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Abstract. Many complex analysis problems can be most clearly and
easily specified as logic rules and queries, where rules specify how given
facts can be combined to infer new facts, and queries select facts of
interest to the analysis problem at hand. However, it has been extremely
challenging to obtain efficient implementations from logic rules and to
understand their time and space complexities, especially for on-demand
analysis driven by queries.

This paper describes a powerful method for generating specialized
rules and programs for demand-driven analysis from Datalog rules and
queries, and further for providing time and space complexity guarantees.
The method combines recursion conversion with specialization of rules
and then uses a method for program generation and complexity calcu-
lation from rules. We compare carefully with the best prior methods by
examining many variants of rules and queries for the same graph reacha-
bility problems, and show the application of our method in implementing
graph query languages in general.

1 Introduction

Many complex analysis problems can be most effectively and easily described
using a declarative language. The declarative specification makes it easy to un-
derstand the nature of the problem, without being distracted by implementation
details. One way of writing a declarative specification is to write logic rules and
queries.

Logic rules specify how given facts in a problem setting can be combined
to infer new facts. For example, for program analysis, definitions of flow and
dependence relations can be specified as rules; for model checking, definitions of
system behaviors can be specified as rules; and for system security, access control
policies can be specified as rules.

Once the specification of a problem is given by logic rules, queries can be
used to select facts of interest to the analysis problem at hand. For program
analysis, flow and dependence information involving particular program points
of interest can be specified as queries; for model checking the properties to be
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checked can be specified as queries; and for system security, checking access to
resources by users can be specified as queries. Queries can be used to filter the
facts inferred by the rules, and moreover be a guide in the inference of the facts
of interest. We use on-demand analysis to refer to an analysis that is expressed
by a query, querying over facts that can be inferred from the rules.

Even when logic rules and queries are implemented in, say, a Prolog system,
evaluated using various existing methods, or rewritten using methods such as
magic set transformations to allow more efficient evaluation, such implementa-
tion is typically for fast prototyping. Furthermore, the running times of imple-
mentations using these methods can vary dramatically depending on the order
of rules and the orders of hypotheses in rules, and even less is known about
the space usage. Developing efficient implementations for answering queries on-
demand for any given rules and queries with time and space guarantees is a
nontrivial, recurring task.

This paper describes a powerful method for generating specialized rules and
programs for demand-driven analysis from Datalog rules and queries, and for
providing time and space complexity guarantees. Datalog [6] is an important
logic-based language for specifying rules. Especially in recent years, Datalog-like
rules have been used increasingly for expressing complex analysis problems, for
example, pointer analysis and program analysis in general [16], model checking
push-down systems [11], role-based access control [3], trust management [13],
and information flow analysis [12]. Datalog-based languages are also important
in graph queries [8, 20] and semantic web applications [9] in general.

Given a set of rules and a kind of query, i.e., a query predicate with indications
of which arguments will be bound, our method generates a set of rules and
a program that is specialized for the kind of query, and produces complexity
formulas for the time and space complexities of the generated program. The
generated program for the specialized rules can take any set of given facts and
any values of the bound parameters of the query predicate, and return the query
result with the calculated time and space complexities. The method combines
three transformation steps.

Recursion conversion: transforms recursive rules into appropriate left or
right linear recursive forms based on the kinds of queries, so that the connection
between the queries and given facts can be established efficiently. Queries can
then be answered equally efficiently for equivalent but slightly different recursive
rules, which could otherwise differ asymptotically in running times. Specializa-
tion: specializes the transformed rules with respect to the kinds of query, so that
bound parameters of the query predicate are used to restrict possible instanti-
ations of the rules as much as possible. This is a drastically simplified form of
partial evaluation [17] and may yield asymptotic improvements in running time.
Program generation and complexity calculation: transforms specialized
rules into efficient algorithms and data structures for the given analysis problem,
and calculates the time and space complexities of the generated program. This
uses the method developed previously [19] for bottom-up evaluation of Datalog
rules.



The main contributions of this paper are not in each of the three transfor-
mation steps, but in their combination to produce efficient specialized rules and
programs for on-demand analysis and to provide complexity guarantees. No less
important is the evaluation of the method in precise comparison with the best
prior methods whose effect on complexities are well-known to be difficult to un-
derstand. We also show the application of our method on graph query languages.

