
Incremental Tabling in Support of Knowledge
Representation and Reasoning

Terrance Swift

July 19, 2014

Terrance Swift Incremental Tabling July 19, 2014 1 / 36



Definition

Incremental Tabling [SR05, Sah06] ensures that tables correctly reflect
changes in dynamic rules or facts.

Terrance Swift Incremental Tabling July 19, 2014 2 / 36



Overview

1 Context: Tabling for KRR Systems

2 Previous Work: Manual Incremental Tabling

3 New Work: Transparent Incremental Tabling

4 Performance and Scalability Overview

Terrance Swift Incremental Tabling July 19, 2014 3 / 36



Context: Tabling for KRR Systems

Some Traditional Use Cases for Tabling

The majority of predicates are not tabled

As an extension of Prolog

Parts of a Prolog program are tabled for termination, efficiency, or
semantic support.
Parsers, graph search algorithms...

XSB, Inc’s CDF-system uses tabling with stratified negation to
efficiently traverse inheritance structures.

As a means to implement specialized deduction

Tabled predicates implement inference rules as a module within a larger
system
Process logics: CCS, π-calculus, Petri Nets
Temporal Logics: CCL, modal µ-calculus
Probabilistic reasoning: PITA, Problog, PRISM

These use cases are neither completely distinct nor exhaustive

Terrance Swift Incremental Tabling July 19, 2014 4 / 36



Context: Tabling for KRR Systems

KRR Systems that use Tabling

Description logics may be of high complexity (e.g., ALC and
extensions, SHOIQ); or low-complexity (e.g., EL or various flavors
of DL-Lite).

Logical rules also may be of high complexity (ASP); or of low
complexity e.g., Flora-2 (open-source), Silk (Vulcan, Inc), Ergo
(Coherent Knowledge Systems)

Silk and Ergo are extensions of Flora-2, and so are implemented using
XSB and Tabling. Ergo supports

Lists and structures as with Prolog
Monotonic and non-monotonic inheritance;
Hilog
“Mix-ins” of defeasibility theories
Partial implementation of Transaction Logic
“Omni-rules” that permit Lloyd-Topor transformations in the body and
head, and allow some existential reasoning

Terrance Swift Incremental Tabling July 19, 2014 5 / 36



Context: Tabling for KRR Systems

Uses of Ergo

One of the main applications involves the automatic processing of
text into rules

The sentence: A contractile vacuole is inactive in an isotonic
environment [RUC+10] is translated to

forall(?x6)^contractile(vacuole)(?x6))

==> forall(?x9)^isotonic(environment)(?x9)

==> inactive(in(?x9))(?x6);

Another is to use loosely-coordinated teams to construct knowledge
bases

Terrance Swift Incremental Tabling July 19, 2014 6 / 36



Context: Tabling for KRR Systems

Pervasive Tabling

Flora-2, Silk, and Ergo all make use of Pervasive Tabling: A user rule
is tabled unless it is explicitly declared not tabled.

Rules that have side-effects should not be tabled
Facts are not tabled
Uses tabling with well-founded negation, attributed variables, call
abstraction, answer abstraction (restraint) and table space reclamation

Behavior of a computation differs greatly from Prolog and starts to
resemble a deductive database.

Often, 10’s of millions of tables, if domain is not well restricted.

Terrance Swift Incremental Tabling July 19, 2014 7 / 36



Context: Tabling for KRR Systems

The Need for Incremental Tabling in KRR Systems

Would like to support easier interactive rule development – adding or
deleting rules and/or facts

Would like to support hypothetical reasoning (used in question
answering)

Would like to support use of Ergo, etc. in reactive systems

In short, want to make lots of things incrementally tabled!

