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Learning Objectives

◮ to survey how formal logic and logic programming have been
used for knowledge representation and reasoning for a variety
of medical applications

◮ to sketch the current state of logic programming systems,
focusing on open-source systems

◮ to indicate how some current research directions in logic
programming may be relevant to areas such as adaptive
workflow management for healthcare or for dynamic decision
support.

... a little learning is a dangerous thing, and so is writing your
learning objectives before your talk :-)
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Motivation

◮ Computer Science has been highly successful in some areas,
such as medical imaging or genetic sequence analysis.

◮ It has been less successful in other areas such as clinical
decision support, or adaptive workflow management.

◮ For these areas background knowledge is complex,
multi-paradigm, and diffuse

◮ Can computational logic help? What advantages does it offer?
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Overview

◮ Some concepts in formal logic
◮ Propositional logic; predicate logic; derivations
◮ As little as possible and as informal as possible

◮ Uses of different brands of logic programming
◮ Rule based systems with constraints
◮ Answer Set Programming
◮ Formal ontologies and their reasoners

◮ Uncertainty: where we are now
◮ Different kinds of uncertainty
◮ Combining probabilities with rules
◮ Combining probabilities with Answer Set Programs

◮ Putting it mostly together
◮ Open source systems: XSB, YAP, Ciao and others

Terrance Swift Computational Logic for Healthcare Informatics
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Background: Propositional Logic

Boolean statements about atomic propositions
”if a patient has breast cancer, Doxorubicin and Tamoxifen are
indicated”1

might be translated as

breast cancer implies
(

doxorubicin indicated
and

tamoxifen indicated
)

1All medical examples should be taken only to illustrate features of logics or
computations.
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Background: Predicate Logic

◮ Has the same connectives as propositional logic

◮ Also represents individuals, functions, relations, and the
existence or universality of statements

◮ e.g. affects(Drug,TumorType) can be used to make lots of
similar statements about different drugs and tumors

◮ The logic can make inferences about the individuals (or
functions) within the relation

◮ Maps well to relational databases

Terrance Swift Computational Logic for Healthcare Informatics
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Background: Predicate Logic

A universal statement: ”if any patient has breast cancer,
Doxorubicin and Tamoxifen are indicated”

∀P .breast cancer(P) implies
(

indicated(doxorubicin,P)
and

indicated(tamoxifen,P)
)

An existential statement: ”if fever persists with elevated white
blood cell count, there is an underlying infection”
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Background: Logic Programs

”if a patient has breast cancer, Doxorubicin and Tamoxifen are
indicated”

indicated(doxorubicin,P):-

breast cancer(P).

indicated(tamoxifen,P):-

breast cancer(P).

or

indicated doxorubicin:- breast cancer.

indicated tamoxifen:- breast cancer.

Terrance Swift Computational Logic for Healthcare Informatics
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Background: Logic

◮ In Logic
◮ Knowledge is encoded in axioms
◮ A set of axioms is a theory

◮ In a logic program
◮ Knowledge is encoded in rules
◮ A program is a set of rules

◮ So what is the difference?
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Background: Derivations

◮ Given a logic and a theory, a derivation procedure indicates
sets of statements entailed by the theory

◮ Such statements range from the mundane This Sudoku has no
solution with 9 in the top left box ...

◮ To the profound an abelian group has a composition series iff
it is finite...

◮ To the interesting When a patient enters the protocol, she will
always leave the protocol if at any time her white blood count
is critical for 5 successive days

◮ Running a logic program is the same as performing a
derivation procedure on the program

◮ Different types of derivation differ most critically in their
abstract complexity (cf. [Pap94]) – in how big a problem you
can reliably solve

◮ Less complex derivation methods lean toward the
programming side of logic programming

Terrance Swift Computational Logic for Healthcare Informatics
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Background: Derivations

◮ Linear resolution scales well, e.g. Prolog (SLD [vK76]) or
tabling (SLG [CW96, CSW95]) 2.