2 Language and cost model

We describe the Datalog language for defining rules and queries and give our
cost model.
Datalog rules. Datalog is a declarative language for defining facts and rules
that are used to infer new facts from given ones. A Datalog program is a finite
set of clauses of the form: p1(x11, ..., x1a1), ..., ph(xh1, ..., xhah

) → p(x1, ..., xa).,
where h is a natural number, each pi (respectively p) is a relation of ai (respec-
tively a) arguments, called a predicate, each xij and xk is either a constant or
a variable, and variables in xk’s must be a subset of the variables in xij ’s. A
predicate with arguments is called an atom. If h = 0, then there are no pi’s or
xij ’s, and xk’s must be constants, in which case p(x1, ..., xa) is called a fact. An
atom on the left hand side of a rule is called a hypothesis, and the atom on the
right hand side is called the conclusion. Semantically, a rule of the form above
says that if there is a substitution of variables in the rule with constants such
that all of the hypotheses instantiated using the substitution are facts, then the
instantiated conclusion is a fact.
Datalog queries. A query for a set of Datalog rules and facts is of the form
q(y1, .., yn)?, where q is a predicate of n arguments. The meaning is to return all
tuples of q that are given or can be inferred based on the rules, restricted by the
constants in yi’s, if any. We denote constants by a,b,c, and variables by x,y,z.
Example. A canonical example of a Datalog program is the transitive closure
of a relation, which can be expressed with two rules. We can think of the relation
as the edges of a graph, and paths between any vertices as the set of transitive
closure, then the specifications in Datalog would be the following:

Doubly recursive: edge(x,y) → path(x,y).
path(x,z), path(z,y) → path(x,y).

(1)

Right recursive: edge(x,y) → path(x,y).
edge(x,z), path(z,y) → path(x,y).

(2)

Left recursive: edge(x,y) → path(x,y).
path(x,z), edge(z,y) → path(x,y).

(3)

These three programs can be proven by induction to infer the same path facts.
The right- and left-recursive versions of the transitive closure concatenate edges
from the vertex on the left, respectively right, with paths to the vertex on the
right, respectively left. They are linear programs, i.e., there is at most one hy-
pothesis in each rule that is recursive with its conclusion, however the doubly
recursive program is not.



For these programs, there are 4 possible queries: path(x,y)? returns all
pairs of vertices that have a path between them. path(a,y)? returns all vertices
that are reachable from a. path(x,b)? returns all vertices that can reach b.
path(a,b)? returns whether b is reachable from a.
Cost model. We use the cost model that resulted from the method in [19],
which states the following: For any Datalog rule, the evaluation takes time pro-
portional to the number of combinations of facts that make all hypotheses true.
All input facts have to be read in, so the number of input facts must be added to
the complexity. For example, for transitive closure, this is the number of edges.
We use the following notation for complexity analysis. For queries regarding
transitive closure, if the first argument is bound, it is denoted by a, and if the
second argument is bound, it is denoted by b.
– V : number of vertices, P : number of paths, E: number of edges.
– E(a): number of edges that are on any path from a to any vertex.
IE(a): number of edges that are on any path from any vertex to a.

– o(a): outdegree of a, o: maximum outdegree of vertices.
i(a): indegree of a, i: maximum indegree of vertices.

– R(a): number of vertices reachable from a, R: maximum number of vertices
reachable from any vertex.
IR(a): number of vertices that reach a.
As an example, consider the program in (2). The evaluation of the first rule

takes time O(E), since all edges make the single hypothesis true. The second
rule has two hypotheses, say we take all edges for the first hypothesis, then z
becomes bound for the path predicate and the number of values that y can take
is the maximum number of vertices reachable from any node. Therefore, a bound
on the running time for this program is O(E ×R).

3 Specialization and complexity of specialized programs

Constants in the arguments of a query are called static inputs. For example, in the
query path(a,x)?, a is a static input. Specialization uses static inputs to restrict
the number of inferred facts by transforming the rules. Program specialization
is also known as partial evaluation, and has been studied in logic programming
[17], where it is sometimes called partial deduction.

Specialization for a set of Datalog rules S, and a query Q is obtaining another
set of rules S′ and a query Q′ that satisfy the following: Every fact inferred as an
answer to Q′ during the evaluation of S′ is a projection of a fact inferred as an
answer to Q during the evaluation of S, where a projection of a fact is a selection
of zero or more arguments from that fact up to a renaming of the predicate.

