Graphics Hardware 2003, pp. 1-11
M. Doggett, W. Heidrich, W. Mark, A. Schilling (Editors)

A Multigrid Solver for Boundary Value Problems Using
Programmable Graphics Hardware

Nolan Goodnight!, Cliff Woolley*, Gregory Lewin?, David Luebke!, and Greg Humphreys®

1Department of Computer Science, 2Department of Mechanical & Aerospace Engineering, University of Virginia

Abstract

We present a case study in the application of graphics hardware to general-purpose numeric computing. Specifi-
cally, we describe a system, built on programmable graphics hardware, able to solve a variety of partial differential
equations with complex boundary conditions. Many areas of graphics, simulation, and computational science re-
quire efficient techniques for solving such equations. Our system implements the multigrid method, a fast and
popular approach to solving large boundary value problems. We demonstrate the viability of this technique by us-
ing it to accelerate three applications: simulation of heat transfer, modeling of fluid mechanics, and tone mapping
of high dynamic range images. We analyze the performance of our solver and discuss several issues, including
techniques for improving the computational efficiency of iterative grid-based computations for the GPU.

Categories and Subject Descriptors (according to ACM CCS): G.1.8 [Numerical Analysis]: Partial Differen-
tial Equations—Multigrid and multilevel methods G.1.8 [Numerical Analysis]: Partial Differential Equations—

Elliptic equations 1.3.1 [Computer Graphics]: Hardware Architecture—Graphics Processors

1. Introduction

The graphics processing unit (GPU) on today’s commod-
ity video cards has evolved into an extremely powerful
and flexible processor. GPUs provide tremendous mem-
ory bandwidth and computational horsepower, with fully
programmable vertex and fragment processing units that
support short vector operations up to full IEEE single
precision!®. In addition, high level languages have emerged
to support the new programmability of the vertex and frag-
ment pipelinest# 19, Purcell et al.2® show that the modern
GPU can be thought of as a general stream processor, and
can therefore perform any computation that can be mapped
to the stream-computing model.

We present a case study on mapping general numeric
computation to modern graphics hardware. In particular, we
have used programmable graphics hardware to implement a
solver for boundary value problems based on the multigrid
method?. This approach enables acceleration of a whole set
of real-world scientific and engineering problems and makes
few assumptions about the governing equations or the struc-
ture of the solution domain.

(© The Eurographics Association 2003.

2. Background

Here we briefly review the multigrid method for solving
boundary value problems (BVPs), as well as the relevant fea-
tures of modern graphics architectures.

2.1. Boundary value problemsand the multigrid
algorithm

Many physical problems require solving boundary value
problems (BVPs) of the form:

Lo=f 1)

where £ is some operator acting on an unknown scalar
field ¢ with a non-homogeneous source term f. Such prob-
lems arise frequently in scientific and engineering disci-
plines ranging from heat transfer and fluid mechanics to
plasma physics and quantum mechanics. Computer graph-
ics applications include visual simulation and tone mapping
for compression of high dynamic range images. We will use
simple heat transfer as an example to illustrate the algorithm.
Finding the steady-state temperature distribution T in a solid
of thermal conductivity k with thermal source S requires

Goodnight, Wboolley, Lewin, Luebke, Humphreys/ A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware

solving a Poisson equation kV?T = —S a BVP in which
L is the Laplacian operator V2.

In practice most BVPs cannot be solved analytically. In-
stead, the domain is typically discretized onto a grid to
produce a set of linear equations. Several means exist for
solving such sets of equations, including direct elimination,
Gauss-Seidel iteration, conjugate-gradient techniques, and
strongly implicit procedures?8. Multigrid methods are a class
of techniques that have found wide acceptance since they
are quite fast for large BVPs and relatively straightforward
to implement. A multitude of techniques can be classified as
multigrid methods; a full description of these is beyond the
scope of this paper. We refer the reader to Press et al.18 for a
brief introduction and to a survey such as Briggs 2 for a more
comprehensive treatment. We summarize the broad steps of
the algorithm (called kernels) below in order to describe how
we map them to the GPU.

The smoothing kernel approximates the solution to Equa-
tion 1 after it has been discretized onto a particular grid. The
exact smoothing algorithm will depend on the operator L,
which is the Laplacian V2 in our example. The smoothing
kernel iteratively applies a discrete approximation of L.

The progress of the smoothing iterations is measured by
calculating the residual. In the general case, the residual is
defined as L£¢; — f, where L¢; is the approximate solution
at iteration i. In our heat transfer example, the residual at
iteration i is simply V2T + S where we have set the ther-
mal conductivity k = 1. Reduction of the residual results in
reduction of the error in the solution, and the solution may
be considered sufficiently converged once the residual falls
below a (user-specified) threshold.

However, convergence on a full-resolution grid is gener-
ally too slow, due to long-wavelength errors that are slow
to propagate out of the fine grid. Multigrid circumvents this
problem by recursively using coarser and coarser grids to
approximate corrections to the solution. The restriction ker-
nel therefore takes the residual from a fine grid to a coarser
grid, where the smoothing kernel is again applied for several
iterations. Afterwards the coarse grid may be restricted to a
still coarser grid, or the correction may be pushed back to a
finer grid using the interpolation kernel. Multigrid methods
typically follow a fixed pattern of smoothing, restriction, and
interpolation (examples of such patterns are V-cyclesand W-
cycles?; we use V-cycles for all results in this paper), then
test for convergence and repeat if necessary.

2.2. Current graphics architectures

A modern graphics accelerator such as the NVIDIA NV3016
consists of tightly coupled vertex and fragment pipelines.
The former performs transformations, lighting effects, and
other per-vertex operations; the latter handles screen-space
operations such as texturing. The fragment processor has
direct access to texture memory. This and the fact that

fragment processors have enormous throughput—roughly
an order of magnitude greater data throughput than vertex
programs3—makes the fragment engine well suited to cer-
tain numerical algorithms.