Terrance Swift Incremental Tabling July 19, 2014 8 / 36



Previous Work: Manual Incremental Tabling

Manual Incremental Tabling

Incremental Tabling [SR05, Sah06] provides for a table to be updated
when a fact or rule upon which it depends is updated

Used to support a deductive spreadsheet [RRW07]

Relies on the notion of a dynamic Incremental Dependency Graph
(IDG)

In the next slide arrows represent direct dependency
Goal1 depends on Goal2 iff Goal2 affects Goal1
A leaf node depends on no other node

Descriptions of all algorithms are highly simplified. Exact algorithms
are in the paper.

Terrance Swift Incremental Tabling July 19, 2014 9 / 36



Previous Work: Manual Incremental Tabling

Incremental Dependency Graph (IDG)

:- table t 1/1, t 2/1, t 4/1, t 5/1 as incremental.
t 1(X) :- t 4(X),tnot(t 2(X)).
t 4(X) :- t 5(X). t 4(X):- t 4(Y),p(X,Y).
t 2(X) :- q(X). t 5(X):- nt 1(X).
nt 1(X):- p(f(X)). nt 1(X):- p(g(X)).

:- dynamic p/1, q/1 as incremental.
p(f(1)). q(f(1)).

t_2(g(1))

t_5(X)

neg

q(g(1))q(f(1))

t_4(X)

t_1(X)

p(f(X)) p(g(X))

t_2(f(1))

Terrance Swift Incremental Tabling July 19, 2014 10 / 36



Previous Work: Manual Incremental Tabling

Manual Incremental Tabling: Invalidation

Invalid means that a subgoal may not be correct given the current
state of the program.

Perform immediately after updating a dynamic incremental predicate

In practice, a depth-first algorithm is used

/* Let A be the head of the clause that was updated */
Use the IDG to determine LeafSet, the set of leaf nodes that unify with A
Let SubgoalSet be the set of nodes that directly depend on some

leaf ∈ LeafSet
For each S ∈ SubgoalSet until SubgoalSet is empty

Increment S.invalid children
If S.invalid children is now 1 /* S was made invalid */

‘v Add S to a global InvalList
Add to SubgoalSet all nodes that S directly affects

Terrance Swift Incremental Tabling July 19, 2014 11 / 36



Previous Work: Manual Incremental Tabling

IDG Invalidation

Suppose that p(f(2)) were asserted. Then the invalidation phase
would invalidate all nodes affected by the leaf p(f(X)).

t_2(g(1))

t_5(X)

t_1(X)

t_4(X)

p(f(X))

neg

q(g(1))q(f(1))

p(g(X))

t_2(f(1))

Terrance Swift Incremental Tabling July 19, 2014 12 / 36



Previous Work: Manual Incremental Tabling

Manual Incremental Tabling: InvalList Recomputation

The recomputation step makes subgoals valid again

If S .invalid children = 0, this means that no tables or dynamic facts
on which S depends have been changed by the update

/* The dependency partial order is preserved by InvalList */
Traverse InvalList and for each node S

If S .invalid children > 0
Recompute S , and set S .invalid children = 0
If the extension of S has changed

For each node S ′ that S directly affects, decrement S ′.invalid children
Recursively propagate the validity if S ′.invalid children is now 0

Terrance Swift Incremental Tabling July 19, 2014 13 / 36



Previous Work: Manual Incremental Tabling

Manual Incremental Tabling: InvalList Recomputation

Invalidation also sets an invalid children field containing the number
of immediate children that are currently invalid

If this number is set to 0, a node does not need to be recomputed

t_2(g(1))

neg

t_4(X)

t_1(X)

t_2(f(1))

Terrance Swift Incremental Tabling July 19, 2014 14 / 36



Previous Work: Manual Incremental Tabling

Manual Incremental Tabling: Subgoal Recomputation

How to determine if the extension of a subgoal S has changed

Mark all answers for S as deleted
Set S .nbr new answers = 0; set S .new answer = false
Whenever an answer A is derived for S

Increment S .nbr new answers
If A was already in the table remove the deleted mark
Otherwise set S .new answer = true

When S is completed remove deleted answers

If S .new answer = false and S .nbr answers = S .nbr new answers then
the extension of S has not changed

Terrance Swift Incremental Tabling July 19, 2014 15 / 36



Previous Work: Manual Incremental Tabling

Manual Incremental Tabling: Summary

Incremental Tabling works at the subgoal level, with optimizations to
reduce cost of graph traversal during the invalidation phase, and to
avoid recomputations of goals whose invalid children becomes 0.