◮ If your program or data grows 2x your derivation will take at
most 2x longer – not 4x or 16x

◮ Here linear resolution = rule application
◮ Rule application can perform general programming (like Java,

C# or other languages)
◮ Rule application may be augmented with special-purpose

constraint solvers
◮ Satisfiability-checking for truth assignments of propositional

programs can be more powerful (for such programs) but more
expensive (NP-complete)

◮ Full reasoning with ontologies is more powerful still and also
more expensive (PSPACE-complete or worse)

◮ No complete derivation procedure exists for all theories in
predicate logic (Godel’s Incompleteness Theorem)

Terrance Swift Computational Logic for Healthcare Informatics
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Tower of Hanoi

move(1,X,Y, ) :-
write(’Move top disk from ’),write(X),
write(’ to ’), write(Y), nl.

move(N,X,Y,Z) :-
N>1, M is N-1,
move(M,X,Z,Y),
move(1,X,Y, ),
move(M,Z,Y,X).

Terrance Swift Computational Logic for Healthcare Informatics
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Rule Systems

◮ All rule examples here are in Prolog, a logic programming
paradigm

◮ It could also be written in a business rules language such as
Jess, Drools, or ILOG-Jrules

◮ It could be written in an object logic such as Flora-2 or Silk
◮ It could also be written in a functional language such as

Haskell, ML, or Lisp (or even Python or Ruby)
◮ Currently, rule systems based on Prolog (e.g. XSB)

◮ are usually faster and more scalable than busines rule
systems [LFWK09]

◮ offer completeness for various types of programs,
◮ offer sophisticated types of non-monotonic reasoning
◮ offer constraint-based reasoning
◮ are less used than the business rules systems (?)

Terrance Swift Computational Logic for Healthcare Informatics
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Rule Application for Medical Worflows

◮ Broadly, medical workflows are systems that take action
depending on the state of a patient and her environment

◮ May be used to generate alerts, pre-schedule resources,
indicate relevant information

◮ Basis for workflow may be research protocol or clinical
guideline

Terrance Swift Computational Logic for Healthcare Informatics
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Rule Application for Medical Worflows

(Adaptive) Medical Workflows
[Spy00, GRH+04, ALP+05, LPQ+07, MvdAP07]

◮ A given patient may be treated with one first protocol or
according to one guideline, and then another

◮ Sample rule:
ETOPOSID must be dropped when a patient has had a
critical blood status for the last five days,and ETOPOSID can
only be given again once the blood status becomes normal
again (leukocyte count > 1000)

◮ A single research protocol might contain a hundred or more
such rules.

◮ Event then it would not (fully) model
◮ background knowledge (e.g. chemical structure of Etoposid)
◮ factors outside the protocol or guideline (e.g. co-morbidity)
◮ uncertainty Terrance Swift Computational Logic for Healthcare Informatics
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Temporal Constraints in Medical Workflows

◮ As the above example illustrates, you don’t get too far with
rules for medicine before time elements become very complex.

◮ A Phase II study example:
Patients will start adjuvant TMZ 28 days (+/- 10 days) post
the completion of Radiation Therapy and comcomitant TMZ.
Temozolomide will be administered orally once a day for 5
consecutive days every 28 days [ea05]

◮ There are many different types of temporal reasoning:
temporal constraints (e.g. [Mei96, SV98]) are relatively easy
to understand and have low complexity (compared to other
types of temporal reasoning).
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Temporal Constraints in Medical Workflows

◮ Temporal constraints have been studied in clinical
guidelines [Ans05, ATMB06] and in research protocols at
mdlogix

◮ In both contexts, temporal constraints are require
◮ qualitative intervals [All83] concomitant TMZ occurs during

radiation therapy
◮ before, after, during, contains,

starts, started by, finishes, finished by,
overlaps, overlapped by, meets

◮ quantitative intervals: 28 days (+/- 10 days) post
◮ repetitions and periodicity once a day for 5 consecutive days

every 28 days

Terrance Swift Computational Logic for Healthcare Informatics
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Temporal Constraints in Medical Workflows