Until recently, both pipelines were optimized to per-
form only graphics-specific computations. However, current
GPUs provide programmability for these pipelines, and have
also replaced the 8-10 bits previously available with support
for up to full IEEE single-precision floating point throughout
the pipeline. Purcell et al.2° argue that current programmable
GPUs can be modeled as parallel stream processors, the two
pipelines highly optimized to run a user-specified program
or shader on a stream of vertices or fragments, respectively.
The NV30 supports a fully orthogonal instruction set opti-
mized for 4-component vector processing. This instruction
set is shared by the vertex and fragment processors, with
certain limitations—for example, the vertex processor can-
not perform texture lookups and the fragment processor does
not support branching. The individual processors have strict
resource limitations; for example, an NV30 fragment shader
can have up to 1024 instructions.

We have implemented our multigrid solver as a collec-
tion of vertex and fragment shaders for the NV30 chip us-
ing Cg4. We rely on two other features of modern graphics
architectures: multi-texturing and render-to-texture. Multi-
texturing allows binding of multiple simultaneous textures
and multiple lookups from each texture. Render-to-texture
enables binding the rendering output from one shader as a
texture for input to another shader. This avoids copying of
fragment data from framebuffer to texture memory, which
can be a performance bottleneck for large textures.

As graphics hardware has become more programmable,
high-level languages have emerged to support the program-
mer. Proudfoot et al.1® describe a real-time shading system
targeting programmable hardware. Their system compiles
shaders expressed in a high-level language to GPU code and
supports multiple backend rendering platforms. Their lan-
guage is not well suited for our purposes, however, since it is
heavily graphics-oriented and designed to compile complex
shaders into multiple passes, using the technique of Peercy et
al.17 to virtualize the GPU’s limited resources. More recent
efforts include Cg!* and the OpenGL 2.0 Shading Language,
both lower-level languages better suited to general-purpose
computation. We chose Cg as our primary development plat-
form, targeting the N30 fragment pipeline.

3. Previous Work

The recent addition of programmability to graphics chipsets
has led to myriad efforts to exploit that programmability
for computation outside the realm of 3D rasterization. Har-
ris provides an excellent compendium of existing research’;
we mention only the most related work here. Purcell et
al.20 demonstrate the flexibility of modern graphics hard-
ware by casting ray tracing as a series of fragment programs.

(© The Eurographics Association 2003.

Goodnight, Wboolley, Lewin, Luebke, Humphreys/ A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware

Larsen and McAllister'2 perform dense matrix-matrix mul-
tiplies on the GPU. Hoff et al.® have demonstrated a series
of graphically-accelerated geometric computations, such as
fast Voronoi diagrams and proximity queries. Thompson
et al.z3 apply graphics hardware to general-purpose vector
processing. Their programming framework compiles vector
computations to streams of vertex operations using the 4-
vector registers on the vertex processor; they demonstrate
implementations of matrix multiplication and 3-SAT. They
use the vertex processor exclusively, while most other re-
searchers (including us) primarily use the faster but simpler
fragment processor. This lets us feed results of one computa-
tion into the input of another, overcoming a major drawback
faced by Thompson et al.: the need to read results from the
GPU back to the CPU. Note that the latest hardware drivers
allow the results of a fragment program to be fed directly
into the vertex processor, enabling hybrid vertex/fragment
programming approaches.

Closer in spirit to our work are approaches to GPU-
accelerated physical simulation. For example, several
NVIDIA demos perform simple physical simulations model-
ing cloth, water, and particle system physics using vertex and
fragment shaders!6. Building on these ideas, Harris et al.8
employ graphics hardware for visual simulation using an ex-
tension of cellular automata known as coupled-map lattice.
They simulate several fluid processes such as convection,
diffusion, and boiling. Rumpf and Strzodka?! explore PDEs
for image processing operations such as nonlinear diffusion
and express solutions using Jacobi iteration and conjugate-
gradient iteration as rendering passes.

3.1. Recent related work

Two recent publications are particularly relevant. Kriiger and
Westermann discuss implementation of linear algebraic op-
erators on the GPU, while Bolz et al. describe a multigrid
solver on graphics hardware, which they demonstrate on vi-
sual simulation of fluid flow!. Although their system is fun-
damentally similar to ours, the systems also differ in several
interesting ways. These differences emerge primarily from
the choice of driving problem and the strategies followed
for optimization. For example, we target a complex domain-
specific engineering code that requires efficient support for
periodic boundaries and a way to transform the domain by
varying the operator across grid cells (see Section 5.3). As
another example, Bolz et al. use a quadrant-stacked data lay-
out to maximize utilization of the four-register GPU vector
processors, and report that the bottleneck in the remaining
system is the cost of context-switching between OpenGL
pbuffers. Our primary goal during optimization has been
to eliminate this cost; our data layout makes less optimal
use of the GPU memory bandwidth but eliminates context-
switching (see Section 6).

(© The Eurographics Association 2003.

4. Implementation

We keep all grid data—the current solution, residuals, source
terms, etc.—in fast on-card video memory, storing the data
for each progressively coarser grid as a series of images. This
allows us to use the fragment pipeline, optimized to per-
form image processing and texture mapping operations on
billions of fragments per second, for our computations. We
also eliminate the need to transfer large amounts of data from
main memory to and from the graphics card (a common per-
formance bottleneck). To keep the computation entirely on
the card, we implement all operations—smaoothing, residual
calculation, restriction, and interpolation—using fragment
shaders that read from a set of input images (textures) and
write to an output image.

4.1. Mappingthe multigrid algorithm to hardware

The multigrid algorithm recursively solves a boundary value
problem at several grid resolutions. In our implementation
all computationally intensive steps—successive kernel ap-
plications, implemented as fragment shaders—are handled
by the GPU. Results from one kernel become the input to
the next kernel (Figure 1). In other words, we have imple-
mented the multigrid algorithm as a series of stream compu-
tations performed in the fragment pipeline, using the CPU to
keep track of the recursion depth and rendering state.