As an example, consider S being (3), and path(a,y)? being Q. Let S′ be:

edge(a,y) → path1a(y).

path1a(z), edge(z,y) → path1a(y).
(4)

and Q′ be path1a(y)?. The original query finds all vertices that are reachable
from a by selecting the path facts whose first argument is a. Q′ and S′ do



exactly that, and the answers to Q′ are the vertices that are reachable from a. By
inserting a as the first argument in the answers of Q′, one trivially reconstructs
the answers of Q.

To describe specialization, we need to define substitution. For a set of rules S,
we denote the set of hypotheses of all rules by h(S). We denote the conclusion
of a rule r by c(r). A substitution is a map from variables to constants. A
substitution θ applied to a rule r, denoted rθ, replaces the variables in r with
constants according to θ. We say that an atom a′ is an instance of an atom a if
there is a substitution θ such that aθ = a′; in case such a substitution exists, it
is denoted subst(a, a′).

We specialize a set of Datalog rules with respect to a query via the fixpoint
of a function f , which takes a set S of rules and a set A of atoms, and returns
both of them with new elements added. At each step of computation, if there is
an atom a in A, and a rule r in S for which a is an instance of the conclusion
of r, then a new rule r′, which is r updated with the substitution that makes
a and the conclusion of r identical, is added to S and all hypotheses of r′ are
added to A. That is:

f(〈S,A〉) = 〈S∪S′, A∪h(S′)〉 where S′ = {rθ|a ∈ A, r ∈ R, θ = subst(c(r), a) 6= undef}.

Given a set of rules S, and a query Q, specialization computes the fixpoint of
f(S,Q) and returns the first component of the output pair as the desired set
of specialized rules. The output of the function also has the original rules in
the specialized set, therefore we need to remove them if they are not needed for
the evaluation of the specialized query. An original rule r in the output is not
needed, unless a hypothesis of a specialized rule is identical to the conclusion of
r up to variable renaming. Once these rules are removed, we rewrite all atoms
that have constant arguments to remove constants, and assign names based on
the original predicate names and the places and values of bound arguments. We
only rewrite the atoms whose predicates appear in the conclusion of some rule.

Specialization of (3) with respect to the query path(a,y)? yields:

edge(a,y) → path1a(y).

path1a(z), edge(z,y) → path1a(y).
(5)

and the query path1a(y)?. Given the same query, if one applies specialization
to (1), the original unspecialized rules remain since the path(z,y) hypothesis of
the second rule is identical to the conclusion of the original rules up to variable
renaming. The original rules of (2) also remain after specialization for the same
reason.

To make specialization independent of the values of the static input, we
perform the following: For any query Q with n distinct static inputs, we generate
n fresh constants: say c1, ... ,cn, and replace the constants in Q with these fresh
constants in order (i.e. the first distinct constant by c1, the second by c2, and
so on). Next, we do specialization as described above for the given rules and
rewritten Q. Note that, at this point, constants occur in the specialized rules
only in the atoms for which no facts are derived by the rules. For any rule in the



given set of rules, if a constant ci occurs in the rule, we replace it with a variable,
say x, that does not occur in the rule, add ci(x) as a new hypothesis, where ci
is a fresh predicate name to be used with ci, and add the fact ci(oci) to the
set of rules, where oci is the ith original constant in the query. With this result,
if another query Q′ whose bound arguments are in the same places as Q is given,
and Q′’s ith constant is different than Q’s, we retract the fact related to ci, and
add a fact of ci that represents the new constant. For example, specialization
of (3) with respect to the query path(a,x)? yields:

c(a).

c(x), edge(x,y) → path1c(y).

path1c(z), edge(z,y) → path1c(y).

(6)

and the query path1c(y)?. If one wants to change the original query to path(b,x)?,
it is not necessary to re-perform specialization, but just replace the fact c(a),
with c(b).

Note that, for any set of rules, specialization does not result in different time
complexities of the generated rules when the rule order within the set or the
hypothesis order inside the rules is changed.