Because it works at a subgoal level and invalidation represents
abstract “change” incremental update works

For both asserts and retracts
For both facts and rules
For positive and negative dependencies – as long as the program is
stratified

Invalidation immediately follows an assert or retract

Recomputation can happen

Immediately after an assert or retract to a dynamic incremental
predicate; or
May be invoked by a user command

Terrance Swift Incremental Tabling July 19, 2014 16 / 36



Previous Work: Manual Incremental Tabling

Manual Incremental Tabling: Issues for KRR Systems

1 Works for stratified programs, but not for full WFS
2 Invoking recomputation is problematic

Immediately after an assert or retract is too inefficient in many cases
Using explict commands to invoke recomputation forces a
“programming” burden on the KE, and allows invalid results to be
derived

3 Assumes a programmer will only invoke recomputation when there are
no choice points to incremental tables – no notion of view consistency

4 IDG can grow very large for some programs

Terrance Swift Incremental Tabling July 19, 2014 17 / 36



New Work: Transparent Incremental Tabling

Transparent Incremental Tabling: Support for WFS

Atoms with a truth-value of u are represented in XSB as conditional
answers, e.g., p(a):- tnot(q(b))|.
For propagation purposes the incremental update system needs to
keep track of changes in truth value

In stratified programs, only changes between t and f need to be
maintained i.e., whether an answer has been added or not.

For non-stratified programs, need to keep track of

informational strenghening: u V t or u V f
informational weakening: t V u or f V u
truth strengthening: u V t
truth weakening: u V f

Terrance Swift Incremental Tabling July 19, 2014 18 / 36



New Work: Transparent Incremental Tabling

Transparent Incremental Tabling: Support for WFS

The subgoal recomputation algorithm is changed as follows

Mark all answers for S as deleted
Mark all unconditional answers for S as unconditional
Set S .nbr new answers = 0; set S .new answer = false
Whenever an answer A is derived for S

Increment S .nbr new answers
If A was already in the table remove the deleted mark
Else if A.unconditional was false, but A is now unconditional

/* Informational strengthening u V t */

S .new answer = true; invoke simplification
Otherwise set S .new answer = true

After completion of S traverse answers
If A.deleted = true and A.unconditional = false

/* Informational strengthening u V f */

S .new answer = true; invoke simplification
If A.unconditional = true and A is now conditional

/* Informational weakening t V u */

S .new answer = true
Terrance Swift Incremental Tabling July 19, 2014 19 / 36



New Work: Transparent Incremental Tabling

Transparent Incremental Tabling: Support for WFS

Summary

Changes for WFS need affect only the subgoal recomputation code

Propagate changes of truth values – additions or deletions of
conditional answers that do not affect truth values does not spark
propagation

Strengthening w.r.t. truth order handled during recomputation;
Weakening w.r.t. truth order handled in post-completion traversal

Strengthening w.r.t. information order handled by simplification to
maintain consistency of the residual program

Changes are actually lighter-weight than may appear from slides (see
paper)

Terrance Swift Incremental Tabling July 19, 2014 20 / 36



New Work: Transparent Incremental Tabling

Transparent Incremental Tabling Features

WFS Support

Lazy Incremental Tabling (avoids need for explicit command)

View Consistency

IDB Abstraction (reduces the size of IDBs)

Terrance Swift Incremental Tabling July 19, 2014 21 / 36



New Work: Transparent Incremental Tabling

Lazy Incremental Tabling

Why not update table on demand? I.e., when calling a tabled subgoal S

If S is (incremental and) invalid
If S .reeval ready = compute dependencies first