Following this stream processing abstraction, the purpose
of each multigrid shader is to operate on data from multi-

smooth

T
I
ront e o1 Back |
f
_ T
3 =
ﬁ residual —qiw: - trict
g . P restrict Ly []
e Grid i Front [K
r et
5 (fine) D<€ interpolate =
@
T T
— smooth. I H i
ron :qiﬁﬁ:: Grid i+1
G
! (coar se)

Layout in memory

»
»

Figure1: A conceptual illustration of two gridsin the multi-
grid algorithm, each using the front and back surfaces of the
solution buffer as alternating source and target. At grid G,
the smoothing pass is performed by rendering between the
surfaces labeled front and back. We then restrict the resid-
ual to the front buffer for grid Gi 1 and perform the same
smoothing operations on this lower-resolution grid. The ap-
proximate solution at Gj 1 is then interpolated back to the
higher resolution grid G;, and the smoothing continues. By
using two buffers at each grid level, we can bind one buffer
asinput and use the other as a rendering target. All arrows
between buffers represent render passes.

Goodnight, Wboolley, Lewin, Luebke, Humphreys/ A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware

ple input streams to produce a single output stream. For ex-
ample, in the smoothing kernel we discretize and store the
operator £ from Equation 1 as a five-point stencil at ev-
ery grid cell (storing a separate stencil at every cell enables
non-Cartesian grids, such as cylindrical coordinates). Thus
the smoothing kernel combines two data streams: one con-
taining the discretized operator £y, and the other containing
the current solution Uy,. We use texture-mapped polygons to
generate these streams as fragments streaming through the
GPU fragment engine. Using the OpenGL API, the general
procedure for each kernel is as follows:

e Bind as texture maps the buffers that contain the necessary
data. These textures form the input for the kernel.

e Set the target buffer for rendering. This buffer forms the
output of the kernel.

e Activate a fragment shader, programming the fragment
pipeline to perform the kernel computation on every frag-
ment.

e Render a single quadrilateral with multi-texturing en-
abled, sized to cover as many pixels as the resolution of
the current grid.

Using this procedure, we are able to perform all steps of
the multigrid algorithm by simply binding the fragment pro-
gram, the rendering target, and the appropriate combination
of textures as input to the fragment pipeline. Next we de-
scribe the principal buffers and the four key multigrid ker-
nels in detail, using as an example our heat-transfer problem
modeled by the Poisson equation.

4.1.1. Input buffers

The main buffers in the system are the solution buffer, the
operator map, and the red-black map. Together these three
buffers form the input textures for all of the multigrid ker-
nel shaders. The operator and red-black maps are read-only
textures, but the solution buffer also serves as the render-
ing target for all shaders. As discussed in Section 6, us-
ing a single buffer for both input and output avoids con-
text switches, which is crucial for performance with current
NVIDIA drivers.

The solution buffer is a four-channel floating-point
OpenGL pixel buffer (a pbuffer) containing two surfaces,
exactly akin to the front and back surfaces used for double-
buffered rendering. Each kernel shader reads from one sur-
face of the solution buffer (the source surface) and writes
to another (the target surface). After each kernel is run on a
given grid level, the source and target surfaces for that level
are toggled for the next rendering pass. Each pixel in the so-
lution buffer represents a grid cell, with three floating-point
channels containing the current solution, the current resid-
ual, and the source term for that cell. We use a fourth channel
for debugging purposes.

The operator and red-black maps are also four-channel
floating-point textures in our current implementation. The

operator map contains the discretized operator, described in
the next section. The red-black map is an optimization used
to accelerate fragment odd-even tests for the smooth and in-
terpolate kernels and is described in Section 6. For conve-
nience, these are stored on the front and back surfaces of a
second four-channel pixel buffers, letting all buffers share a
single OpenGL rendering context.

4.1.2. Smoothing

In the multigrid algorithm, smoothing refers to the process of
iteratively refining the solution to the boundary value equa-
tion 1 at each grid level. The actual implementation will
depend on the operator represented by £; in the case of
the Poisson equation, £ is the Laplacian operator V2. The
smoothing kernel applies this operator to a given grid cell,
reading from the cell’s immediate neighborhood to compute
a new value for that cell. The inputs are simply the current
solution U and a five-point discrete approximation of the
Laplacian:

V2Uij R Ui j+ Ui +Ui o+ Ui — 40 ()

where i and j are row and column indices into the grid.
The smooth shader applies the operator to each fragment
(i.e., grid cell) being rasterized. It also factors in the non-
homogeneous term f, which for heat transfer problems is a
spatially varying function of external heat source. Finally,
we apply the necessary boundary conditions, as discussed
later in Section 4.2. After performing these operations on
every fragment, the output represents a closer approximation
to the steady-state solution.

In Jacobi iteration the operator is applied to every grid
cell of the source surface, with the output being rendered to
the target surface. However, we apply the smoothing using
red-black iteration?, a common method that often converges
faster in practice. In red-black iteration the operator is ap-
plied to only half of the grid cells at a time, so that one com-
plete smooth operation actually requires two passes.

4.1.3. Calculatingtheresidual

At each grid cell, the residual value is calculated by apply-
ing the operator £ to the current solution. For the Poisson
equation (where £ = Vz), we compute residuals using a sin-
gle rendering pass of the residual shader and store the result
in the target surface in preparation for the restriction pass.
The other data from the source surface (current solution and
source term) is copied unmodified to the target surface.

We can exploit the occlusion query feature of recent
graphics chips to determine when steady-state has been
reached using the residual calculation. The occlusion query
tests whether any fragments from a given rendering opera-
tion were written to the frame buffer!. Every nt" iteration—
for some user-defined n—we activate a fragment shader that
compares the residual at each grid cell to some threshold

(© The Eurographics Association 2003.