We have shown that specialization may result in a set with more specialized
rules, however it may include unspecialized rules as well. Evaluating a purely
specialized set of rules should be more advantageous. The purely specialized
rules derived from (3), and the query path(a,x)? can be evaluated in linear
time in the number of edges. Since the time is proportional to the combination
of facts that make the hypotheses true, and z can only be assigned the vertices
that can be reached from a as values, the evaluation takes time proportional to
E(a). Specialization of the programs (1) and (2) with respect to the same query
is evaluated in asymptotically worse time since they include the original rules.
Therefore, programs with the same semantics might have different execution
times with respect to the same queries, even after specialization.

Differences in time complexity of the specialized programs can only result
from the combination of the bound arguments in the query and the version of
program that is being specialized, so we show such cases. If the left-recursive
version is given and the left argument of the query is bound, or symmetrically if
the right-recursive version is given and the right argument of the query is bound,
the specialized versions have cost O(E). For the doubly recursive version, no
matter which arguments are bound, the complexity is O(R× P ). The following
are the complexities of evaluating programs with respect to queries with different
bound arguments:

Bound argument
Time complexity

Left-rec. Right-rec. Doubly-rec.
None O(R× E) O(R× E) O(R× P )
First O(E(a)) O(R× E) O(R× P )

Second O(R× E) O(IE(b)) O(R× P )
Both O(E(a)) O(IE(b)) O(R× P )



4 Extension by recursion conversion

In the previous section, we showed that specialization might not obtain a more
specialized set of rules for a given query. In general, for any set of unspecializable
rules, another set of rules that infers the same set of facts may be specializable.
For transitive closure, one needs to convert a particular form of recursion into
another for the specialization to work. We give a general transformation which
is applicable to transitive closure. Given the following set of rules:

p1(x1), .. , pn(xn) → r(x).
r(y), r(z) → r(x).

where x, xn, y, z each denote one or more variables, y and z have common
variables t, the uncommon ones are in different places in y than in z, and at the
same place in x as in y or z, and the variables in t do not appear in x. Also
pi is not mutually recursive with r. Then the above rules are equivalent to both
sets of rules below:

p1(x1),..,pn(xn)→r(x). p1(x1),..,pn(xn)→r(x).
p1(y1),..,pn(yn),r(z)→r(x). r(y),p1(z1),..,pn(zn)→r(x).

where each yi (and zi) is obtained by substituting the variables of xi with the
substitution that makes x and y (respectively z) identical.

All versions of transitive closure are instances of one of these schemas. Since
they are all shown to be equivalent and there is a transformation method to
transform from one to another, we exploit this fact before specialization.

We give a detailed complexity analysis of specialization extended with recur-
sion conversion for transitive closure. Recursion conversion is also insensitive to
hypothesis order or rule order. We just need to consider the main three versions
of the transitive closure.

After applying the described transformations to any version of transitive
closure, if any of the arguments is bound in the query, the program can be
evaluated in O(E) time, and if both arguments are free then the program can
be evaluated in O(R×E) time. One can revise the O(E) bound by more precise
bounds as follows:

Bound argument Time complexity for all three programs
None O(R× E)
First O(E(a))

Second O(IE(b))
Both O(min(E(a), IE(b)))

Recursion conversion as described is possible only for the given schema, i.e.,
doubly-recursive or linear Datalog programs, so it is of significance to convert a
Datalog program into a linear one if possible. The question whether it is possible
to perform such a transformation has been answered negatively in general, and
a subset of Datalog programs have been shown to be convertible to linear ones
[1].

For our purposes, any linearization procedure for a subset of Datalog is useful.
If we obtain a program which obeys the schema for recursion conversion, we



apply the recursion conversion to obtain different versions of the same program.
We then apply our specialization algorithm to these different versions. After
these steps, we can generate the program as in [19] and automatically analyze
the time complexity of the bottom-up evaluation of each resulting program and
choose the best one. In any of the steps if the transformation is not possible, we
skip that step. The whole method can be summarized as: linearize (if possible),
apply recursion conversion (if possible), specialize all versions, generate program,
calculate complexity and choose the best. The algorithm is presented in Figure
1.

