgoalSet be the set of nodes that directly depend on some
leaf € LeafSet

For each S € SubgoalSet until SubgoalSet is empty

Increment S.invalid_children

If S.invalid_children is now 1 /* S was made invalid */
v Add S to a global /nvalList

Add to SubgoalSet all nodes that S directly affects

Incremental Tabling July 19,2014 11/ 36

IDG Invalidation

@ Suppose that p(f(2)) were asserted. Then the invalidation phase
would invalidate all nodes affected by the leaf p(f(X)).

t_1(X)

/ M
C(t_4(X) t_2(f(1)) t_?g(l))

t_5(X) q(f(1)) q(g(1))

N

p(fX)) p(eX))

Incremental Tabling July 19, 2014 12 / 36

Previous Work: Manual Incremental Tabling

Manual Incremental Tabling: InvalList Recomputation

@ The recomputation step makes subgoals valid again

o If S.invalid_children = 0, this means that no tables or dynamic facts
on which S depends have been changed by the update

/* The dependency partial order is preserved by InvalList */
Traverse InvalList and for each node S
If S.invalid_children > 0
Recompute S, and set S.invalid_children = 0
If the extension of S has changed
For each node S’ that S directly affects, decrement S’.invalid_chil
Recursively propagate the validity if S’.invalid_children is now 0

Incremental Tabling July 19,2014 13/ 36

Previous Work: Manual Incremental Tabling

Manual Incremental Tabling: InvalList Recomputation

o Invalidation also sets an invalid_children field containing the number
of immediate children that are currently invalid

@ If this number is set to 0, a node does not need to be recomputed
L1(X)
neg

t_4(X) t_2(f(1)) t_2(g(1))

Incremental Tabling July 19, 2014 14 / 36

Previous Work: Manual Incremental Tabling

Manual Incremental Tabling: Subgoal Recomputation

How to determine if the extension of a subgoal S has changed

Mark all answers for S as deleted
Set S.nbr_new_answers = 0; set S.new_answer = false
Whenever an answer A is derived for S
Increment S.nbr_new_answers
If A was already in the table remove the deleted mark
Otherwise set S.new_answer = true
When S is completed remove deleted answers

If S.new_answer = false and S.nbr_answers = S.nbr_new_answers then
the extension of S has not changed

Incremental Tabling July 19,2014 15/ 36

Previous Work: Manual Incremental Tabling

Manual Incremental Tabling: Summary

@ Incremental Tabling works at the subgoal level, with optimizations to
reduce cost of graph traversal during the invalidation phase, and to
avoid recomputations of goals whose invalid_children becomes 0.

o Because it works at a subgoal level and invalidation represents
abstract “change” incremental update works

o For both asserts and retracts

o For both facts and rules

o For positive and negative dependencies — as long as the program is
stratified

o Invalidation immediately follows an assert or retract

@ Recomputation can happen

o Immediately after an assert or retract to a dynamic incremental
predicate; or
o May be invoked by a user command

Incremental Tabling July 19,2014 16 / 36

Previous Work: Manual Incremental Tabling

Manual Incremental Tabling: Issues for KRR Systems

@ Works for stratified programs, but not for full WFS
@ Invoking recomputation is problematic

o Immediately after an assert or retract is too inefficient in many cases

e Using explict commands to invoke recomputation forces a
“programming” burden on the KE, and allows invalid results to be
derived

© Assumes a programmer will only invoke recomputation when there are
no choice points to incremental tables — no notion of view consistency

Q IDG can grow very large for some programs

Incremental Tabling July 19, 2014 17 / 36

Transparent Incremental Tabling: Support for WFS

@ Atoms with a truth-value of u are represented in XSB as conditional
answers, e.g., p(a):- tnot(q(b))|.

o For propagation purposes the incremental update system needs to
keep track of changes in truth value

@ In stratified programs, only changes between t and f need to be
maintained i.e., whether an answer has been added or not.
@ For non-stratified programs, need to keep track of

informational strenghening: u= toru=f
informational weakening: t = uor f = u
truth strengthening: u =t

truth weakening: u=> f

Incremental Tabling July 19, 2014 18/ 36

Transparent Incremental Tabling: Support for WFS

The subgoal recomputation algorithm is changed as follows

Mark all answers for S as deleted
Mark all unconditional answers for S as unconditional
Set S.nbr_new_answers = 0; set S.new_answer = false
Whenever an answer A is derived for S
Increment S.nbr_new_answers
If A was already in the table remove the deleted mark
Else if A.unconditional was false, but A is now unconditional
/* Informational strengthening u = t */
S.new_answer = true; invoke simplification
Otherwise set S.new_answer = true
After completion of S traverse answers
If A.deleted = true and A.unconditional = false
/* Informational strengthening u = f */
S.new_answer = true; invoke simplification
If A.unconditional = true and A is now conditional
/¥ Informational weakening t = u */
S.new_answer = true