Goodnight, Wboolley, Lewin, Luebke, Humphreys/ A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware

value € and kills the fragment (terminating the correspond-
ing SIMD fragment processor’s execution) if the absolute
residual is less than €. If an occlusion query for this opera-
tion returns true, we have found the solution to Equation 1
within the tolerance €. By varying € we can govern the accu-
racy, and thus the running time, of the simulation.

Note that this use of the occlusion query amounts to test-
ing convergence with the Lo norm: iterate until no cell’s
residual exceeds €. This convergence test is often appropri-
ate for scientific and engineering applications, such as the
flapping-wing example in Section 5.3, but may be unneces-
sarily strict in other cases. For example, visual simulation of-
ten uses an Ly norm or even an Ly norm to avoid penalizing
local concentrations of error when the overall error across
all cells is small. Using these looser convergence tests leads
to faster, more consistent run times, at the cost of less pre-
dictable error. However, to implement the L, or Ly norm in
a single pass is not possible on current fragment hardware;
either the residual must be read out to the CPU (ruinously
expensive) or some sort of recursive summation kernel (akin
to building a mipmap) must be applied, increasing the cost
of the convergence test. One potential architectural solution,
helpful in this and other contexts, would be a globally ac-
cessible fragment accumulator register—a sort of extended
occlusion query that could sum a value across all fragments.

4.1.4. Restricting theresidual

If grid G; represents the it" domain resolution, then Giy1 is
the next-coarser grid level. We restrict the residual from G;
to Gj1 by setting the rendering output resolution to match
the dimensions of grid Gj,1, then activating a fragment
shader that re-samples residual values from G; using bilinear
interpolation and restricts the samples onto the coarser grid
(so-called “full weighting”). In other words, the restriction
shader takes as input two data streams: a fragment for ev-
ery grid cell in the Gj;1 domain and a group of fragments
in G; for every cell in Gj,1. The output becomes the non-
homogeneous term f from equation 1 for the problem to
be solved on the coarse grid G 1 stored in the appropriate
channel of the target surface. As before, the other channels
are passed directly through.

4.1.5. Interpolating the correction

Finding the approximate solution at grid Gj1 provides a
correction we can interpolate to grid G;. In this case we set
the output rendering resolution to match the dimensions of
G;; the active fragment shader bilinearly interpolates solu-
tion values from one input stream (G;j,1) and adds these to
another input stream (G;).

4.2. Boundary Conditions

The ability to specify arbitrarily complex boundary condi-
tions is fundamental to solving boundary-value problems for

(© The Eurographics Association 2003.

real-world situations. We treat boundary values as a sim-
ple extension to the state-space of the simulation, enabling
the fragment processor to perform the same computation on
every fragment and thereby avoiding the need to include
boundary-related conditionals in the fragment shader.

For example, our multigrid solver allows general bound-
ary conditions, such as Dirichlet (prescribed value), Neu-
mann (prescribed derivative), and mixed (coupled value and
derivative). These boundary conditions can be expressed as:

ouU
oyUy + B"aT: =Y 3)

where oy, Bk, and yi are constants evaluated at the KM bound-
ary position and Uy is the Kth boundary value. The second
term on the left hand side is the directional derivative with
respect to the normal ny at a given boundary. Equation 3 can
be implemented by storing each of the constants in texture
memory. For the derivative term we simply replace the five-
point operator stencil (the discretized operator from Equa-
tion 1) with a “boundary condition” stencil. We apply all
boundary conditions as part of the smoothing pass; the user
can specify a single texture that contains all boundary con-
dition information.

Often problems are modeled with periodic boundaries,
meaning that cells on one boundary of the domain are
considered adjacent to cells on the opposite boundary. For
example, allowing periodicity at the vertical and horizon-
tal boundaries of a quadrilateral results in a topologically
toroidal domain. Note that periodicity affects the smooth,
restrict, and residual kernels, since they all read from a
neighborhood of several fragments. A naive implementa-
tion of periodic boundary conditions is straightforward: for
each fragment being read, simply check within the shader
whether that fragment is on a boundary, and if so, use dif-
ferent “neighbor” rules to determine where to sample in the
textures when applying the operator. In practice, however,
this kind of conditional code should be avoided because the
SIMD fragment engine does not natively support branch in-
structions, so the hardware in fact executes all branches of
the code on all fragments, using condition codes to sup-
press the unwanted results. The naive code is therefore sig-
nificantly slower than code for the non-periodic boundaries,
especially when the kernel must perform some boundary-
related computation that is wasted on the vast majority of
fragments that are not near a boundary.

To efficiently realize periodic boundary conditions, we
support two versions of each multigrid kernel: a general
shader that works for any fragment (grid cell) in the domain
and a fastpath shader that works only for fragments inte-
rior to the domain (i.e., those that do not require boundary
conditions). When applying the kernel to a domain we split
it into two passes: the fastpath shader is rasterized using a
rectangle covering the interior fragments of the destination
grid, and then the general shader is rasterized as a series of

Goodnight, Wboolley, Lewin, Luebke, Humphreys/ A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware

2

B Slow Fast Path

M Fast

Seconds per
V-Cycle
-

65x65 129x129 257x257
Grid Size

513x513 1025x1025

Figure 2: Effects of fastpath optimization. The fully general
shader (“ Sow") includes code supporting supporting peri-
odic boundaries, unneeded on most grid cells. The “ Fast”
shader does not support periodic boundaries. The “ Fast-
path” optimization uses a two-pass approach to increase
speed while supporting periodic boundaries. The slower
shader is only used on fragments rasterized on the bound-
aries, while the interior region of the domain is rasterized
using the faster shader.