Algorithm Demand-driven analysis
Input: A set of Datalog rules S and a query Q
Output: A sequential program for the generation of answers to Q, with time complex-

ity guarantees
1. if any rule in S is linearizable
2. then S = Linearize(S)
3. RS ← {S}
4. for each predicate p in S that fits the recursion conversion schema
5. do S′ = p’s recursion type converted in S
6. RS ← RS ∪ {S′}
7. RSC = {} : to keep rule sets with complexities
8. for each set R of rules in RS
9. do R′ ← R specialized for Q
10. C ← Time complexity of evaluating R′

11. RSC ← RSC ∪ {(R′, C)}
12. Among all pairs in RSC, remove the ones that are provably worse in complexity

than at least one pair.
13. for each pair (R,C) in RSC
14. do generate program from R
15. output C as the time complexity associated with it

Fig. 1. Algorithm for demand-driven analysis.

The time complexity of the method is dominated by the specialization step,
which has a super-exponential upper bound in the maximum arity of the pred-
icates. In practice, the arity of the predicates is relatively small, 2-3 in many
realistic Datalog programs and almost never exceeds 10. Thus, assuming a small
constant for the maximum arity of predicates, the transformation takes linear
time in the size of the set of rules, since for each rule, there is a constant number
of different atoms that can unify with its conclusion, and specialization of a rule
with respect to an atom takes time proportional to its size.

There are Datalog programs for which recursion conversion is not possible;
and specialization cannot succeed in obtaining better running time. In this case,
a transformation method such as magic sets may obtain asymptotic speedup
with tighter complexity bounds, but the worst-case running times of programs
transformed by both our method and magic sets are the same.



5 Comparison

This section discusses the power and limitations of our method in contrast to
other work. We consider 12 versions of the transitive closure: the left, right and
doubly-recursive programs, and for each program, different order of the two rules,
and different order of hypotheses in the recursive rule. We denote the versions
by three fields, the first being the recursion type (right, left, or doubly), the
second being the order of rules (base-first or recursion-first), the third being the
order of hypotheses (regular or inverse). Then for each version, we ask 4 different
kind of queries: both arguments bound, only the first argument bound, only the
second argument bound, and both arguments free. All results are summarized
in Figure 2.

In this figure, we omit the order of rules, because the complexities and in-
ferred facts remain the same for static filtering and magic sets, since they are
bottom-up methods. For tabling, since termination is guaranteed, the complex-
ities and inferred facts also remain the same. However, for Prolog evaluation, if
the program does not terminate, there will be no inferred facts if the recursive
rule is first, otherwise the evaluation will infer some facts, before it gets stuck in
an infinite loop.

Method
Bound Time complexity

argument Left-rec. Right-rec. Doubly-rec.
Regular Inverse Regular Inverse Reg. Inv.

Prolog, Any Infinite
cyclic gr
Prolog, Any Infinite Exponential Exponential Infinite Infinite

acyclic gr

Tabling None O(V 3) O(V × E) O(V 3) O(V × E) O(V 3)
First O(E) O(V × E) O(V 2) O(V × E) O(V 3)

Second O(V 3) O(V 2) O(V 3) O(E) O(V 3)
Both O(E) O(V 2) O(V 2) O(E) O(V 3)

Static None O(V × E) O(V × E) O(R× P )
filtering First O(R(a)× o) O(R× E) O(R× P )

Second O(R× E) O(IR(b)× i) O(R× P )
Both O(R(a)× o) O(IR(b)× i) O(R× P )

Magic None O(V × E) O(V × E) O(V 3)
set First O(R(a)× o) O(E) O(V × R(a)× o) O(V × E) O(V 3)

Second O(V × E) O(V × IR(b)× i) O(E) O(IR(b)× i) O(V 3)
Both O(R(a)× o) O(E) O(E) O(IR(b)× i) O(V 3)

Fig. 2. A comparison of time complexities of computation using existing methods.

Prolog. Prolog evaluation resolves subgoals in a top-down fashion. It has the
general vulnerability that for any version of the transitive closure, for cyclic
graphs, it will not terminate once it enters a cycle, because it will be doomed
to resolve the same subgoals infinitely many times. Even when the input is
restricted to acyclic graphs, it may still not terminate or it may terminate in
exponential time. Prolog does not keep track of discovered vertices and discovers
a vertex through all possible paths, which is exponential in the worst case. For
versions whose first hypothesis is recursive in the recursive rule, the evaluation
will be infinite with respect to all queries regardless of the graph structure. The
doubly-recursive versions are always infinite; what differs is the generated facts
due to the order of rules and hypotheses.