Input to temporal constraint solver may be
◮ a study table (e.g. in mdlogix’s Clinical Research

Management System, CRMS)
◮ a workflow rule like

WHEN critical-blood-status(P) VALID-TIME [now - (5,day),now] AND
in-further-workflow(Drug-Administration[drug = Etoposid],P)

THEN drop(Drug-Administration[drug = Etoposid],P)
Unless normal-blood-status
VALID-TIME now

◮ this is an extension of the syntax of F-logic
rules [KLW95, YKZ03]

◮ Temporal constraints may be incrementally added by
application of a particular rule

◮ The length of time for the treatment of Etoposid could beTerrance Swift Computational Logic for Healthcare Informatics
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Temporal Constraints in Medical Workflows

How constraints might look to a temporal constraint solver:
arc(adjuvant tmz,adjuvant tmz 1,[before([28,28])]),
arc(adjuvant tmz 1, cycles 1 3 5 1, [contains, started by]),
arc(adjuvant tmz 1, cycles 2 4 6 1, [contains]),
arc(within 10 days cycles 1 3 5 1, cycles 1 3 5 1, [before([1,10])]),
arc(within 3 days cycles 1 3 5 1, cycles 1 3 5 1, [before([1, 3])]),
arc(within 10 days cycles 2 4 6 1, cycles 2 4 6 1, [before([1,10])]),
arc(within 10 days cycles 2 4 6 1, cycles 2 4 6 1, [before([1, 3])]),
arc(within 3 days cycles 1 3 5 1,
within 3 days cycles 1 3 5 delay cycle 1, [before([0,7])]),
arc(within 3 days cycles 2 4 6 1,
within 3 days cycles 2 4 6 delay cycle 1, [before([0,7])]),

Terrance Swift Computational Logic for Healthcare Informatics
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Medical Workflows

◮ Guidelines or protocol are encoded in logic rules

◮ These rules are declarative to a programmer – perhaps to a
domain expert

◮ The rules are extended with temporal constraints
◮ Solving temporal constraints is more complex than performing

the rule application, but the temporal constraint part can be
“factored out” and does not effect the rule application

◮ Constraint evaluation periodically interrupts rule application

◮ The rules may be written in an object logic, which uses
object-orientation to help organize the rules and background
knowledge

Terrance Swift Computational Logic for Healthcare Informatics
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Verification of Medical Workflows

◮ The workflows, guidelines, etc. written with rules can be
formally verified [RRR+97, DMG02, LBL06]) to answer
questions like

◮ Under a given protocol, would a patient P ever receive a
particular treatment? Under what conditions?

◮ Under a given protocol, can we ensure P would never be given
a contra-indicated drug

◮ They can also easily simulate scenarios

◮ Given a patient in a particular state, illustrate a sequence of
actions and events that would take him to another state

◮ Verification and scenario simlation of a workflow are both
more complex than running the workflow.

Terrance Swift Computational Logic for Healthcare Informatics
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Verification of Medical Workflows

◮ A potential disadvantage is that the rule-based workflows do
not always make explicit the issues of concurrency that arise
when modeling multiple

◮ agents – patients, physicians, nurses
◮ resources – beds on a particular ward, slots for surgery

◮ For multi-agent workflows, the rules should be combined with
a process-logic, such as CCS [Mil89], π-calculus [MPW92] or
Colored Petri Nets [Smi98].

Terrance Swift Computational Logic for Healthcare Informatics
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Medical Workflows: Changes and Policy

◮ There are also semantics for how a rule-based workflow
evolves for changing knowledge [ALP+98]

◮ How would a particular scenario (set of actions and events)
change if I change a rule?