(possibly thick) lines along the boundary fragments of the
grid. Since the number of interior fragments is quadratically
greater than the number of perimeter fragments, the savings
from applying the less expensive fastpath shader on these
fragments more than compensates for the cost of binding
two shaders and transforming multiple primitives. Figure 2
summarizes the savings achieved by using a fastpath shader.
Note that the concept of a fastpath shader was also presented
by James and Harris® and is analogous to splitting the com-
putation in CPU implementations to avoid branch instruc-
tions in the inner loop.

To simplify the maintenance of periodic boundaries and
the construction of the kernels, we employ the common trick
of replicating the cells on the periodic boundaries. For ex-
ample, if a grid has a periodic vertical boundary, the first
and last columns of the grid will contain the same data and
actually represent the same region of the domain.

5. Applications

We have applied our system to problems in heat transfer,
fluid mechanics, and high dynamic range tone mapping.
Here we briefly describe the three applications and their use
of the multigrid solver.

5.1. Heat transfer

Steady-state temperature distribution across a uniform sur-
face discretized on a Cartesian grid can be solved directly
by the multigrid Poisson solver we have presented. We load
the initial heat sources into the solution buffer’s finest grid
and encode the boundary conditions (such as Dirichlet, Neu-
mann, or periodic) in the operator map, using a simple pro-

cedural shader. We then pick the number of grids and the
recursion depth and run iterations of the multigrid algorithm
until we determine, using the occlusion query feature, that
the system has converged.

We used this straightforward application as a testbed,
checking the validity and performance of our solver against
a custom CPU implementation of the same algorithm de-
veloped to support the fluid flow application in Section 5.3.
In our tests, the GPU solver agreed with the CPU solver to
within floating-point precision.

5.2. Tone mapping for high dynamic range images

Images spanning a large range of intensity values are becom-
ing increasingly common and important in computer graph-
ics. These high dynamic range (HDR) images typically arise
either from special photography techniques* or physically
based lighting simulations; they are challenging to display
due to the relatively low dynamic range of output devices.
Several tone-mapping algorithms have been developed to
compress the dynamic range of an HDR image.

We have used our multigrid solver to implement the Gra-
dient Domain Compression algorithm of Fattal et al.5 This
technique applies a non-uniform scaling ®(x,y) to the gra-
dient of a log-luminance image H(x,y). Specifically, they
compute G(x,y) = VH(x,y)®(x,y). Because @ is designed
to attenuate large gradients more than small gradients, the
function G has similar detail to H in areas without large dis-
continuities, which is exactly the sort of detail-preserving
compression desired.

Unfortunately, turning G(x,y) back into an image is non-
trivial, since G is not necessarily integrable. Instead, they
solve the Poisson equation V2l = divG to find the image
| whose gradient is closest to G in the least-squares sense.
Fattal also uses a multigrid solver to solve this differential
equation, although they use Gauss-Seidel iteration while our
solver uses red-black iteration.

5.3. Fluid flow around a flapping wing

Fluid mechanics simulations have proven popular choices
for acceleration using the GPU; for example, both Harrist0- 6
and Bolz! demonstrate “stable fluids” solvers based on the
method of Stam22. Such solvers are particularly popular in
computer graphics because they produce robust and visually
convincing (if not entirely physically accurate) fluid flow.
Our work on GPU fluid simulation grew out of a desire to
accelerate an engineering code that simulates flow around
a flapping airfoil using a model by Lewin and Haj-Hariri3.
This code was the motivating problem for our work and re-
mains the most complex model we have used our solver to
accelerate.

The model uses the vorticity-stream function formulation
to solve for the vorticity field of a two-dimensional airfoil

(© The Eurographics Association 2003.

Goodnight, Wboolley, Lewin, Luebke, Humphreys/ A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware

w

N

H GrPU CPU

Seconds per
V-Cycle

[EEN

0 1 I
65x65 129x129 257x257
Grid Size

513x513 1025x1025

Figure 3: CPU vs. GPU comparison. “Seconds per V-
Cycle” is the time to run through a single V-Cycle itera-
tion of the multigrid solver on the fluid mechanics prob-
lem. Each V-Cycle used the maximum number of grid lev-
els and performed 8 smooths at each grid level. On large
grids, GPU performance begins to significantly exceed CPU
performance. These results were obtained using a NVIDIA
GeForceFX 5800 Ultra and an AMD Athlon XP 1800 with
512MB RAM.

undergoing arbitrary heaving (vertical), lagging (horizontal),
and pitching motions. In the non-inertial reference frame of
the airfoil, the vorticity transport equation is modified for the
motion of the airfoil and becomes:

9 _ 98 98 12 i
i uax Vay + Rev £—26 4)
where { = g—‘; — 3—; is the vorticity, Re is the Reynolds num-

ber, and @ is the rotational acceleration of the airfoil. Because
the flow is considered incompressible, the velocity compo-
nents in Equation 4 are found from the stream function :

_oy oy
u= aiy) V= ax (5)
where the stream function is related to the vorticity by
Viy = (6)

At each time step, equations 4 and 6 are solved for the new
values of unknowns and vy, after which equation 5 is solved
to obtain the new velocity field. The process is repeated for
a predetermined number of time steps.

Bolz et al.! focus on the Poisson problem for the pres-
sure term; similarly, we focus on the Poisson problem for
the stream function in Equation 6. This equation accounts
for the bulk of the computation and dovetails nicely with
the multigrid Poisson solver presented above. To meet the
needs of our fluid model requires extending that solver to
handle transformed coordinates. The rectilinear domain is
first wrapped into a circular disc and then warped into an
airfoil using a Joukowski transformation. These extensions
impact the basic solver in two important ways. First, since
the cylindrical domain wraps onto itself, two sides of the
grid must form a periodic boundary. Second, the distortion

(© The Eurographics Association 2003.

due to the Joukowski transformation can be accomplished
by transforming the discrete approximation to the Laplacian
(Equation 2), which requires storing and applying a spatially
varying stencil for each grid cell in the smoothing and resid-
ual shaders. Rather than hard-coding the coordinate trans-
formations, we use a user-specified shader to compute the
operator for the Joukowski transformation at each cell at the
beginning of the simulation. This approach allows for very
general user-specified domain transformations.