Incremental Tabling July 19,2014 19/ 36

Transparent Incremental Tabling: Support for WFS

Summary

@ Changes for WFS need affect only the subgoal recomputation code

o Propagate changes of truth values — additions or deletions of
conditional answers that do not affect truth values does not spark
propagation

o Strengthening w.r.t. truth order handled during recomputation;
Weakening w.r.t. truth order handled in post-completion traversal

@ Strengthening w.r.t. information order handled by simplification to
maintain consistency of the residual program

@ Changes are actually lighter-weight than may appear from slides (see
paper)

Incremental Tabling July 19,2014 20 / 36

New Work: Transparent Incremental Tabling

Transparent Incremental Tabling Features

o WFS Support

e Lazy Incremental Tabling (avoids need for explicit command)
@ View Consistency

o IDB Abstraction (reduces the size of IDBs)

Incremental Tabling July 19, 2014 21/ 36

New Work: Transparent Incremental Tabling

Lazy Incremental Tabling

Why not update table on demand? l.e., when calling a tabled subgoal S

If S is (incremental and) invalid
If S.reeval_ready = compute_dependencies_first
Set S.re_eval_ready to true
Construct InvalList by traversing dependent nodes starting from S
Call routine to incrementally update /nvalList, with continuation S

Incremental Tabling July 19,2014 22/ 36

IDG Invalidation

o If t_1(X) were called after the assert of p(f(2)) in a previous slide, the
dependency edges would be traversed to construct an InvalList that
would give a bottom-up order of recomputation.

t1(X)

neg

OW) t_2(f(1)) t_ziga))

t1(X) q(f(1)) qg(1))

’)

p(fX)) peX))

Incremental Tabling July 19, 2014 23 / 36

New Work: Transparent Incremental Tabling

Lazy Incremental Tabling

o If S.re_eval_ready = compute_dependencies_first the computation is
interrupted to construct /nvalList for S and recompute subgoals

o Later, when the continuation to S is taken, S will no longer be invalid
and it will be safe to use its answers

@ The interrupt mechanism is the same as that used for handling
unifications to attributed variables; thread signalling, etc.

@ Now, a new call to an incrementally tabled subgoal will always be
correct — transparently

@ Can be more efficient than manual approach

o Avoids extra recomputations if multiple updates are made between

calls to S
o Avoids recomputation if S is never called again

Incremental Tabling July 19, 2014 24/ 36

New Work: Transparent Incremental Tabling

Transparent Incremental Tabling Features

o WFS Support

@ Lazy Incremental Tabling (avoids need for explicit command)
o View Consistency

o IDB Abstraction (reduces the size of IDBs)

Incremental Tabling July 19, 2014 25 / 36

Supporting View Consistency

Suppose there are choicepoints into a completed incremental table S
and S is updated. What about these choicepoints

@ Previous version didn't handle this (“core-dump” semantics)

@ Thinking as a deductive database, these choicepoints are similar to
cursors traversing a materialized view

@ Want to ensure view consistency for choicepoints into an updated
table

@ These choice points are called OCCPs — Open Cursor Choice Points

Incremental Tabling July 19,2014 26 / 36

New Work: Transparent Incremental Tabling

Supporting View Consistency

@ View consistency should impose no significant overhead on the speed

of non-incremental tables, or on incremental tables when there are no
OCCPs

o First, keep track of the number of OCCPs to a completed incremental
subgoal S

o Increment number when calling the completed subgoal S
o Decrement the number on failure. cuts and throws

Terrance Swift

Incremental Tabling July 19, 2014 27 / 36

New Work: Transparent Incremental Tabling

Supporting View Consistency

When an invalid incremental subgoal S is about to be recomputed
If there are OCCPs
Find each such OCCP Cpccp in the CP stack
Copy the unconsumed answers for Coccp from the table
to a list in the heap

Alter Coccp so that it has a new instruction
and protects the used heap space

@ All of this is done in C, so its reasonably fast, although it may require
a lot of heap space if tables are large or there are a large number of
OCCPs

@ Once an OCCP has been altered, it is protected and need not be
considered by further updates — you pay the price once per OCCP

Incremental Tabling July 19,2014 28/ 36

New Work: Transparent Incremental Tabling

Transparent Incremental Tabling Features

o WFS Support

@ Lazy Incremental Tabling (avoids need for explicit command)
@ View Consistency

o IDB Abstraction (reduces the size of IDBs)

Incremental Tabling July 19, 2014 29 / 36

IDG Abstraction

@ What if you want to use incremental tabling always and everywhere.
Is that feasible?
o If there are no updates, the main overhead of incremental tabling

w.r.t. non-incremental tabling is maintenance of the IDG
@ Sometimes we need to abstract what is kept in the IDG.

e This is different than subgoal abstraction as it does not affect indexing
or what is maintained in the table, just the IDG

:- dynamic edge/2 as incremental, abstract(0).