◮ The update logic can introspect the workflow logic

◮ Rule-based systems can be extended to allow
preferences [CS02] in case more than one rule applies in a
given situation

◮ Preferences can be seen as “meta”-rules that can fine tune for
policies of a ward or hospital

Terrance Swift Computational Logic for Healthcare Informatics
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Satisfiability of Propositional Programs

The propositional formula

(A or B or ¬C ) and (¬A or ¬B) and (¬A or B)

is satisfied by the truth assignment

{¬A,B ,C} {¬A,B ,¬C} {¬A,¬B ,¬C}

Propositional satisfiability is the canonical combinatorial problem
— a problem where a search for a solution may need to consider a
lot of different combinations

Terrance Swift Computational Logic for Healthcare Informatics
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Sudoku

1,1

9,9

3,3

2,2

9,1

2,1

1,91,2
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Sudoku

(A1,1 = 1 or A1,1 = 2 or ... or A1,1 = 9)
and ¬A1,1 = A2,1 and ¬A1,1 = A3,1 . . . and ¬A8,1 = A9,1

and ¬A1,1 = A1,2 and ¬A1,1 = A1,3 . . . and ¬A1,8 = A1,9

and (A1,1 = 1 or A1,2 = 1 or A1,3 = 1 or ... or A3,3 = 1)
etc.

The best techniques can handle 36 × 36 Sudokus

Terrance Swift Computational Logic for Healthcare Informatics
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Satisfiability of Propositional Programs

Answer Set Programming (ASP) uses rules to encode
combinatorial problems in a more readable way.

Domain rules
row{1..9}. col{1..9}. val{1..9}.
cell(Row,Col,Val):- row(Row),col(Col),val(Val).

Row constraints
:- cell(Row,Col1,Val),cell(Row,Col2,Val),not(Col1 = Col2).

Column constraints
:- cell(Row1,Col,Val),cell(Row2,Col,Val),not(Col1 = Col2).

Region constraints (first region)
:- cell(1,1,Val),cell(2,2,Val). :- cell(1,1,Val),cell(3,3,Val

:- cell(1,1,Val),cell(2,3,Val). :- cell(1,1,Va,),cell(3,2,Val
Terrance Swift Computational Logic for Healthcare Informatics
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Uses of ASP

... just so you don’t think all computer scientists live in an ivory
tower... epidemiology of tapeworm infestations [BEMR05]

◮ Determine phenotypic (or genotypic) characteristics of
tapeworms taken in different regions

◮ Construct a minimal cladistic tree

◮ Relies on a “preference” of minimal cladistic trees over other
trees

Terrance Swift Computational Logic for Healthcare Informatics
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Uses of ASP

◮ At MDL, we have started to look into ASP to solve problems
in epidemiology using social network analysis [WF94, Sco00]

◮ Rule-based determination of coherent subgroups
◮ Define core properties of a group: minimum and maximum

number of entities, connectedness, diameter, etc.
◮ Define preferential properties: gender balance of entities, each

subgroup should contain a weak link to another subgroup, etc.
◮ Convergence problems in attributed belief or influence

networks (also studied in [GST+08])
◮ Is there a ranking that satisfies the known arcs of influence?
◮ Properties of nodes can be taken into account to distinguish

the quality of different solutions, and reduce noise

◮ While still preliminary, these methods generalize those of
traditional Social Network Analysis

Terrance Swift Computational Logic for Healthcare Informatics
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Uses of ASP and Constraints

◮ Assessing risk for Assisted Living Patients [MMB09] (field
prototype)

◮ Information about Patients from wireless sensor networks, test
results, patient profile

◮ Rules relate information to risk factors, encode common-sense
reasoning

◮ Rule based approach to choosing among scenarios – does not
make use of probability or other uncertainty measures.

◮ Bioinformatics Applications: inferring secondary or tertiary
protein structure

Terrance Swift Computational Logic for Healthcare Informatics
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Satisfiability of Propositional Programs

◮ It is easier to check whether a solution to Sudoku is correct
than to derive a solution to Sudoku

◮ Rule application can be used to check a solution or to
program an algorithm to find a solution

◮ ASP can be used to derive a solution directly. Programming
occurs in setting up the problem and in stating heuristics.