Figure 3 compares performance of the GPU and CPU
multigrid solvers on a variety of grid sizes with the pa-
rameters used in the flapping wing simulation. The results
are summarized in Figure 3, but note that not too much
stress should be placed on these results, since the CPU
implementation—while far from naive-was not optimized
with the same care as the GPU implementation.

6. Optimizing the Solver

Our initial implementation of the solver operated correctly
but was disappointingly slow. We accordingly undertook a
series of optimizations targeting some of the obvious per-
formance bottlenecks. We describe this process here as an
interesting case study on the issues involved in optimizing
general-purpose computation for the GPU.

A number of potential bottlenecks can limit the perfor-
mance of a system built chiefly on the fragment processor.
We focused first on perhaps the most obvious: the num-
ber of instructions in the various shaders and the number of
registers used by those instructions. By pre-computing val-
ues such as texture coordinate offsets in vertex shaders and
by vectorizing the remaining computations where possible
(given our data layout, see below), we were able to reduce
the instruction count of the four primary shaders by a fac-
tor of 3-4 while roughly halving the registers used (Table 1).
Note that this includes the “fastpath” optimization described
in Section 4.2, which avoids the extra work associated with
boundary cells.

shader original fp fastpath fp fastpath vp
smooth 79-6-1 20-4-1 12-2
residual 45-7-0 16-4-0 11-1
restrict 66-6-1 21-3-0 11-1
interpolate 93-6-1 25-3-0 13-2

Table 1: Instruction and register counts for original and
fastpath shaders. For each shader, we give the fragment
program complexity (instructions—float registers-half regis-
ters) of the original (original fp) and fastpath (fastpath fp)
shaders. For the optimized fastpath shaders, we precompute
some values such as texture offsetsin a vertex program. fast-
path vp reports the vertex program complexity (instructions—
temp registers).

Goodnight, Wboolley, Lewin, Luebke, Humphreys/ A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware

101 W Very naive Optimized shaders

=l

S

n

>

5

§ B Two buffers M One buffer
»n

|E <

o 5

)]

c

S

o]

]]

0 ||
129x129 257x257 513x513 1025x1025
Grid Size

Figure 4: The effect of context switches on performance.
Our initial shaders (“ Very naive’) were carefully optimized
to reduce instruction count and better utilize the vectorized
fragment processor (“ Optimized shaders’), but all grid lev-
els were stored as separate buffers, so performance was
entirely limited by OpenGL context switches. Compacting
the grid levels into two pbuffers by stacking grid levels
and using front and back surfaces (“ Two buffers’) greatly
increased performance; further compacting all grid lev-
els into one two-surface pbuffer (“ One buffer”) brought a
dlight additional improvement. Note that at a resolution of
1025x 1025, the “ Two buffers’ implementation ran out of
memory, though the others did not.

Surprisingly, the heavily optimized shaders made almost
no difference in performance. We had encountered the same
bottleneck reported by Bolz et al.t, namely, the overhead
associated with context switches among multiple OpenGL
pbuffers on the NV30 platform. Our initial implementation
used two separate pbuffers for each grid level; the smooth
and residual shaders (which operate on a single grid level
at a time) alternated rendering between source and target
pbuffers of the same size, while the restrict and interpolate
shaders (which move from one grid level to another) would
render between pbuffers of different size. The resulting sys-
tem switched rendering context with every application of
every kernel—a naive approach that greatly limited perfor-
mance.

We therefore rearranged the layout of our grids to use
only two pbuffers in total. One pbuffer contained two sur-
faces representing source and target grids for level 0, while
the other contained all remaining grid levels—both source
and target—in a single surface (see Figure 5). The resulting
system eliminated most pbuffer overhead, speeding up the
system by a factor of about 3x. However, restrict and in-
terpolate operations entering or leaving grid level 0 still in-
curred a switch of rendering context. Our final arrangement
eliminates this remaining context switch, creating a single
pbuffer with each grid level duplicated on front and back
surfaces (Figure 5). The layout of grids within a surface is
arbitrary; our only requirement was to ensure that we could
still fit our largest-sized problem (1025x1025) into a sin-

gle pbuffer, which currently has an absolutely size limit of
2048x2048. Eliminating the final rendering context switch
with this arrangement accelerated the final system by an ad-
ditional 8-10%. Figure 4 shows the relative performance of
our various implementations.

A simple state machine tracks which surface provides the
source and target for each grid level as different kernels are
applied. One subtlety arises: following this approach directly
can lead to a technically illegal sequence of rendering calls.
Alternating buffers across a series of restrict, smooth, and
interpolate kernels may result in writing (rendering to) and
reading (binding as an active texture) the same surface in the
same or successive render passes. Render-to-texture disal-
lows reading and writing from the same surface and requires
aglFinish () call between such successive passes'®, but
this call proved too heavyweight, ruining performance. One
solution is to insert a “copy” kernel which simply renders
a grid from one surface to another when necessary to avoid
this situation, but this incurs extra cost. In practice, we found
that the rules can be broken and a surface used for simul-
taneous input and output if care is taken to ensure that all
fragments output from one pass are written before they are
read as input to another pass. By binding new shaders with
new rendering state (called uniform parameters in Cg), we

buffer 0| [buffer 1
257 x 257
129
513x513 ||| -~ 1EH
129 D
257 x 257
[
257 x 257
513 x 513 .
129 D
buffer 0
| [

Figure 5: This figure illustrates the memory layout of our
grids in the “ Two buffers’ implementation (top) and “ One
buffer” implementation (bottom). Note that in the “ Two
buffers’” case we render back and forth among three sur-
faces: the front and back surfaces of one pbuffer and a sin-
gle surface of a second buffer. In the “ One buffer” case, we
packed all of the grids into two surfaces of a single pbuffer
to eliminate context switches.