Set S .re eval ready to true
Construct InvalList by traversing dependent nodes starting from S
Call routine to incrementally update InvalList, with continuation S

Terrance Swift Incremental Tabling July 19, 2014 22 / 36



New Work: Transparent Incremental Tabling

IDG Invalidation

If t 1(X) were called after the assert of p(f(2)) in a previous slide, the
dependency edges would be traversed to construct an InvalList that
would give a bottom-up order of recomputation.

neg

t_1(X)

t_4(X)

t_1(X)

t_2(g(1))t_2(f(1))

p(g(X))p(f(X))

q(f(1)) q(g(1))

Terrance Swift Incremental Tabling July 19, 2014 23 / 36



New Work: Transparent Incremental Tabling

Lazy Incremental Tabling

If S .re eval ready = compute dependencies first the computation is
interrupted to construct InvalList for S and recompute subgoals

Later, when the continuation to S is taken, S will no longer be invalid
and it will be safe to use its answers

The interrupt mechanism is the same as that used for handling
unifications to attributed variables; thread signalling, etc.

Now, a new call to an incrementally tabled subgoal will always be
correct — transparently

Can be more efficient than manual approach

Avoids extra recomputations if multiple updates are made between
calls to S
Avoids recomputation if S is never called again

Terrance Swift Incremental Tabling July 19, 2014 24 / 36



New Work: Transparent Incremental Tabling

Transparent Incremental Tabling Features

WFS Support

Lazy Incremental Tabling (avoids need for explicit command)

View Consistency

IDB Abstraction (reduces the size of IDBs)

Terrance Swift Incremental Tabling July 19, 2014 25 / 36



New Work: Transparent Incremental Tabling

Supporting View Consistency

Suppose there are choicepoints into a completed incremental table S
and S is updated. What about these choicepoints

Previous version didn’t handle this (“core-dump” semantics)

Thinking as a deductive database, these choicepoints are similar to
cursors traversing a materialized view

Want to ensure view consistency for choicepoints into an updated
table

These choice points are called OCCPs – Open Cursor Choice Points

Terrance Swift Incremental Tabling July 19, 2014 26 / 36



New Work: Transparent Incremental Tabling

Supporting View Consistency

View consistency should impose no significant overhead on the speed
of non-incremental tables, or on incremental tables when there are no
OCCPs

First, keep track of the number of OCCPs to a completed incremental
subgoal S

Increment number when calling the completed subgoal S
Decrement the number on failure. cuts and throws

Terrance Swift Incremental Tabling July 19, 2014 27 / 36



New Work: Transparent Incremental Tabling

Supporting View Consistency

When an invalid incremental subgoal S is about to be recomputed
If there are OCCPs

Find each such OCCP COCCP in the CP stack
Copy the unconsumed answers for COCCP from the table

to a list in the heap
Alter COCCP so that it has a new instruction

and protects the used heap space

All of this is done in C, so its reasonably fast, although it may require
a lot of heap space if tables are large or there are a large number of
OCCPs

Once an OCCP has been altered, it is protected and need not be
considered by further updates – you pay the price once per OCCP

Terrance Swift Incremental Tabling July 19, 2014 28 / 36



New Work: Transparent Incremental Tabling

Transparent Incremental Tabling Features

WFS Support

Lazy Incremental Tabling (avoids need for explicit command)

View Consistency

IDB Abstraction (reduces the size of IDBs)

Terrance Swift Incremental Tabling July 19, 2014 29 / 36



New Work: Transparent Incremental Tabling

IDG Abstraction

What if you want to use incremental tabling always and everywhere.
Is that feasible?

If there are no updates, the main overhead of incremental tabling
w.r.t. non-incremental tabling is maintenance of the IDG

Sometimes we need to abstract what is kept in the IDG.

This is different than subgoal abstraction as it does not affect indexing
or what is maintained in the table, just the IDG

:- dynamic edge/2 as incremental, abstract(0).