◮ Sudoku can also be programmed using constraints
◮ ASP may be faster because constraints are incremental, and

ASP is not.
◮ A tremendous amount of effort has been put into

(non-incremental) SAT-solvers (cf. [KS03]), because they are
used to check properties of computer chips

◮ ASP can exploit this work
◮ However, because constraints are incremental, the combine

better with rules (e.g. the Etoposid rule)Terrance Swift Computational Logic for Healthcare Informatics
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Uses of Predicate Logic

Predicate logic (or a decidable fragment) is good for representing
knowledge such as

◮ background medical or policy knowledge [RGM00, SF02]
◮ E.g. Contra-indicated drugs, procedures, etc.

◮ To organize knowledge arising from different
sources [SGHB02, HdCD+05]

◮ e.g. sharing knowledge about immune tolerance for organ
transplants [SMO+07]

◮ To help understand the state of a patient based on physician
discourse with a patient [CWW+08]

◮ The most popular approach is formal ontologies (a.k.a.
description logics)

Terrance Swift Computational Logic for Healthcare Informatics
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Ontologies

Ontologies are another way to represent knowledge
◮ Much of ontologies is easy to grasp

◮ Example from NCI Thesarus (apologies for not using screen shots of Protege [Pro01])

Class ’Acetyl Coenzyme A
isa ’Coenzyme A’
isa ’Biologically Active Substance’
isa ’Organic Chemical’
hasSynonym ’Acetyl-CoA’
hasDefinition ’The condensation product of coenzyme A and

acetic acid which participates in the biosynthesis of
fatty acids and sterols, in the oxidation of fatty
acids and in the metabolism of many amino acids.
In addition, Acetyl Coenzyme A acts as a biological
acetylating agent.

Terrance Swift Computational Logic for Healthcare Informatics
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Advantages of Ontologies

◮ Many parts of an ontology are easy to understand

◮ One class is a subclass of another
◮ Several subclasses can be declared to be disjoint.
◮ Objects are individuals in subclasses

◮ Binary relations are allowed and inherited by subclasses

◮ If the class SSRI affects a metabolic pathway, and Fluoxetine
hydrochloride isa SSRI, then Fluoxetine hydrochloride affects a
metabolic pathway

◮ Ontologies have formal basis with a simple set-theoretic semantics

◮ Most information in ontologies are easily visualizable (sorry about not showing Protege)

◮ There are standards such as OWL for communicating ontologies

◮ Ontologies can be combined, since reasoners can check consistency

◮ Queries can be made not only about what is in an ontology, but what an ontology entails

Terrance Swift Computational Logic for Healthcare Informatics
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Limitations of Ontologies

◮ Some knowledge bases call themselves ontologies but are not
actually based on logic

◮ Other ontologies are little more than hierarchies
◮ Certain aspects of ontologies are difficult to visualize

(Ontology constraints, axioms)
◮ Full reasoning in ontologies is very complex if constraints and

axioms are used.
◮ This means that in a large complex ontology, even a simple

query might not be answered in a day, an hour, or a week
◮ The restriction to binary relations (which makes ontologies

decidable) also makes it difficult to model information about
processes or time. It can be done (e.g. [HLM99]) but it ain’t
pretty

◮ Ditto for aggregates (min, max, average...)
Terrance Swift Computational Logic for Healthcare Informatics



Introduction and Background
Rules

Rules and Constraint-Based Reasoning
Satisfiability Checking

Ontologies
Logic and Probability

Using Ontologies

◮ Everything has its trade-offs, and some of the limitations are
the price off success

◮ Still, you have to be very careful about using reasoners within
ontologies due to their complexity

◮ Ontologies make a great combination with rules. The rules
can rely on the ontology to maintain background knowledge
about pharmaceuticals, procedures, metabolic pathways, etc.