(© The Eurographics Association 2003.

Goodnight, Wboolley, Lewin, Luebke, Humphreys/ A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware

ensure that the pipeline gets flushed between each rendering
pass. Alternatively, we could have inserted “no-op” instruc-
tions into the fragment pipeline by rasterizing dummy frag-
ments whose results are discarded, but this is a dangerously
architecture-dependent strategy.

After adjusting the grid layout to minimize rendering con-
text switches, we implemented several other optimizations.
For example, the smooth kernel requires the red-black sta-
tus of each fragment. Rather than continuously computing
this status for each fragment, we store a red-black mask as
a texture map for about a 30% speedup. We also verified
the occlusion query optimization described in Section 4.1.3,
which indeed provides substantial speedup (around 5x on
large grids) over testing for convergence on the CPU. Fig-
ures 6 and 7 illustrate these savings.

Bolz et al. describe a major optimization which we did
not employ: domain decomposition for maximum utilization
of the vectorized fragment hardware. They “stack” the four
quadrants of the grid so that each fragment read or written
represents four grid cells. Instead we held to the early de-
sign choice to use the simpler mapping described in Section
4.1.1, which stores the current solution, residual, and source
term for a single grid cell at each fragment. This was largely
to simplify implementation and testing of the complicated
boundary conditions we wanted to provide. The optimiza-
tions we describe appear to be complementary to the domain
decomposition used by Bolz et al., and although we have not
done so, it should be possible to apply their approach to our
system for significant further speedup.

7. Discussion

We have implemented a general multigrid solver on the
NV30 architecture, demonstrating a specific and broadly

]
g 4
S B Red-black mask
k=]
§ 3 Compute red-black
n
P 2
(%)
2
g1
(]
U) .
0 .
129x129 257x257 513x513 1025x1025
Grid Size

Figure 6. Effectiveness of the red-black map. Despite the
fact that our solver is limited by memory bandwidth, using
the stored red-black map to quickly determine odd-even sta-
tus for the smooth and interpolate kernels (* One buffer”)
remains more efficient than explicitly computing this infor-
mation in the fragment shader (* Compute red-black”).

(© The Eurographics Association 2003.

useful application of stream computing using graphics hard-
ware. We increase performance by keeping all data—current
solution, residuals, source terms, operators, and boundary
information—on the graphics card stored as textures, and
by performing calculations entirely in the fragment pipeline,
using fragment shaders to implement the multigrid kernels:
smoothing, residual, restriction, and interpolation. In gen-
eral, one could use our framework to solve a variety of
boundary value problems; as a concrete example, we solve
the Poisson equation in the context of heat transfer, fluid me-
chanics, and tone mapping applications. Our solver outper-
forms a comparable CPU implementation and explores the
computational power that can be harnessed by efficient use
of graphics hardware.

7.1. Analysis of memory bandwidth

Analysis of our final system has shown it to be limited
by memory bandwidth. For example, on the NV30 we can
switch the entire system to use 16-bit half-precision floating-
point. The resulting system, while not useful for solving real-
world problems, runs almost exactly twice as fast as the 32-
bit full-precision system—a clear indication that memory
bandwidth could be the limiting factor. To verify this, we
ran additional experiments such as timing many smooth ker-
nels at a single grid level, then comparing the same number
of passes with a memory-bound trivial shader that simply
outputs a constant value. A comparison of the total bytes ac-
cessed per second in each showed that they performed com-
parably, each accessing approximately 8 GB/sec.

Given the nature of the multigrid algorithm, the fact that it
is memory-bound is unsurprising. Whether implemented on
the CPU or the GPU, the actual computation is relatively mi-
nor; when carefully optimized, each kernel performs only a
few adds and multiplies at each grid cell. The many memory
accesses understandably dominate.

2
©
&H 154
> Il NV_OCCLUSION_QUERY
=]
S glReadPixels ()
n 10
o
|_
3
c 5
o
o
<5
U) .
0 I
129x129 257x257 513x513 1025x1025
Grid Size

Figure7: Using the occlusion query to test for convergence.
Explicitly calling glReadPixels() and examining the resid-
uals on the CPU proves prohibitively expensive on large
grids, but using the occlusion query feature allows usto test
for convergence while keeping all data on the GPU.

Goodnight, Wboolley, Lewin, Luebke, Humphreys/ A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware

Early versions of our system suffered from large amounts
of graphics driver overhead and unnecessary computation
in each shader. Our work to date has focused on removing
these bottlenecks, removing context switches and carefully
tuning each shader. Having done that, our system is now lim-
ited by memory bandwidth, as we would intuitively expect.
Given that, the most important remaining optimizations will
be those that address memory usage.

7.2. Limitations

While the advent of 32-bit floating point throughout the
modern GPU pipeline is a huge leap forward, many real-
world science and engineering simulations require even
greater precision. We would like to characterize whether
workarounds could be developed for higher precision, us-
ing techniques similar to those used for “quad-precision”
computation in traditional numeric computing (arbitrary-
precision techniques also exist, but these seem poorly suited
for efficient GPU implementation).

Another limitation is the size of video memory, limited
to 256 MB on today’s boards; however, this still represents
enough memory to model many problems of interesting size.
Currently, driver limitations on the size of the floating-point
buffers prevent us from approaching the theoretical capacity
of the boards: in practice we have been unable to allocate a
floating-point texture larger than 64 MB, somewhat limiting
the utility of these techniques.