Consider the following program

Terrance Swift Incremental Tabling July 19, 2014 30 / 36



New Work: Transparent Incremental Tabling

IDG Abstraction

:- table reach/2 as incremental.
:- dynamic edge/2 as incremental.
reach(X,Y):- edge(X,Y).
reach(X,Y):- reach(X,Z),edge(Z,Y).

reach(1,Y)

...edge(4,Y).edge(3,Y)edge(2,Y) edge(X_1,Y)

reach(1,Y)

Left side without IDG abstraction; Right side with IDG abstraction

Terrance Swift Incremental Tabling July 19, 2014 31 / 36



Performance and Scalability Overview

Performance Summary: Recursions

As a first benchmark the overhead of incremental tabling over tabling
was tested for left-linear recursion on randomly generated graphs

Without IDG abstraction: 50% overhead for time; 200% overhead for
space
With IDG abstraction: essentially no overhead for time; 28% overhead
for space

For 3-valued recursion time overheads were similar

Without IDG abstraction, 66% overhead for space
With IDG abstraction, less than 10% overhead for space

Terrance Swift Incremental Tabling July 19, 2014 32 / 36



Performance and Scalability Overview

Performance Summary: (Pseudo-)KRR Benchmarks

A pseudo-KRR program was evaluated. This used stratified negation,
but its main computational issue was its use of equality between
constants and functional terms (similar to a description logic).

From an implementation perspective, the KRR program used tabled
negation, the u truth value for answer abstraction [GS13]. and
subgoal abstraction [RS14]

EDBs from 10,000 facts to 10,000,000 facts were tested

Tests showed invalidation did not take a significant amount of time

The larger IDGs contained up to 750 million edges during the
invalidation phase
After recomputation, the IDGs contained over 1 billion edges

Recomputation time depended on whether the search space was
expanded (i.e., if additional EDB facts added many new answers)

Terrance Swift Incremental Tabling July 19, 2014 33 / 36



Performance and Scalability Overview

Summary

All features described are in version 3.5 of XSB

More engineering work on incremental tabling would be useful: for
instance to integrate it with call subsumption, which can also be
useful for KRR applications.

Work is needed to help decide when, e.g. IDG abstraction will be
useful.

Can incremental tabling be adaptive? Can it perform IDG abstraction
dynamically during a computation if it detects that the IDG space is
growing to fast?

Focus needs to be on fully integrated tools rather than on research
prototypes

Terrance Swift Incremental Tabling July 19, 2014 34 / 36



Performance and Scalability Overview

References I

[GS13] B. Grosof and T. Swift.
Radial restraint: A semantically clean approach to bounded rationality for logic
programs.
In American Association for Artificial Intelligence Press, 2013.

[RRW07] C.R. Ramakrishnan, I.V. Ramakrishnan, and David S. Warren.
XcelLog: A deductive spreadsheet system.
Knowledge Engineering Review, 22(3):269–279, 2007.

[RS14] F. Riguzzi and T. Swift.
Terminating evaluation of logic programs with finite three-valued models.
ACM Trans. on Computational Logic, 2014.
To Appear.

[RUC+10] J. Reece, L. Urry, M. Cain, S. Wasserman, P. Minorsky, and R. Jackson.
Campbell Biology.
B. Cummings, 2010.
9th Edition.

[Sah06] D. Saha.
Incremental Evaluation of Tabled Logic Programs.
PhD thesis, SUNY Stony Brook, 2006.

Terrance Swift Incremental Tabling July 19, 2014 35 / 36



Performance and Scalability Overview

References II

[SR05] D. Saha and C.R. Ramakrishnan.
Incemental and demand-driven points-to analysis using logic programming.
In Principles and Practice of Decl. Prog., pages 117–128, 2005.

Terrance Swift Incremental Tabling July 19, 2014 36 / 36


	Context: Tabling for KRR Systems
	Previous Work: Manual Incremental Tabling
	New Work: Transparent Incremental Tabling
	Performance and Scalability Overview