Consider the following program

Incremental Tabling July 19,2014 30 / 36

IDG Abstraction

:- table reach/2 as incremental.

- dynamic edge/2 as incremental.
reach(X,Y):- edge(X,Y).
reach(X,Y):- reach(X,Z),edge(Z,Y).

reach(1,Y) reach(1,Y)
edge(2,Y) edge(3,Y) edge(4.Y). .. edge(X_1,Y)

o Left side without IDG abstraction; Right side with IDG abstraction
Incremental Tabling July 19, 2014 31 /36

Performance and Scalability Overview

Performance Summary: Recursions

@ As a first benchmark the overhead of incremental tabling over tabling
was tested for left-linear recursion on randomly generated graphs
o Without IDG abstraction: 50% overhead for time; 200% overhead for
space
o With IDG abstraction: essentially no overhead for time; 28% overhead
for space
o For 3-valued recursion time overheads were similar

o Without IDG abstraction, 66% overhead for space
o With IDG abstraction, less than 10% overhead for space

Incremental Tabling July 19, 2014 32/ 36

Performance and Scalability Overview

Performance Summary: (Pseudo-)KRR Benchmarks

(]

A pseudo-KRR program was evaluated. This used stratified negation,
but its main computational issue was its use of equality between
constants and functional terms (similar to a description logic).

@ From an implementation perspective, the KRR program used tabled
negation, the u truth value for answer abstraction [GS13]. and
subgoal abstraction [RS14]

e EDBs from 10,000 facts to 10,000,000 facts were tested

@ Tests showed invalidation did not take a significant amount of time

o The larger IDGs contained up to 750 million edges during the
invalidation phase
o After recomputation, the IDGs contained over 1 billion edges

@ Recomputation time depended on whether the search space was
expanded (i.e., if additional EDB facts added many new answers)

Incremental Tabling July 19,2014 33/ 36

Performance and Scalability Overview

Summary

o All features described are in version 3.5 of XSB

@ More engineering work on incremental tabling would be useful: for
instance to integrate it with call subsumption, which can also be
useful for KRR applications.

@ Work is needed to help decide when, e.g. IDG abstraction will be
useful.

@ Can incremental tabling be adaptive? Can it perform IDG abstraction
dynamically during a computation if it detects that the IDG space is
growing to fast?

@ Focus needs to be on fully integrated tools rather than on research
prototypes

Incremental Tabling July 19,2014 34/ 36

Performance and Scalability Overview

References |

[GS13] B. Grosof and T. Swift.
Radial restraint: A semantically clean approach to bounded rationality for logic
programs.
In American Association for Artificial Intelligence Press, 2013.

[RRWO7] C.R. Ramakrishnan, 1.V. Ramakrishnan, and David S. Warren.
XcelLog: A deductive spreadsheet system.
Knowledge Engineering Review, 22(3):269-279, 2007.

[RS14] F. Riguzzi and T. Swift.
Terminating evaluation of logic programs with finite three-valued models.
ACM Trans. on Computational Logic, 2014.
To Appear.

[RUCT10] J. Reece, L. Urry, M. Cain, S. Wasserman, P. Minorsky, and R. Jackson.
Campbell Biology.
B. Cummings, 2010.
9th Edition.

[Sah06] D. Saha.
Incremental Evaluation of Tabled Logic Programs.
PhD thesis, SUNY Stony Brook, 2006.

Incremental Tabling July 19, 2014 35 / 36

Performance and Scalability Overview

References |l

[SRO5] D. Saha and C.R. Ramakrishnan.
Incemental and demand-driven points-to analysis using logic programming.
In Principles and Practice of Decl. Prog., pages 117-128, 2005.

Incremental Tabling July 19, 2014 36 / 36

	Context: Tabling for KRR Systems
	Previous Work: Manual Incremental Tabling
	New Work: Transparent Incremental Tabling
	Performance and Scalability Overview