Tabling. Tabling adds memoization to Prolog evaluation to avoid repeating
subgoals. It is guaranteed to be finite and be bounded by O(V 3) for any version
and query. If during tabled execution, one ever encounters a path call with both
arguments free, the time complexity bound will be either O(V × E) or O(V 3).
If one encounters calls to path with both or one of the arguments bound, but
bound to different values during the execution, then the time is O(V × E) or
O(V 3). If one only encounters calls to path with one of the arguments bound to
the same value and the other argument free, then the time is O(E) or O(V 2).
The criterion on obtaining the bounds in Figure 2 is the amount of data kept
for each tabled predicate.

Static filtering and off-line partial evaluation. These are bottom-up
procedures, and are not affected by the order of rules and hypotheses. Static
filtering and partial evaluation work in essence as the specialization procedure
described. Static filtering restricts, i.e. filters, the facts used during the evaluation
using constants in the query. It is vulnerable to changes of the recursion type
in the definition. For example, the method will be able to impose filters on the
first argument for the rules in case the left-recursive version is used and the first
argument is bound in the query, but will not be able to impose any filters on
rules if such a query is asked to the right-recursive version. The doubly-recursive
version is not filterable.

If static filtering yields linear time evaluation, it does so using less than all
edges (except the time to read in all facts); more precisely speaking it only looks
at edges reachable from a, which is bound by R(a)×o. Symmetrically, using the
right-recursive program with the second argument bound, the evaluation only
considers edges that can reach b, which is bound by IR(b)× i.
Dynamic filtering. Dynamic filtering is a version of filtering where the filters
are set according to the underlying database during the evaluation. It is not easy
to analyze, because the complexity measure may drastically change from one
data set to another. As a simplistic overview, we can say that for dense graphs,
dynamic filtering behaves exactly the same as static filtering; in contrast, for
sparse graphs the filters imposed may remain fairly strict and the evaluation
may be better than static filtering, although even for sparse graphs, the filters
may reduce to those imposed by static filtering.

Magic set transformation. Generalized supplementary magic set transfor-
mation is a transformational method that is used to pass information from one
hypothesis to another to mimick top-down evaluation. The resulting time com-
plexity is not affected by the order of rules, but it is asymptotically affected
by the version of recursion, and the order of hypotheses in the recursive rule.
Another drawback of magic-set variants is that they produce programs that are
significantly larger, containining new predicates, new rules and transformed rules
with new hypotheses. The time complexity of the evaluation of the transformed
programs are O(E) or O(V ×E) depending on how the transformation infers tu-
ples of the given rules using supplementary predicates. For the transitive closure
facts inferred, if the supplementary predicates can restrict one of the arguments
to a specific value, then it is O(E), otherwise it is O(V × E) for the left and



right-recursive versions, and it is always O(V 3) for the doubly-recursive versions
regardless of the queries because no restrictions are possible for at least one of
the two recursive hypotheses.

Our method. We have shown that, if any argument is bound in the query, we
always obtain O(E) time, which is not possible using other methods. We also
present tighter bounds for our method in Figure 2. We believe that our method
is strong because it is at least as efficient as other methods and better most of
the time, when other methods fail to evaluate these rules efficiently with respect
to a query. Also the rules that we generate are simpler, each rule becoming a
specialized version of an original rule with respect to the bound arguments, and
thus can be understood with respect to the original rules. Therefore, combining
all the methods described, i.e., recursion conversion, specialization and program
generation, prove to be a powerful method for efficient on-demand analysis.

A drawback of our method is that the context-free reachability queries [22]
are not effectively specializable using our method, however we believe that this
is not a major drawback since a solution to this problem would be a solution to
the famous open problem for proving lower bounds on such problems.

6 Implementation and applications

We have implemented the method and applied it to many problems including
program analysis problems. Two examples are described below.

Implementation. The implementation consists of approximately 600 lines of
Python code. Even though the running-time is super-exponential in the arity of
predicates, since this number is generally small, in all the examples discussed
below, the transformations are completed in under 1 second.

Application: strongly connected vertices. A small and illustrative exam-
ple is computing pairs of vertices in the same strongly connected component.
Suppose we use any version of transitive closure and we have the following ad-
ditional rule: path(x,y), path(y,x) → sameSCC(x,y).