◮ It can be helpful if the rules use an object logic which can
make explicit use of ontology style information (e.g. F-logic
(shown above) or CDF [SW03])

◮ Full integration of rules and ontologies is an active research
area

Terrance Swift Computational Logic for Healthcare Informatics
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Uncertainty in Medical Knowledge

1. Lexical: How certain am I that I am using the right term?

2. Observational: How certain am I that I saw what I thought I saw? (P(observation))

3. Occurrence: How likely is it that the event happened? (P(event))

4. Measurement: How likely is the event really to have happened even if I think it did? (P(observation|event))

5. Causal: How influential are different preconditions in making the event happen? (P(event|cond1) vs
P(event|cond2))

6. Reference Class: How do the previous uncertainties change if I change my assumptions about what the
context is? (P(event|context1) vs P(event|context2))

7. Temporal: How does the chance of true occurrence change over time?

8. Methodological: How does the strategy I used to collect data affect the likelihood of uncertainties 2-4?

9. Model: Have I modeled everything properly?

10. Meta: uncertainty about these other uncertainties

11. How certain am I that I made the right decision?

(Based on a discussion with Harold Lehmann)

Terrance Swift Computational Logic for Healthcare Informatics
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Probability and Logic

◮ Depending on how much you know, you may want to use
techniques such as fuzzy logic, rough sets, or most
importantly probability.

◮ Probabilistic reasoning is most often done through Bayesian
Nets, which use conditional indepenence to reduce the effort
of modeling large joint distributions

◮ Some medical diagnosis/assessment systems without
probabilities are actually used (e.g. [Rym93]), but probabilities
greatly improve diagnostic capability (e.g. [SS05])

Terrance Swift Computational Logic for Healthcare Informatics
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Google-based Medicine

Consider some discrete variables:

Mini-Stroke Meningitis Optic Nerve Hypoplasia
Nystagmus Optic Nerve Color
Patient Age Smoker Patient Gender
Visual Field Disturbance

◮ There may be 1000+ combinations of variable values, depending on how many values each variable takes

◮ If we want to treat these as random variables, do we have to create a joint pdf with 1000+ values?

◮ Bayesian Nets (cf. [Pea88]): depending on what we know, some variables may be conditionally independent

of others,

◮ Given that Optic Nerve Color = normal
Nystagmus may be independent of Optic Nerve Hypoplasia

Terrance Swift Computational Logic for Healthcare Informatics
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Probability and Logic

Bayesian Nets are popular because

◮ They can answer queries:
◮ What is the probability of Mini-Stroke given Nystagmus,

Patient Age and Smoker
◮ What is the probability of Optic Nerve Color = Pale given

Meningitis vs. given Optic Nerve Hypoplasia

◮ There are numerous algorithms to learn nets from data

◮ They can be extended to deal with imprecise or hetorogenous
probabilities [Coz00]
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Probability and Logic

◮ Belief nets are an important technology that has gotten
mature. But you still may need rules to

◮ indicate relevant information, pre-schedule resources or take
other actions

◮ perform general programming tasks (though this could be done
in other languages, perhaps not as easily)

◮ We could just build systems with a probabilistic part and a
non-probabilistic part, but would like to combine probability
with logic rules in a more meaningful way

Terrance Swift Computational Logic for Healthcare Informatics
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Probability and Logic

◮ There has been a tremendous amount of work on relating
logic programs to probability, both semantically and
computationally (e.g. [KP98, SK01, VVB04] and many
others).

◮ However, there is an issue in linking rules to probability:
deriving posterior probabilities with a Bayesian net is as
complex as satisfiability checking in propositional logic (both
are NP-complete)

◮ One approach, Plog [BGR08], combines discrete probabilities
with ASP (and so does not consider linear rule application)

◮ Another approach CLP(BN) builds up a Bayesian Network
incrementally, as constraints
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Probability and Logic: Plog

◮ Plog uses the conventions of ASP (which we used to solve Sudoku)

◮ Allows given rule to be associated with a discrete probability

◮ The answer to a query p(event|observation1, . . . , observationn)

is determined by

◮ finding all satisfiable solutions that include event after the
observations have been added to the program