7.3. Avenuesfor futurework

We hope to extend the current multigrid implementation to
accelerate a wide range of simulations that require fast and
efficient solutions to boundary value problems. Our prelim-
inary work raises the possibility that scientists may soon
be able to accelerate their simulation substantially by in-
vesting in a commodity graphics card. We are particularly
interested in parallelizing the multigrid computation, aug-
menting existing computational clusters with inexpensive
graphics cards to provide speedups on some problems. Fi-
nally, we wish to explore general computational frameworks
for the use of GPU as a sort of streaming coprocessor for
computation-intensive tasks.

Acknowledgements

We would like to thank David Kirk and Pat Brown, Matt Pap-
kipos, Nick Triantos and the entire driver team at NVIDIA
for providing early cards and excellent driver support; James
Percy at ATl and Matt Pharr at NVIDIA for demystifying
the fragment pipeline; Mark Harris, Aaron Lefohn, and lan
Buck for productive discussions on general-purpose GPU
computation; and the anonymous reviewers for their thor-
ough and constructive comments. This work was supported
by NSF Award #0092793.

References

1. Jeff Bolz, lan Farmer, Eitan Grinspun, and Peter Schroder. Sparse matrix solvers
on the GPU: Conjugate gradients and multigrid. ACM Transactions on Graphics,
22(3), July 2003.

2. W.L. Briggs, V.E. Henson, and S.F. McCormick. A Multigrid Tutorial. Society for
Industrial and Applied Mathematics, 2000.

3. Nathan Carr, Jesse Hall, and John Hart. The Ray Engine. In Proceedings of SG-
GRAPH/Eurographics Workshop on Graphics Hardware, September 2002.

4. Paul Debevec and Jitendra Malik. Recovering high dynamic range radiance maps
from photographs. In Proceedings of SGGRAPH 1997, pages 369-378, August
1997.

5. Raanan Fattal, Dani Lischinski, and Michael Werman. Gradient domain high dy-
namic range compression. ACM Transactions on Graphics, 21(3):249-256, July
2002.

6. Mark Harris. Flo: A real-time fluid flow simulator written in Cg, 2003. http:
//www.cs.unc.edu/~harrism/gdc2003.

7. Mark Harris. GPGPU: General-purpose computation using graphics hardware,
2003. http://www.cs.unc.edu/~harrism/gpgpu.

8. Mark J. Harris, Greg Coombe, Thorsten Scheuermann, and Anselmo Lastra.
Physically-based visual simulation on graphics hardware. In Proceedings of S G-
GRAPH/Eurographics Workshop on Graphics Hardware, pages 109-118, August
2002.

9. Kenneth E. Hoff 111, John Keyser, Ming C. Lin, Dinesh Manocha, and Tim Culver.
Fast computation of generalized Voronoi diagrams using graphics hardware. In
Proceedings of SGGRAPH 1999, pages 277-286, August 1999.

10. Greg James and Mark Harris. ~ Simulation and animation using hardware-
accelerated procedural textures. In Proceedings of the 2003 Game Developers
Conference. CMP Media, March 2003.

11. Jens Kriger and Rudiger Westermann. Linear algebra operators for GPU imple-
mentation of numerical algorithms. ACM Transactions on Graphics, 22(3), July
2003.

12. E. Scott Larsen and David K. McAllister. Fast matrix multiplies using graphics
hardware. In Proceedings of |EEE Supercomputing 2001, November 2001.

13. Gregory C. Lewin and Hossein Haj-Hariri. Modeling thrust generation of a two-
dimensional heaving airfoil in a viscous flow. Journal of Fluid Mechanics, 2000.

14. William R. Mark, Steve Glanville, and Kurt Akeley. Cg: A system for programming
graphics hardware in a C-like language. ACM Transactions on Graphics, August
2003.

15. NVIDIA. OpenGL Extension Specifications, 2002. http://developer.
nvidia.com/view.asp?IO=nvidia_opengl_specs.

16. NVIDIA. GeForceFX, 2003. http://www.nvidia.com/view.asp?
PAGE=fx_desktop.

17. Mark Peercy, Marc Olano, John Airey, and Jeffrey Ungar. Interactive multi-pass
programmable shading. In Proceedings of SGGRAPH 2000, pages 425-432, Au-
gust 2000.

18. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipesin C: The Art of Scientific Computing. Cambridge University
Press, second edition, 1992.

19. Kekoa Proudfoot, William Mark, Svetoslav Tzvetkov, and Pat Hanrahan. A real
time procedural shading system for programmable graphics hardware. In Proceed-
ings of SGGRAPH 2001, pages 159-170, August 2001.

20. Tim Purcell, lan Buck, William Mark, and Pat Hanrahan. Ray tracing on pro-
grammable graphics hardware. ACM Transactions on Graphics, 21(3):703-712,
July 2002.

21. Martin Rumpf and Robert Strzodka. Nonlinear diffusion in graphics hardware.
In Proceedings of Eurographics/|EEE TCVG Symposium on Visualization, pages
75-84, May 2001.

22. Jos Stam. Stable fluids. In Proceedings of SGGRAPH 1999, pages 121-128,
August 1999.

23. Chris J. Thompson, Sahngyun Hahn, and Mark Oskin. Using modern graphics ar-
chitectures for general-purpose computing: A framework and analysis. In Proceed-
ings of IEEE/ACM International Symposium on Microarchitecture, pages 306-317,
November 2002.

(© The Eurographics Association 2003.

Goodnight, Wboolley, Lewin, Luebke, Humphreys/ A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware

1

0.5

Colorplate 1: Flow around a flapping wing. We accel erate a vorticity-stream function fluid mechanics model using our multigrid
solver for the Poisson problem in the stream function solution.

Colorplate 2: A high dynamic range image compressed with our gradient-domain tone mapping application. The top row shows
some constituent images used to produce the HDR image; the bottom row shows compressions using multigrid CPU (left) and
GPU (right) Poisson solvers.

(© The Eurographics Association 2003.