Given any argument bound, all prior methods discussed take cubic time in
the number of vertices, since there are two subgoals where one has one argument
bound, and the other has the other argument bound, therefore resulting in worst
case for at least one of them. Our method generates a program that takes linear
time in the number of edges.

Another interesting predicate is notSameSCC, whose facts are pairs of vertices
that are not in the same strongly connected component, which can be obtained
by negating either one of the hypotheses in the rule defining notSameSCC. First,
if the negated predicate is the first one, then top-down evaluation methods will
not be able to return correct answers due to negation as failure; and in case
this program is rewritten using magic sets, the program does not even remain
stratified, so the evaluation of the resulting program is inefficient.

Application: graph query examples. Graph query languages [8, 20, 18]
express graph analysis problems as queries on graphs. We take the examples



from [18] for program analysis and model checking problems. For example, given
a start point, to find the program points y such that an uninitialized variable x
is used for the first time, one may write the following expression: y: [start]
(¬(def(x)|use(x)))* use(x)[y].

Intuitively, this says that there is a path from start to y, such that the path
consists of operations that are neither definitions nor uses of x, and the path
ends with a use of x. This is transformed to the following set of rules [20]:

def(x1,x2,x) → deforuse(x1,x2,x).
use(x1,x2,x) → deforuse(x1,x2,x).
¬ deforuse(x1,x2,x) → notdef(x1,x2,x).
notdefs(x1,x2,x), notdef(x2,x3,x) → notdefs(x1,x3,x).
notdefs(start,x2,x), use(x2,y,x) → notdefsuse(start,y,x).

and a query notdefsuse(start,y,x)? would retrieve the answers. For the query
notdefsuse(s,y,x)?, our method produces the following set of rules:

def(x1,x2,x) → deforuse(x1,x2,x).
use(x1,x2,x) → deforuse(x1,x2,x).
¬ deforuse(x1,x2,x) → notdef(x1,x2,x).
notdefs1s(x2,x), notdef(x2,x3,x) → notdefs1s(x3,x).
notdefs1s(x2,x), use(x2,y,x) → notdefsuse1s(y,x).

This program is much faster than the original program, since only the program
points reachable from a particular point s is considered.

Moreover, our method does not require any modification in the presence of
stratified negation and the complexity calculation remains the same since with
stratified negation, negated hypotheses are looked up in the facts. In case the
program is not stratified, we believe that our specialization method still keeps the
semantics of the original program with respect to semantics such as well-founded
semantics and stable model semantics.

Most graph query representations can automatically be translated into Dat-
alog. This has been shown explicitly for GraphLog in [8]. We take examples
from [18] and show the complexity results that our method yields for each of the
problems.

We give a table of problems and associated complexities using our method
in Figure 3. Shorthands like undefvars, openfiles are generally self-explanatory
abbreviations, denoting the number of undefined variables, and the number of
files that are opened, respectively.

Problem Complexity
Uninitialized variables E(start) × undefvars
Live variables E(end) × usedvars
Available expressions E(start) × expr
Constant folding E(start) × def
Files E(start) × files
Freed memory E(start) × freedvars
Interrupts E(start) × savedvar
Security E(start) × openfiles

Deadlock avoidance E(start) × locks2

Deadlocks states × outdegree(act) + E(start)
Livelocks action × states + E(start)

Fig. 3. Time complexities for solving analysis problems.



All the complexities in Figure 3 are asymptotically better than the results
without specialization, which is O(E × V n) in the worst case, where V is the
number of vertices, and n is the number of variables in the query.

We conducted experiments for deadlock and livelock analysis using the VLTS
benchmark1. Figure 4 shows the results obtained using the specialized rules
automatically generated from the description of the problem using the graph
query language described above. The first two columns show the vertices and
edges in each input file, and the next two columns show the time taken by the
analyses in seconds. The experiments were conducted using the Python 2.4.1
interpreter, on a Core 2 Duo 2.8GHz with 2 GB of free memory, running SuSE
Linux.