◮ counting the solutions in which event is true (e.g. counting the
Sudoku soltions in which A1,1 = 9)

◮ This may not be what we want for most kinds of uncertainties in medical

knowledge

◮ Probability distributions must be discrete
◮ Since ASP-style programs are sensitive to the number of

possibilities that they search, distributions must be small
(coarse) for the program to run well — e.g. high, medium, low

◮ Probability is based on the frequency of solutions – which
could differ from the posterior probabilities determined by a net
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Probability and Logic: CLP(BN)

CLP(BN) appears to be a more promising approach

◮ CLP(BN) [CC03] adds probabilistic dependencies as
constraints between variables – conditional independencies
may be inferred from these dependencies

◮ CLP(BN) is incremental, so rule application can be used to
construct a Bayesian net from a given patient (or other)
context

◮ The nets constructed by CLP(BN) are formally related to
joint probability distributions (and therefore Bayesian nets)

◮ Queries to the resulting Bayesian net can be sent to any solver

Terrance Swift Computational Logic for Healthcare Informatics



Introduction and Background
Rules

Rules and Constraint-Based Reasoning
Satisfiability Checking

Ontologies
Logic and Probability

Probability and Logic: CLP(BN)

A simple example
grade(Student,Grade):- student in course(Course),
difficulty(Course,Difficulty), skill(Student,Skill),
grade table(Table), Grade = grade(Difficulty,Skill) with
p(’A’,’B’,’C’,’D’,Table,[Difficulty,Skill]).
Grade is a random variable that is a function of the difficulty of the
course, and the skill of the student, i.e.

Difficulty

Grade

Skill
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Probability and Logic: CLP(BN)

◮ In the above example, Skill and Difficulty were both
obtained before Grade was queried, so that it was constrained
to have a probability distribution, but no definite value

◮ If Skill were known, but Difficulty were not, then the
Grade would be constrained to a subnet.

◮ CLP(BN) fixes two of the problems with Plog:
◮ Since you’re computing a Bayesian net, and not all satisfiable

solutions, you should be able to have larger nets with finer
probability distributions

◮ The computation of posterior probabilities is exactly what you
want

◮ However, you don’t get continuous probabilities. CLP(BN)
should in principle be amenable to continuous probabilities, but
the difficulty of doing so is unknown
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Probability and Logic

◮ Work on combining probabilities and ontologies is still very
new

◮ Some work in systems biology, has begun to explore
combining general stochastic information with process
logics [Pia08, Pol08]

◮ This general approach addresses temporal aspects of metabolic
pathways
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Putting these things (somewhat) together

My shameless self-promotion slide...
◮ Most open-source Prolog systems combine rules and

constraints.
◮ CLP(BN) was developed for YAP Prolog [SCDRA00]

◮ Some Prologs allow tabling which is important for
guaranteeing complexity and for permitting preferences

◮ This is not table-driven programming
◮ XSB [XSB07] is the most sophisticated Prolog for tabling

◮ There are numerous ASP solvers. Most are stand-alone, so
that they are difficult to integrate into a system.
Smodels [NS97] is the only one to have a good programmers
interface

◮ XSB has a sophisticated interface to Smodels in XASP [CSW]
◮ This has recently been extended to Plog [ARD08]

◮ As discussed, how to intermix ontologies and rules is a hot
topic Terrance Swift Computational Logic for Healthcare Informatics



Introduction and Background
Rules

Rules and Constraint-Based Reasoning
Satisfiability Checking

Ontologies
Logic and Probability

Conclusions

◮ Rules, Constraints, Satisfiability Checking and Ontologies all
have their advantages for Knowledge Representation and
Reasoning

◮ Work is being done to integrate probabilities and other forms
of uncertainties with each of these mechanisms

◮ There are many open questions, but...

◮ The computational logic community has solved or is working
on a number of difficult issues that will benefit healthcare
informatics

◮ Logic programming should be better known by the health
informatics community

◮ Continues collaboration will benefit both fields
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