Input Vertices Edges Deadlock Livelock
vasy0 1 289 1224 0.03s 0.01s
cwi1 2 1952 2387 0.09s 0.02s
vasy1 4 1183 4464 0.12s 0.03s
vasy5 9 5486 9676 0.30s 0.06s
cwi3 14 3996 14552 0.43s 0.13s
vasy8 24 8879 24411 0.71s 0.17s
vasy8 38 8921 38424 0.93s 0.25s
vasy10 56 10849 56156 1.35s 0.39s
vasy18 73 18746 73043 2.08s 0.65s

Fig. 4. Experimental results for model checking applications.

The experiments verify the expected results from the time complexity anal-
ysis as they grow linearly with the size of the graph. The unspecialized rules
for these analyses could only complete on the first input, and even an example
as small as the second one could not be completed in 30 minutes. These appli-
cations involve computing reachable vertices from a given start node. We ran
experiments on XSB [24] to perform the same task using different versions of
transitive closure, and verified our bounds presented in Figure 2. For example,
given (3) and a query with the first argument bound, the running time ranged
from 1 millisecond for 5000 edges, to 7 milliseconds for 30000 edges, behaving
linearly as expected. Given the inverse version of (2) for the same data and
query, we obtained 830 milliseconds for 5000 edges, and 34280 milliseconds for
30000 edges, reflecting the O(V × E) bound.

The running times in Figure 4 parallel the results in [18], however they are
worse by a constant factor of about 2.5, because our generated program is in
Python and the results in [18] are obtained using programs in C++.

7 Related work and conclusion

Datalog has been extensively studied in the literature [6]. Bottom-up evaluation
strategies originated from näıve evaluation and extended semi-näıve evaluation.
Source-to-source transformations, such as magic set transformations [2, 4] for
faster query evaluation, try to mimick the benefits of top-down evaluation.

Although these methods offer a way of possibly faster evaluation, they do not
have a succinct method for calculating the time complexity of the evaluation. A
1 Available at: http://www.inrialpes.fr/vasy/cadp/resources



method that generates imperative programs from Datalog rules was developed
by Liu and Stoller, and the time complexity bounds given by this method are
tighter than the former [19].

Top-down evaluation methods have also been considered for the evaluation
of Datalog programs. For recursive query processing, standard Prolog evalua-
tion [21] is not feasible. An extension for Prolog evaluation called tabling, i.e.,
memoization, has been developed. A particular system that implements tabling
is XSB and has been used for deductive databases [7, 24]. One disadvantage for
the evaluation of Datalog programs in a top-down fashion is that, there is no
well-defined way for calculating the time complexity by only analyzing the rules.

Other methods for efficiently evaluating Datalog programs such as static
filtering [15] and dynamic filtering [14] have also been proposed. These methods
use special data structures for evaluating Datalog programs rather than using
traditional evaluation engines. For static filtering, the computational complexity
of the evaluation can be analyzed easily from the rules. For dynamic filtering,
however, the computational complexity depends on input data therefore cannot
be determined statically.

Using static filtering for the evaluation a Datalog program can be shown to
be the same as using partial evaluation combined with the program generation
method described. Partial evaluation for logic programming [17] is a general
framework for taking static inputs into account for general logic programs. The
specialization method that we describe in Section 3 is a simplified form of partial
evaluation for Datalog programs.

Borrowing ideas from the theory of grammars for logic programming is nat-
ural since the evaluation of both involve similar components. We have incor-
porated one such idea [5] for our conversion between left-recursive and right-
recursive programs. Grammar related ideas for Datalog programs can also be
found in, e.g., [10]. Forms of recursion conversion have been discussed in other
contexts as well. The conversion from doubly-recursive rules to rules with only
one recursive hypothesis is a specific instance of linearization [25, 23].

Our work distinguishes from the previous work in several aspects. Previous
work generally focus on one aspect, such as specialization or evaluation alone.
Our work combines several techniques: using recursion conversion to obtain dif-
ferent programs with the same semantics in order to specialize better, using
specialization for on-demand evaluation, and using automatic program genera-
tion with complexity calculations. These together produce efficient specialized
programs for demand-driven analysis and provide complexity guarantees spe-
cialized for each problem. We have extensively compared and contrasted our
method with previous work, and showed that it outperforms previous methods
in readability, efficiency, and usability: it generates specialized rules that are
simpler than the original rules and are more efficient than using other methods,
for a large class of Datalog programs such as the programs that are generated
from the query language in [20], and the user just provides the set of rules and
the query and our method produces specialized rules for efficient evaluation and
generates a program ready to be executed.
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